1
|
Auer M, Bauer A, Oftring A, Rudzki D, Hegen H, Bsteh G, Di Pauli F, Berek K, Zinganell A, Berger T, Reindl M, Deisenhammer F. Soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) and Natalizumab Serum Concentration as Potential Biomarkers for Pharmacodynamics and Treatment Response of Patients with Multiple Sclerosis Receiving Natalizumab. CNS Drugs 2022; 36:1121-1131. [PMID: 36173556 DOI: 10.1007/s40263-022-00953-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Natalizumab (NTZ) is an established treatment for highly active, relapsing-remitting multiple sclerosis. In the context of rare progressive multifocal leukoencephalopathy and extended interval dosing as a treatment option, biomarkers for treatment monitoring are required. Natalizumab serum concentration (NTZ SC) and soluble vascular cell adhesion molecule 1 (sVCAM-1) concentration were shown to change on treatment with NTZ. We aimed to investigate whether NTZ SC and sVCAM-1 could be suitable pharmacodynamic markers and whether they could predict disease activity on NTZ, improving the concept of personalized multiple sclerosis treatment. METHODS In a retrospective study at the Medical University of Innsbruck, Austria, we identified patients treated with NTZ and chose samples longitudinally collected during routine follow-ups for the measurement of NTZ SC and sVCAM-1 by an enzyme-linked immunosorbent assay. We correlated these with clinical and demographic variables and clinical outcomes. Furthermore, we analyzed the stability of NTZ SC and sVCAM-1 during treatment. RESULTS One hundred and thirty-seven patients were included. We found a strong negative correlation between NTZ SC and sVCAM-1. Both showed significant associations with body mass index, infusion interval, sample age, and anti-drug-antibodies. Natalizumab serum concentration was reduced in extended interval dosing, but not sVCAM-1. Only sVCAM-1 showed a weak association with relapses during treatment, while there was no association with disease progression. Both NTZ SC and sVCAM-1 showed a wide inter-individual distribution while levels in single patients were stable on treatment. CONCLUSIONS Soluble vascular cell adhesion molecule 1 is a suitable pharmacodynamic marker during treatment with NTZ, which is significantly reduced already after the first dose, remains stable in individual patients even on extended interval dosing, and strongly correlates with NTZ SC. Because of the high inter-individual range, absolute levels of sVCAM-1 and NTZ SC are difficult to introduce as treatment monitoring biomarkers in order to predict disease activity in single patients.
Collapse
Affiliation(s)
- Michael Auer
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| | - Angelika Bauer
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Antonia Oftring
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Dagmar Rudzki
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Austria
| | - Markus Reindl
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Florian Deisenhammer
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| |
Collapse
|
2
|
Plasma levels of soluble NCAM in multiple sclerosis. J Neurol Sci 2019; 396:36-41. [DOI: 10.1016/j.jns.2018.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/24/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022]
|
3
|
Soluble VCAM-1 impairs human brain endothelial barrier integrity via integrin α-4-transduced outside-in signalling. Acta Neuropathol 2015; 129:639-52. [PMID: 25814153 PMCID: PMC4405352 DOI: 10.1007/s00401-015-1417-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/10/2015] [Accepted: 03/21/2015] [Indexed: 01/17/2023]
Abstract
Human brain microvascular endothelial cells forming the blood–brain barrier (BBB) release soluble vascular cell adhesion molecule-1 (sVCAM-1) under inflammatory conditions. Furthermore, sVCAM-1 serum levels in untreated patients with multiple sclerosis (MS) correlate with a breakdown of the BBB as measured by gadolinium-enhanced MRI. To date, it is unknown whether sVCAM-1 itself modulates BBB permeability. Here, we provide evidence that human brain endothelium expresses integrin α-4/β-1, the molecular binding partner of sVCAM-1, and that sVCAM-1 directly impairs BBB function by inducing intracellular signalling events through integrin α-4. Primary human brain microvascular endothelial cells showed low to moderate integrin α-4 and strong β-1 but no definite β-7 expression in vitro and in situ. Increased brain endothelial integrin α-4 expression was observed in active MS lesions in situ and after angiogenic stimulation in vitro. Exposure of cultured primary brain endothelial cells to recombinant sVCAM-1 significantly increased their permeability to the soluble tracer dextran, which was paralleled by formation of actin stress fibres and reduced staining of tight junction-associated molecules. Soluble VCAM-1 was also found to activate Rho GTPase and p38 MAP kinase. Chemical inhibition of these signalling pathways partially prevented sVCAM-1-induced changes of tight junction arrangement. Importantly, natalizumab, a neutralising recombinant monoclonal antibody against integrin α-4 approved for the treatment of patients with relapsing–remitting MS, partially antagonised the barrier-disturbing effect of sVCAM-1. In summary, we newly characterised sVCAM-1 as a compromising factor of brain endothelial barrier function that may be partially blocked by the MS therapeutic natalizumab.
