1
|
Avecillas-Chasin JM, Honey CR, Heran MKS, Krüger MT. Sweet spots of standard and directional leads in patients with refractory essential tremor: white matter pathways associated with maximal tremor improvement. J Neurosurg 2022; 137:1811-1820. [PMID: 35535840 DOI: 10.3171/2022.3.jns212374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/11/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In patients with essential tremor (ET) treated with standard deep brain stimulation (sDBS) whose ET had progressed and who no longer received optimal benefit from sDBS, directional deep brain stimulation (dDBS) may provide better tremor control. Current steering may provide better coverage of subcortical structures related to tremor control in patients with ET and significant progression without optimal response to sDBS. METHODS This study included 6 patients with ET initially treated with sDBS whose tremor later progressed and who then underwent reimplantation with dDBS to optimize their tremor control. To investigate the differences in the local effects of sDBS and dDBS, the authors generated the volume of tissue activation (VTA) to calculate the sweet spots associated with the best possible tremor control with no side effects. Then, to investigate the anatomical structures associated with maximal tremor control, the white matter pathways of the posterior subthalamic areas (PSAs) were generated and their involvement with the sDBS and dDBS sweet spots was calculated. RESULTS Tremor improvement was significantly better with dDBS (68.4%) than with sDBS (48.7%) (p = 0.017). The sDBS sweet spot was located within the ventral intermediate nucleus, whereas the sweet spot of the dDBS was mainly located within the PSA. The sweet spots of both sDBS and dDBS involved a similar portion of the cerebellothalamic pathway. However, the dDBS had greater involvement of the pallidofugal pathways than the sDBS. CONCLUSIONS In patients with ET treated with sDBS who later had ET progression, dDBS provided better tremor control, which was related to directionality and a more ventral position. The involvement of both the cerebellothalamic and pallidofugal pathways obtained with dDBS is associated with additional improvement over the sDBS.
Collapse
Affiliation(s)
- Josue M Avecillas-Chasin
- 1Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska.,2Department of Neurosurgery, University of California, Los Angeles, California
| | | | - Manraj K S Heran
- 4Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marie T Krüger
- 5Department of Neurosurgery, Cantonal Hospital St. Gallen, Switzerland; and.,6Department of Stereotactic and Functional Neurosurgery, University Medical Center Freiburg, Germany
| |
Collapse
|
2
|
Sugiyama J, Toda H. A Single DBS-Lead to Stimulate the Thalamus and Subthalamus: Two-Story Targets for Tremor Disorders. Front Hum Neurosci 2022; 16:790942. [PMID: 35140594 PMCID: PMC8820320 DOI: 10.3389/fnhum.2022.790942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
|
3
|
Stieglitz LH, Oertel MF, Accolla EA, Bally J, Bauer R, Baumann CR, Benninger D, Bohlhalter S, Büchele F, Hägele-Link S, Kägi G, Krack P, Krüger MT, Mahendran S, Möller JC, Mylius V, Piroth T, Werner B, Kaelin-Lang A. Consensus Statement on High-Intensity Focused Ultrasound for Functional Neurosurgery in Switzerland. Front Neurol 2021; 12:722762. [PMID: 34630296 PMCID: PMC8493868 DOI: 10.3389/fneur.2021.722762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Magnetic resonance-guided high-intensity focused ultrasound (MRgHiFUS) has evolved into a viable ablative treatment option for functional neurosurgery. However, it is not clear yet, how this new technology should be integrated into current and established clinical practice and a consensus should be found about recommended indications, stereotactic targets, patient selection, and outcome measurements. Objective: To sum up and unify current knowledge and clinical experience of Swiss neurological and neurosurgical communities regarding MRgHiFUS interventions for brain disorders to be published as a national consensus paper. Methods: Eighteen experienced neurosurgeons and neurologists practicing in Switzerland in the field of movement disorders and one health physicist representing 15 departments of 12 Swiss clinical centers and 5 medical societies participated in the workshop and contributed to the consensus paper. All experts have experience with current treatment modalities or with MRgHiFUS. They were invited to participate in two workshops and consensus meetings and one online meeting. As part of workshop preparations, a thorough literature review was undertaken and distributed among participants together with a list of relevant discussion topics. Special emphasis was put on current experience and practice, and areas of controversy regarding clinical application of MRgHiFUS for functional neurosurgery. Results: The recommendations addressed lesioning for treatment of brain disorders in general, and with respect to MRgHiFUS indications, stereotactic targets, treatment alternatives, patient selection and management, standardization of reporting and follow-up, and initialization of a national registry for interventional therapies of movement disorders. Good clinical evidence is presently only available for unilateral thalamic lesioning in treating essential tremor or tremor-dominant Parkinson's disease and, to a minor extent, for unilateral subthalamotomy for Parkinson's disease motor features. However, the workgroup unequivocally recommends further exploration and adaptation of MRgHiFUS-based functional lesioning interventions and confirms the need for outcome-based evaluation of these approaches based on a unified registry. MRgHiFUS and DBS should be evaluated by experts familiar with both methods, as they are mutually complementing therapy options to be appreciated for their distinct advantages and potential. Conclusion: This multidisciplinary consensus paper is a representative current recommendation for safe implementation and standardized practice of MRgHiFUS treatments for functional neurosurgery in Switzerland.
Collapse
Affiliation(s)
| | - Markus F Oertel
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Ettore A Accolla
- Neurology Unit, Department of Internal Medicine, Hôpital Fribourgeois (HFR)-Cantonal Hospital Fribourg, University of Fribourg, Fribourg, Switzerland
| | - Julien Bally
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Department of Neurology, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Roland Bauer
- Department of Neurosurgery, Cantonal Hospital Aarau, Aarau, Switzerland
| | | | - David Benninger
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stephan Bohlhalter
- Neurocenter, Lucerne Cantonal Hospital, University of Zurich, Zurich, Switzerland
| | - Fabian Büchele
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Stefan Hägele-Link
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Georg Kägi
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Paul Krack
- Department of Neurology, Inselspital, University Bern, Bern, Switzerland
| | - Marie T Krüger
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Sujitha Mahendran
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - J Carsten Möller
- Parkinson Center, Center for Neurological Rehabilitation, Zihlschlacht, Switzerland
| | - Veit Mylius
- Department of Neurology, Center for Neurorehabilitation, Valens, Switzerland
| | - Tobias Piroth
- Department of Neurology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Beat Werner
- Center for Magnetic Resonance (MR) Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Alain Kaelin-Lang
- Department of Neurology, Inselspital, University Bern, Bern, Switzerland.,Neurocenter of Southern Switzerland Ente Ospedaliero Cantonale (EOC), Regional Hospital Lugano, Lugano, Switzerland.,Faculty of Biomedical Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
4
|
Zhou Y, Ibrahim A, Hardy KG, Jenkins ME, Naish MD, Trejos AL. Design and Preliminary Performance Assessment of a Wearable Tremor Suppression Glove. IEEE Trans Biomed Eng 2021; 68:2846-2857. [PMID: 33999812 DOI: 10.1109/tbme.2021.3080622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Approximately 25% of individualsliving with parkinsonian tremor do not respond to traditional treatments. Wearable tremor suppression devices (WTSD) provide an alternative approach, however, tremor in the fingers has not been given as much attention as tremor in the elbow and the wrist. Therefore, the objective of this study is to design a wearable tremor suppression glove that can suppress tremor simultaneously, but independently, in multiple hand joints without restricting the user's voluntary motion. METHODS A WTSD was designed for managing tremor in the index finger metacarpophalangeal (MCP) joint, thumb MCP joint, and the wrist. The prototype was tested and assessed on a participant living with parkinsonian tremor. RESULTS The experimental evaluation showed an overall suppression of 73.1%, 80.7%, and 85.5% in resting tremor, 70.2%, 79.5%, and 81% in postural tremor, and 60.0%, 58.7%, and 65.0% in kinetic tremor in the index finger MCP joint, the thumb MCP joint, and the wrist, respectively. CONCLUSION This first assessment of a WTSD for people living with Parkinson's disease provides confirmation of the feasibility of the approach. The next step requires a comprehensive validation on a broader population in order to evaluate the performance of the WTSD. SIGNIFICANCE This study demonstrates the feasibility of using a WTSD to manage hand and finger tremor. The device enriches the field of upper-limb tremor management, as the first WTSD for multiple joints of the hand.
Collapse
|
5
|
Nguyen HS, Luu TP. Tremor-Suppression Orthoses for the Upper Limb: Current Developments and Future Challenges. Front Hum Neurosci 2021; 15:622535. [PMID: 33994975 PMCID: PMC8119649 DOI: 10.3389/fnhum.2021.622535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Pathological tremor is the most common motor disorder in adults and characterized by involuntary, rhythmic muscular contraction leading to shaking movements in one or more parts of the body. Functional Electrical Stimulation (FES) and biomechanical loading using wearable orthoses have emerged as effective and non-invasive methods for tremor suppression. A variety of upper-limb orthoses for tremor suppression have been introduced; however, a systematic review of the mechanical design, algorithms for tremor extraction, and the experimental design is still missing. Methods: To address this gap, we applied a standard systematic review methodology to conduct a literature search in the PubMed and PMC databases. Inclusion criteria and full-text access eligibility were used to filter the studies from the search results. Subsequently, we extracted relevant information, such as suppression mechanism, system weights, degrees of freedom (DOF), algorithms for tremor estimation, experimental settings, and the efficacy. Results: The results show that the majority of tremor-suppression orthoses are active with 47% prevalence. Active orthoses are also the heaviest with an average weight of 561 ± 467 g, followed by semi-active 486 ± 395 g, and passive orthoses 191 ± 137 g. Most of the orthoses only support one DOF (54.5%). Two-DOF and three-DOF orthoses account for 33 and 18%, respectively. The average efficacy of tremor suppression using wearable orthoses is 83 ± 13%. Active orthoses are the most efficient with an average efficacy of 83 ± 8%, following by the semi-active 77 ± 19%, and passive orthoses 75 ± 12%. Among different experimental setups, bench testing shows the highest efficacy at 95 ± 5%, this value dropped to 86 ± 8% when evaluating with tremor-affected subjects. The majority of the orthoses (92%) measured voluntary and/or tremorous motions using biomechanical sensors (e.g., IMU, force sensor). Only one system was found to utilize EMG for tremor extraction. Conclusions: Our review showed an improvement in efficacy of using robotic orthoses in tremor suppression. However, significant challenges for the translations of these systems into clinical or home use remain unsolved. Future challenges include improving the wearability of the orthoses (e.g., lightweight, aesthetic, and soft structure), and user control interfaces (i.e., neural machine interface). We also suggest addressing non-technical challenges (e.g., regulatory compliance, insurance reimbursement) to make the technology more accessible.
Collapse
Affiliation(s)
- Hoai Son Nguyen
- Group of Advanced Computations in Engineering Science, HCMC University of Technology and Education, Ho Chi Minh City, Vietnam
| | - Trieu Phat Luu
- Noninvasive Brain-Machine Interface System Laboratory, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
6
|
Ranjan M, Elias GJB, Boutet A, Zhong J, Chu P, Germann J, Devenyi GA, Chakravarty MM, Fasano A, Hynynen K, Lipsman N, Hamani C, Kucharczyk W, Schwartz ML, Lozano AM, Hodaie M. Tractography-based targeting of the ventral intermediate nucleus: accuracy and clinical utility in MRgFUS thalamotomy. J Neurosurg 2020; 133:1002-1009. [PMID: 31561221 DOI: 10.3171/2019.6.jns19612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/24/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Tractography-based targeting of the thalamic ventral intermediate nucleus (T-VIM) is a novel method conferring patient-specific selection of VIM coordinates for tremor surgery; however, its accuracy and clinical utility in magnetic resonance imaging-guided focused ultrasound (MRgFUS) thalamotomy compared to conventional indirect targeting has not been specifically addressed. This retrospective study sought to compare the treatment locations and potential adverse effect profiles of T-VIM with indirect targeting in a large cohort of MRgFUS thalamotomy patients. METHODS T-VIM was performed using diffusion tractography outlining the pyramidal and medial lemniscus tracts in 43 MRgFUS thalamotomy patients. T-VIM coordinates were compared with the indirect treatment coordinates used in the procedure. Thalamotomy lesions were delineated on postoperative T1-weighted images and displaced ("translated") by the anteroposterior and mediolateral difference between T-VIM and treatment coordinates. Both translated and actual lesions were normalized to standard space and subsequently overlaid with areas previously reported to be associated with an increased risk of motor and sensory adverse effects when lesioned during MRgFUS thalamotomy. RESULTS T-VIM coordinates were 2.18 mm anterior and 1.82 mm medial to the "final" indirect treatment coordinates. Translated lesions lay more squarely within the boundaries of the VIM compared to nontranslated lesions and showed significantly less overlap with areas associated with sensory adverse effects. Translated lesions overlapped less with areas associated with motor adverse effects; however, this difference was not significant. CONCLUSIONS T-VIM leads to the selection of more anterior and medial coordinates than the conventional indirect methods. Lesions moved toward these anteromedial coordinates avoid areas associated with an increased risk of motor and sensory adverse effects, suggesting that T-VIM may improve clinical outcomes.
Collapse
Affiliation(s)
- Manish Ranjan
- 1University Health Network, Toronto
- 2Krembil Brain Institute, Toronto
| | - Gavin J B Elias
- 1University Health Network, Toronto
- 2Krembil Brain Institute, Toronto
| | - Alexandre Boutet
- 1University Health Network, Toronto
- 3Joint Department of Medical Imaging, University of Toronto, Ontario
| | | | | | | | - Gabriel A Devenyi
- 4Cerebral Imaging Center, Douglas Mental Health University, McGill University; Departments of
- 5Psychiatry and
| | - M Mallar Chakravarty
- 4Cerebral Imaging Center, Douglas Mental Health University, McGill University; Departments of
- 5Psychiatry and
- 6Biological and Biomedical Engineering, McGill University, Montreal, Quebec
| | - Alfonso Fasano
- 1University Health Network, Toronto
- 2Krembil Brain Institute, Toronto
- 7The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto
| | - Kullervo Hynynen
- 8Sunnybrook Research Institute, Sunnybrook Health Sciences Center, University of Toronto
- 9Department of Medical Biophysics, University of Toronto
- 10Institute of Biomaterials and Biomedical Engineering, University of Toronto
| | - Nir Lipsman
- 11Division of Neurosurgery, Sunnybrook Health Sciences Center, University of Toronto; and
- 12Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada
| | - Clement Hamani
- 11Division of Neurosurgery, Sunnybrook Health Sciences Center, University of Toronto; and
- 12Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada
| | - Walter Kucharczyk
- 1University Health Network, Toronto
- 3Joint Department of Medical Imaging, University of Toronto, Ontario
| | - Michael L Schwartz
- 11Division of Neurosurgery, Sunnybrook Health Sciences Center, University of Toronto; and
| | - Andres M Lozano
- 1University Health Network, Toronto
- 2Krembil Brain Institute, Toronto
| | - Mojgan Hodaie
- 1University Health Network, Toronto
- 2Krembil Brain Institute, Toronto
| |
Collapse
|
7
|
Yi A, Zahedi A, Wang Y, Tan UX, Zhang D. A Novel Exoskeleton System Based on Magnetorheological Fluid for Tremor Suppression of Wrist Joints. IEEE Int Conf Rehabil Robot 2019; 2019:1115-1120. [PMID: 31374779 DOI: 10.1109/icorr.2019.8779363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pathological tremor is caused by a variety of neurological diseases. Although it is not life-threatening, it brings great inconvenience to patients. Traditional treatments including medication, rehabilitation programs and deep brain stimulation (DBS) have shown limited effectiveness along with risks and side effects. In order to overcome the limitations of these treatments, a new method, wearable exoskeleton technology, is introduced that aims to provide a new solution for tremor management. Based on this method, a wrist tremor suppression exoskeleton (WTSE) is developed in this research. A magnetorheological (MR) fluid damper is designed for controllable damping force and an embedded acquisition platform is used to acquire real-time tremor information. The total weight of the WTSE is 262.13 g and the maximum sustained damping force reaches 8 N. The prototype is wearable and the damping force is real-time adjustable. According to preliminary results, the signal acquisition system can obtain reliable data and the WTSE can reduce the amplitude of acceleration and angular velocity of simulated tremor by 60.39% and 55.07%, respectively.
Collapse
|
8
|
Yavari F, Nitsche MA, Ekhtiari H. Transcranial Electric Stimulation for Precision Medicine: A Spatiomechanistic Framework. Front Hum Neurosci 2017; 11:159. [PMID: 28450832 PMCID: PMC5390027 DOI: 10.3389/fnhum.2017.00159] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/17/2017] [Indexed: 12/11/2022] Open
Abstract
During recent years, non-invasive brain stimulation, including transcranial electrical stimulation (tES) in general, and transcranial direct current stimulation (tDCS) in particular, have created new hopes for treatment of neurological and psychiatric diseases. Despite promising primary results in some brain disorders, a more widespread application of tES is hindered by the unsolved question of determining optimum stimulation protocols to receive meaningful therapeutic effects. tES has a large parameter space including various montages and stimulation parameters. Moreover, inter- and intra-individual differences in responding to stimulation protocols have to be taken into account. These factors contribute to the complexity of selecting potentially effective protocols for each disorder, different clusters of each disorder, and even each single patient. Expanding knowledge in different dimensions of basic and clinical neuroscience could help researchers and clinicians to select potentially effective protocols based on tES modulatory mechanisms for future clinical studies. In this article, we propose a heuristic spatiomechanistic framework which contains nine levels to address tES effects on brain functions. Three levels refer to the spatial resolution (local, small-scale networks and large-scale networks) and three levels of tES modulatory effects based on its mechanisms of action (neurochemical, neuroelectrical and oscillatory modulations). At the group level, this framework could be helpful to enable an informed and systematic exploration of various possible protocols for targeting a brain disorder or its neuroscience-based clusters. Considering recent advances in exploration of neurodiversity at the individual level with different brain mapping technologies, the proposed framework might also be used in combination with personal data to design individualized protocols for tES in the context of precision medicine in the future.
Collapse
Affiliation(s)
- Fatemeh Yavari
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human FactorsDortmund, Germany
| | - Michael A. Nitsche
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human FactorsDortmund, Germany
- Department of Neurology, University Medical Hospital BergmannsheilBochum, Germany
| | - Hamed Ekhtiari
- Neurocognitive Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical SciencesTehran, Iran
- Translational Neuroscience Program, Institute for Cognitive Science Studies (ICSS)Tehran, Iran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
9
|
Bosch-Bouju C, Hyland BI, Parr-Brownlie LC. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Front Comput Neurosci 2013; 7:163. [PMID: 24273509 PMCID: PMC3822295 DOI: 10.3389/fncom.2013.00163] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/24/2013] [Indexed: 12/23/2022] Open
Abstract
Motor thalamus (Mthal) is implicated in the control of movement because it is strategically located between motor areas of the cerebral cortex and motor-related subcortical structures, such as the cerebellum and basal ganglia (BG). The role of BG and cerebellum in motor control has been extensively studied but how Mthal processes inputs from these two networks is unclear. Specifically, there is considerable debate about the role of BG inputs on Mthal activity. This review summarizes anatomical and physiological knowledge of the Mthal and its afferents and reviews current theories of Mthal function by discussing the impact of cortical, BG and cerebellar inputs on Mthal activity. One view is that Mthal activity in BG and cerebellar-receiving territories is primarily "driven" by glutamatergic inputs from the cortex or cerebellum, respectively, whereas BG inputs are modulatory and do not strongly determine Mthal activity. This theory is steeped in the assumption that the Mthal processes information in the same way as sensory thalamus, through interactions of modulatory inputs with a single driver input. Another view, from BG models, is that BG exert primary control on the BG-receiving Mthal so it effectively relays information from BG to cortex. We propose a new "super-integrator" theory where each Mthal territory processes multiple driver or driver-like inputs (cortex and BG, cortex and cerebellum), which are the result of considerable integrative processing. Thus, BG and cerebellar Mthal territories assimilate motivational and proprioceptive motor information previously integrated in cortico-BG and cortico-cerebellar networks, respectively, to develop sophisticated motor signals that are transmitted in parallel pathways to cortical areas for optimal generation of motor programmes. Finally, we briefly review the pathophysiological changes that occur in the BG in parkinsonism and generate testable hypotheses about how these may affect processing of inputs in the Mthal.
