1
|
Appel S, Cohen Y, Appel S, Cohen OS, Chapman J, Rosenmann H, Nitsan Z, Kahana E. Sensory disturbances in Creutzfeldt-Jakob disease. