1
|
Developing and assessing a new web-based tapping test for measuring distal movement in Parkinson's disease: a Distal Finger Tapping test. Sci Rep 2022; 12:386. [PMID: 35013372 PMCID: PMC8748736 DOI: 10.1038/s41598-021-03563-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/30/2021] [Indexed: 11/08/2022] Open
Abstract
Disability in Parkinson's disease (PD) is measured by standardised scales including the MDS-UPDRS, which are subject to high inter and intra-rater variability and fail to capture subtle motor impairment. The BRadykinesia Akinesia INcoordination (BRAIN) test is a validated keyboard tapping test, evaluating proximal upper-limb motor impairment. Here, a new Distal Finger Tapping (DFT) test was developed to assess distal upper-limb function. Kinetic parameters of the test include kinesia score (KS20, key taps over 20 s), akinesia time (AT20, mean dwell-time on each key) and incoordination score (IS20, variance of travelling time between key taps). To develop and evaluate a new keyboard-tapping test for objective and remote distal motor function in PD patients. The DFT and BRAIN tests were assessed in 55 PD patients and 65 controls. Test scores were compared between groups and correlated with the MDS-UPDRS-III finger tapping sub-scores. Nine additional PD patients were recruited for monitoring motor fluctuations. All three parameters discriminated effectively between PD patients and controls, with KS20 performing best, yielding 79% sensitivity for 85% specificity; area under the receiver operating characteristic curve (AUC) = 0.90. A combination of DFT and BRAIN tests improved discrimination (AUC = 0.95). Among three parameters, KS20 showed a moderate correlation with the MDS-UPDRS finger-tapping sub-score (Pearson's r = - 0.40, p = 0.002). Further, the DFT test detected subtle changes in motor fluctuation states which were not reflected clearly by the MDS-UPDRS-III finger tapping sub-scores. The DFT test is an online tool for assessing distal movements in PD, with future scope for longitudinal monitoring of motor complications.
Collapse
|
2
|
Fasano A, Mazzoni A, Falotico E. Reaching and Grasping Movements in Parkinson's Disease: A Review. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1083-1113. [PMID: 35253780 PMCID: PMC9198782 DOI: 10.3233/jpd-213082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Parkinson's disease (PD) is known to affect the brain motor circuits involving the basal ganglia (BG) and to induce, among other signs, general slowness and paucity of movements. In upper limb movements, PD patients show a systematic prolongation of movement duration while maintaining a sufficient level of endpoint accuracy. PD appears to cause impairments not only in movement execution, but also in movement initiation and planning, as revealed by abnormal preparatory activity of motor-related brain areas. Grasping movement is affected as well, particularly in the coordination of the hand aperture with the transport phase. In the last fifty years, numerous behavioral studies attempted to clarify the mechanisms underlying these anomalies, speculating on the plausible role that the BG-thalamo-cortical circuitry may play in normal and pathological motor control. Still, many questions remain open, especially concerning the management of the speed-accuracy tradeoff and the online feedback control. In this review, we summarize the literature results on reaching and grasping in parkinsonian patients. We analyze the relevant hypotheses on the origins of dysfunction, by focusing on the motor control aspects involved in the different movement phases and the corresponding role played by the BG. We conclude with an insight into the innovative stimulation techniques and computational models recently proposed, which might be helpful in further clarifying the mechanisms through which PD affects reaching and grasping movements.
Collapse
Affiliation(s)
- Alessio Fasano
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Correspondence to: Alessio Fasano and Egidio Falotico, The BioRobotics Institute, Scuola Superiore Sant’Anna, Polo Sant’Anna Valdera, Viale Rinaldo Piaggio, 34, 56025 Pontedera (PI), Italy. Tel.: +39 050 883 457; E-mails: and
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Egidio Falotico
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Correspondence to: Alessio Fasano and Egidio Falotico, The BioRobotics Institute, Scuola Superiore Sant’Anna, Polo Sant’Anna Valdera, Viale Rinaldo Piaggio, 34, 56025 Pontedera (PI), Italy. Tel.: +39 050 883 457; E-mails: and
| |
Collapse
|
3
|
Borgognon S, Cottet J, Moret V, Chatagny P, Carrara L, Fregosi M, Bloch J, Brunet JF, Rouiller EM, Badoud S. Fine Manual Dexterity Assessment After Autologous Neural Cell Ecosystem (ANCE) Transplantation in a Non-human Primate Model of Parkinson's Disease. Neurorehabil Neural Repair 2019; 33:553-567. [PMID: 31170868 DOI: 10.1177/1545968319850133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Autologous neural cell ecosystem (ANCE) transplantation improves motor recovery in MPTP monkeys. These motor symptoms were assessed using semi-quantitative clinical rating scales, widely used in many studies. However, limitations in terms of sensitivity, combined with relatively subjective assessment of their different items, make inter-study comparisons difficult to achieve. Objective. The aim of this study was to quantify the impact of MPTP intoxication in macaque monkeys on manual dexterity and assess whether ANCE can contribute to functional recovery. Methods. Four animals were trained to perform 2 manual dexterity tasks. After reaching a motor performance plateau, the animals were subjected to an MPTP lesion. After the occurrence of a spontaneous functional recovery plateau, all 4 animals were subjected to ANCE transplantation. Results. Two of 4 animals underwent a full spontaneous recovery before the ANCE transplantation, whereas the 2 other animals (symptomatic) presented moderate to severe Parkinson's disease (PD)-like symptoms affecting manual dexterity. The time to grasp small objects using the precision grip increased in these 2 animals. After ANCE transplantation, the 2 symptomatic animals underwent a significant functional recovery, reflected by a decrease in time to execute the different tasks, as compared with the post-lesion phase. Conclusions. Manual dexterity is affected in symptomatic MPTP monkeys. The 2 manual dexterity tasks reported here as pilot are pertinent to quantify PD symptoms and reliably assess a treatment in MPTP monkeys, such as the present ANCE transplantation, to be confirmed in a larger cohort of animals before future clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jocelyne Bloch
- 2 Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | | | | |
Collapse
|
4
|
Danna J, Velay JL, Eusebio A, Véron-Delor L, Witjas T, Azulay JP, Pinto S. Digitalized spiral drawing in Parkinson's disease: A tool for evaluating beyond the written trace. Hum Mov Sci 2018; 65:S0167-9457(18)30008-3. [PMID: 30145024 DOI: 10.1016/j.humov.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
One of the current scientific challenges is to propose novel tools and tasks designed to identify new motor biomarkers in Parkinson's disease (PD). Among these, a focus has placed on drawing tasks. Independently from clinical ratings, this study aimed to evaluate the pen movement and holding in digitalized spiral drawing in individuals with PD without and with medical treatment and in healthy controls. A three-step data-driven analysis was conducted. First, the effects of spatial and temporal constraints on several variables were determined. Second, the relationship between handedness and dominance of PD symptoms was investigated for the most relevant variables. Finally, a third analysis was conducted to assess the occurrence of changes associated with PD. The first analysis revealed that the number of velocity peaks and pen altitude variations were the most relevant variables in spiral drawing for evaluating the effect of the disease and medication. The second analysis revealed that the effect of medication was present for the movement fluency only, when spirals with spatial constraints were produced at a spontaneous speed by the hand on the side of dominant PD signs. Finally, the third analysis showed that the effect of medication was greater at the beginning of drawing than at the end. Digitalized spiral drawing makes it possible to observe precisely when the kinematic changes related to the disease occur during the task. Such a simple and quick task might be of great relevance to contribute to the diagnosis and follow-up of PD.
Collapse
Affiliation(s)
- Jérémy Danna
- Aix-Marseille Univ, CNRS, LNC, UMR 7291, FR 3C 3512, Marseille, France.
| | - Jean-Luc Velay
- Aix-Marseille Univ, CNRS, LNC, UMR 7291, FR 3C 3512, Marseille, France
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM Timone University Hospital, France; Aix-Marseille Univ, CNRS, INT, UMR 7289, Marseille, France
| | - Lauriane Véron-Delor
- Aix-Marseille Univ, CNRS, LNC, UMR 7291, FR 3C 3512, Marseille, France; Aix-Marseille Univ, CNRS, LPL, UMR 7309, Aix-en-Provence, France
| | - Tatiana Witjas
- Department of Neurology and Movement Disorders, APHM Timone University Hospital, France; Aix-Marseille Univ, CNRS, INT, UMR 7289, Marseille, France
| | - Jean-Philippe Azulay
- Aix-Marseille Univ, CNRS, LNC, UMR 7291, FR 3C 3512, Marseille, France; Department of Neurology and Movement Disorders, APHM Timone University Hospital, France
| | - Serge Pinto
- Aix-Marseille Univ, CNRS, LPL, UMR 7309, Aix-en-Provence, France
| |
Collapse
|
5
|
Multi-joint movements with reversal in Parkinson's disease: Kinematics and electromyography. J Electromyogr Kinesiol 2010; 21:376-83. [PMID: 21095136 DOI: 10.1016/j.jelekin.2010.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 10/28/2010] [Accepted: 10/28/2010] [Indexed: 11/21/2022] Open
Abstract
Subjects with Parkinson's disease (PD) presented difficulties in the performance of multi-joint movements. The purpose of the study was to determine whether the slowness of such movements was caused by the generation of non-linear trajectories and/or by a reduction or a deficit in the modulation of EMG activity. Nine healthy subjects and 10 subjects with PD performed multi-joint movements involving elbow and shoulder with reversal towards three targets in the sagittal plane without any constraint. The movement kinematics were calculated using X and Y coordinates of the markers positioned on the joints. EMG signals were recorded for the muscles related to these movements. The results revealed that subjects with PD presented a lower linear speed and the differences between them and healthy subjects increased with target distance. The trajectory was found to be linear and both groups of subjects had few errors in the targets despite the slower muscle activity in subjects with PD. Another interesting finding was the EMG pattern of subjects with PD. They showed a difficulty in modulating the activity of agonists and antagonists during the different movement phases. The low speed movements of PD subjects were attributable to the low EMG activity and difficulty in modulating the bursts of muscle activity.
Collapse
|
6
|
Grafton ST. The cognitive neuroscience of prehension: recent developments. Exp Brain Res 2010; 204:475-91. [PMID: 20532487 PMCID: PMC2903689 DOI: 10.1007/s00221-010-2315-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 05/22/2010] [Indexed: 12/04/2022]
Abstract
Prehension, the capacity to reach and grasp, is the key behavior that allows humans to change their environment. It continues to serve as a remarkable experimental test case for probing the cognitive architecture of goal-oriented action. This review focuses on recent experimental evidence that enhances or modifies how we might conceptualize the neural substrates of prehension. Emphasis is placed on studies that consider how precision grasps are selected and transformed into motor commands. Then, the mechanisms that extract action relevant information from vision and touch are considered. These include consideration of how parallel perceptual networks within parietal cortex, along with the ventral stream, are connected and share information to achieve common motor goals. On-line control of grasping action is discussed within a state estimation framework. The review ends with a consideration about how prehension fits within larger action repertoires that solve more complex goals and the possible cortical architectures needed to organize these actions.
Collapse
Affiliation(s)
- Scott T Grafton
- Department of Psychology, Sage Center for the Study of Mind, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
7
|
Breen DP, Barker RA. Parkinson’s disease and 2009: recent advances. J Neurol 2010; 257:1224-8. [DOI: 10.1007/s00415-010-5555-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
|