Collapse
Affiliation(s)
- Clémentine Bosch-Bouju
- 1Department of Anatomy, Otago School of Medical Science, University of Otago Dunedin, New Zealand ; 2Brain Health Research Centre, Otago School of Medical Science, University of Otago Dunedin, New Zealand
| | | | | |
Collapse
|
10
|
Shibasaki H. Cortical activities associated with voluntary movements and involuntary movements. Clin Neurophysiol 2011; 123:229-43. [PMID: 21906995 DOI: 10.1016/j.clinph.2011.07.042] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/05/2011] [Accepted: 07/25/2011] [Indexed: 12/11/2022]
Abstract
Recent advance in non-invasive techniques including electrophysiology and functional neuroimaging has enabled investigation of control mechanism of voluntary movements and pathophysiology of involuntary movements in human. Epicortical recording with subdural electrodes in epilepsy patients complemented the findings obtained by the non-invasive techniques. Before self-initiated simple movement, activation occurs first in the pre-supplementary motor area (pre-SMA) and SMA proper bilaterally with some somatotopic organisation, and the lateral premotor area (PMA) and primary motor cortex (M1) mainly contralateral to the movement with precise somatotopic organisation. Functional connectivity among cortical areas has been disclosed by cortico-cortical coherence, cortico-cortical evoked potential, and functional MRI. Cortical activities associated with involuntary movements have been studied by jerk-locked back averaging and cortico-muscular coherence. Application of transcranial magnetic stimulation helped clarifying the state of excitability and inhibition in M1. The sensorimotor cortex (S1-M1) was shown to play an important role in generation of cortical myoclonus, essential tremor, Parkinson tremor and focal dystonia. Cortical myoclonus is actively driven by S1-M1 while essential tremor and Parkinson tremor are mediated by S1-M1. 'Negative motor areas' at PMA and pre-SMA and 'inhibitory motor areas' at peri-rolandic cortex might be involved in the control of voluntary movement and generation of negative involuntary movements, respectively.
Collapse
Affiliation(s)
- Hiroshi Shibasaki
- Kyoto University Graduate School of Medicine, Shogoin, Sakyo, Kyoto 606-8507, Japan.
| |
Collapse
|
11
|
Sassi M, Porta M, Servello D. Deep brain stimulation therapy for treatment-refractory Tourette's syndrome: A review. Acta Neurochir (Wien) 2011; 153:639-45. [PMID: 20853121 DOI: 10.1007/s00701-010-0803-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/08/2010] [Indexed: 11/24/2022]
Abstract
Tourette's syndrome is a chronic neurobehavioral disorder that can demonstrate refractoriness to conservative treatments, or to invasive nonsurgical treatments such as botulinum toxin infiltration, or to psychobehavioral treatments. In these cases, the surgical option is often proposed, either with lesional interventions, or more recently with deep brain stimulation (DBS). This latter modality is currently preferred because of its reversibility and modularity. Some relevant issues, however, still persist in terms of appropriate indication to treatment, selection of target, and follow-up evaluation.
Collapse
Affiliation(s)
- Marco Sassi
- Functional Neurosurgery Unit, IRCCS Galeazzi, Via Galeazzi 4, 20161, Milan, Italy.
| | | | | |
Collapse
|
12
|
Flora ED, Perera CL, Cameron AL, Maddern GJ. Deep brain stimulation for essential tremor: A systematic review. Mov Disord 2010; 25:1550-9. [DOI: 10.1002/mds.23195] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
13
|
Kobayashi K, Katayama Y, Sumi K, Otaka T, Obuchi T, Kano T, Nagaoka T, Oshima H, Fukaya C, Yamamoto T, Atsumi H. Effects of Electrode Implantation Angle on Thalamic Stimulation for Treatment of Tremor. Neuromodulation 2009; 13:31-6. [DOI: 10.1111/j.1525-1403.2009.00235.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Hooper AK, Okun MS, Foote KD, Fernandez HH, Jacobson C, Zeilman P, Romrell J, Rodriguez RL. Clinical cases where lesion therapy was chosen over deep brain stimulation. Stereotact Funct Neurosurg 2008; 86:147-52. [PMID: 18334856 DOI: 10.1159/000120426] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deep brain stimulation (DBS) surgery has become the gold standard for treatment of select refractory cases of Parkinson disease and essential tremor. Despite the usefulness of DBS surgery in many cases, there remain situations where lesion therapy (subthalamotomy, pallidotomy or thalamotomy) may provide a reasonable alternative to DBS. We reviewed the University of Florida Institutional Review Board-approved database for movement disorders surgery and identified 286 DBS leads placed in 189 patients as well as 4 additional patients who had lesion therapy. In these 4 cases we reviewed the clinical presentations that resulted in a multidisciplinary team opting for lesion therapy over DBS. Lesion therapy represents a viable alternative and has several important advantages, including a decreased need for access to specialists and clinical follow-up, improved affordability, and a lower infection risk.
Collapse
Affiliation(s)
- Amanda K Hooper
- University of Florida, Movement Disorders Center, Gainesville, FL 32601, USA.
| | | | | | | | | | | | | | | |
Collapse
|