Collapse
|
4
|
Biomarkers in Multiple Sclerosis: An Up-to-Date Overview. Mult Scler Int 2013; 2013:340508. [PMID: 23401777 PMCID: PMC3564381 DOI: 10.1155/2013/340508] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 12/16/2022] Open
Abstract
During the last decades, the effort of establishing satisfactory biomarkers for multiple sclerosis has been proven to be very difficult, due to the clinical and pathophysiological complexities of the disease. Recent knowledge acquired in the domains of genomics-immunogenetics and neuroimmunology, as well as the evolution in neuroimaging, has provided a whole new list of biomarkers. This variety, though, leads inevitably to confusion in the effort of decision making concerning strategic and individualized therapeutics. In this paper, our primary goal is to provide the reader with a list of the most important characteristics that a biomarker must possess in order to be considered as reliable. Additionally, up-to-date biomarkers are further divided into three subgroups, genetic-immunogenetic, laboratorial, and imaging. The most important representatives of each category are presented in the text and for the first time in a summarizing workable table, in a critical way, estimating their diagnostic potential and their efficacy to correlate with phenotypical expression, neuroinflammation, neurodegeneration, disability, and therapeutical response. Special attention is given to the "gold standards" of each category, like HLA-DRB1∗ polymorphisms, oligoclonal bands, vitamin D, and conventional and nonconventional imaging techniques. Moreover, not adequately established but quite promising, recently characterized biomarkers, like TOB-1 polymorphisms, are further discussed.
Collapse
|
5
|
Rudick RA, Polman CH. Current approaches to the identification and management of breakthrough disease in patients with multiple sclerosis. Lancet Neurol 2009; 8:545-59. [PMID: 19446274 DOI: 10.1016/s1474-4422(09)70082-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Disease-modifying drugs (DMDs) for relapsing-remitting multiple sclerosis (RRMS) are only partly effective -- breakthrough disease commonly occurs despite treatment. Breakthrough disease is predictive of continued disease activity and a poor prognosis. Availability of several DMDs offers the possibility of tailoring treatment to individual patients with RRMS and altering treatment in patients with breakthrough disease. However, no biological or imaging markers have been validated to guide initial treatment, markers of individual responsiveness to DMDs are scarce, and there is no class 1 evidence to guide alternative therapy in patients with breakthrough disease. In this Review, we discuss proposed strategies to monitor patients with RRMS being treated with DMDs, outline approaches to identifying therapeutic response in individual patients, review MRI and biological markers of treatment response, and summarise the role of antibodies in biological therapies. We also outline possible strategies for the management of patients with breakthrough disease and highlight areas in which research is needed.
Collapse
Affiliation(s)
- Richard A Rudick
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | |
Collapse
|
6
|
Mestre L, Docagne F, Correa F, Loría F, Hernangómez M, Borrell J, Guaza C. A cannabinoid agonist interferes with the progression of a chronic model of multiple sclerosis by downregulating adhesion molecules. Mol Cell Neurosci 2008; 40:258-66. [PMID: 19059482 DOI: 10.1016/j.mcn.2008.10.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/27/2008] [Accepted: 10/31/2008] [Indexed: 11/30/2022] Open
Abstract
Adhesion molecules are critical players in the regulation of transmigration of blood leukocytes across the blood-brain barrier in multiple sclerosis (MS). Cannabinoids (CBs) are potential therapeutic agents in the treatment of MS, but the mechanisms involved are only partially known. Using a viral model of MS we observed that the cannabinoid agonist WIN55,212-2 administered at the time of virus infection suppresses intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in brain endothelium, together with a reduction in perivascular CD4+ T lymphocytes infiltrates and microglial responses. WIN55,212-2 also interferes with later progression of the disease by reducing symptomatology and neuroinflammation. In vitro data from brain endothelial cell cultures, provide the first evidence of a role of peroxisome proliferator-activated receptors gamma (PPARgamma) in WIN55,212-2-induced downregulation of VCAM-1. This study highlights that inhibition of brain adhesion molecules by WIN55,212-2 might underline its therapeutic effects in MS models by targeting PPAR-gamma receptors.
Collapse
Affiliation(s)
- L Mestre
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Cajal Institute (CSIC), Av. Doctor Arce 37, 28002 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Induction of serum soluble tumor necrosis factor receptor II (sTNF-RII) and interleukin-1 receptor antagonist (IL-1ra) by interferon beta-1b in patients with progressive multiple sclerosis. J Neurol 2008; 255:1136-41. [DOI: 10.1007/s00415-008-0855-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 12/12/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
|
8
|
McCandless EE, Klein RS. Molecular targets for disrupting leukocyte trafficking during multiple sclerosis. Expert Rev Mol Med 2007; 9:1-19. [PMID: 17637110 DOI: 10.1017/s1462399407000397] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractAutoimmune diseases of the central nervous system (CNS) involve the migration of abnormal numbers of self-directed leukocytes across the blood–brain barrier that normally separates the CNS from the immune system. The cardinal lesion associated with neuroinflammatory diseases is the perivascular infiltrate, which comprises leukocytes that have traversed the endothelium and have congregated in a subendothelial space between the endothelial-cell basement membrane and the glial limitans. The exit of mononuclear cells from this space can be beneficial, as when virus-specific lymphocytes enter the CNS for pathogen clearance, or might induce CNS damage, such as in the autoimmune disease multiple sclerosis when myelin-specific lymphocytes invade and induce demyelinating lesions. The molecular mechanisms involved in the movement of lymphocytes through these compartments involve multiple signalling pathways between these cells and the microvasculature. In this review, we discuss adhesion, costimulatory, cytokine, chemokine and signalling molecules involved in the dialogue between lymphocytes and endothelial cells that leads to inflammatory infiltrates within the CNS, and the targeting of these molecules as therapies for the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Erin E McCandless
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
9
|
Kümpfel T, Schwan M, Pollmächer T, Yassouridis A, Uhr M, Trenkwalder C, Weber F. Time of interferon-β 1a injection and duration of treatment affect clinical side effects and acute changes of plasma hormone and cytokine levels in multiple sclerosis patients. Mult Scler 2007; 13:1138-45. [DOI: 10.1177/1352458507078685] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
During initiation of interferon-beta (IFN-β) therapy, many multiple sclerosis (MS) patients experience systemic side effects which may depend on the time point of IFN-β injection. We investigated the time course of plasma hormone-, cytokine- and cytokine-receptor concentrations after the first injection of IFN-β either at 8.00 a.m. (group A) or at 6.00 p.m. (group B) and quantified clinical side effects within the first 9 h in 16 medication free patients with relapsing-remitting MS. This investigation was repeated after 6-month IFN-β therapy. Plasma ACTH and cortisol concentrations followed their physiological rhythms, with lower levels in the evening compared to the morning, but raised earlier and stronger in group B after IFN-β administration. IFN-β injection in the evening led to a prompter increase of plasma IL-6 concentrations and temperature during the first hours and correlated to more intense clinical side effects compared to group A. Plasma IL-10 concentrations increased more in group A compared to group B, but sTNF-RI and sTNF-RII concentrations raised 7 h after IFN-β injection only in group B. Acute effects on plasma hormone and cytokine concentrations adapted after 6-month IFN-β treatment, while diurnal variations were still present. Baseline sTNF-RII concentrations were elevated after 6-month IFN-β therapy only in group A. Our results show that time point of IFN-β injection has differential effects on acute changes of plasma hormone and cytokine concentrations and is related to systemic side effects. This may have implications on the tolerability and effectiveness of IFN-β therapy. Multiple Sclerosis 2007; 13: 1138—1145. http://msj.sagepub.com
Collapse
Affiliation(s)
- T. Kümpfel
- Institute of Clinical Neuroimmunology, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany, -muenchen.de
| | - M. Schwan
- Max-Planck-Institute of Psychiatry, Sections of Neurology, Clinical Chemistry and Statistics, Munich, Germany
| | - Th. Pollmächer
- Centre of Mental Health, Klinikum Ingolstadt, Ingoldstadt, Germany
| | - A. Yassouridis
- Max-Planck-Institute of Psychiatry, Sections of Neurology, Clinical Chemistry and Statistics, Munich, Germany
| | - M. Uhr
- Max-Planck-Institute of Psychiatry, Sections of Neurology, Clinical Chemistry and Statistics, Munich, Germany
| | - C. Trenkwalder
- Department of Clinical Neurophysiology, University of Goettingen, Germany
| | - F. Weber
- Max-Planck-Institute of Psychiatry, Sections of Neurology, Clinical Chemistry and Statistics, Munich, Germany
| |
Collapse
|
10
|
Zhang LN, Velichko S, Vincelette J, Fitch RM, Vergona R, Sullivan ME, Croze E, Wang YX. Interferon-beta attenuates angiotensin II-accelerated atherosclerosis and vascular remodeling in apolipoprotein E deficient mice. Atherosclerosis 2007; 197:204-11. [PMID: 17466308 DOI: 10.1016/j.atherosclerosis.2007.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 11/28/2022]
Abstract
Atherosclerotic vascular disease is an inflammatory disease. Interferon-beta (IFN-beta) is an important immune modulator. However, the role of IFN-beta in atherosclerotic vascular disease is still not clear. The present study is designed to determine the effects of IFN-beta on atherosclerosis, abdominal aortic aneurysm (AAA) formation and proliferative vascular remodeling in apolipoprotein E (apoE) deficient mice. Six-month-old male apoE deficient mice fed a normal chow underwent ligation of the common left carotid artery, and were randomly assigned to receive either vehicle or angiotensin II (Ang II, 1.4 mg/kg daily) via a subcutaneously implanted osmotic infusion pump. The animals were further assigned to groups that were subjected to subcutaneous injection of vehicle or murine IFN-beta (10 MIU/kg, daily). Ang II increased atherosclerotic area in the non-ligated carotid artery and aortic arch, induced AAA, and exacerbated ligation-induced adventitial proliferation and neointimal hyperplasia characterized by smooth muscle cell (SMC) proliferation and macrophage infiltration in the ligated carotid artery. Co-treatment with IFN-beta, had no effects by itself, significantly attenuated Ang II-accelerated increase in the areas of neointima, adventitia, SMC and macrophage in the ligated carotid artery and suppressed Ang II-exacerbated atherosclerosis, but did not affect Ang II-induced AAA formation. These data indicate that IFN-beta can play a prominent anti-atherosclerosis, anti-inflammation, and anti-proliferation role of vasculoprotection.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/immunology
- Aorta, Thoracic/pathology
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/pathology
- Apolipoproteins E/genetics
- Atherosclerosis/drug therapy
- Atherosclerosis/immunology
- Atherosclerosis/pathology
- Carotid Artery, Common/drug effects
- Carotid Artery, Common/immunology
- Carotid Artery, Common/pathology
- Cell Division/drug effects
- Drug Interactions
- Foam Cells/pathology
- Immunologic Factors/pharmacology
- Interferon-beta/pharmacology
- Ligation
- Male
- Mice
- Mice, Mutant Strains
- Tunica Intima/drug effects
- Tunica Intima/immunology
- Tunica Intima/pathology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Le-Ning Zhang
- Department of Pharmacology and Immunology, Berlex Bioscience, 2600 Hilltop Drive, P.O. Box 4099, Richmond, CA 94806, USA.
| | | | | | | | | | | | | | | |
Collapse
|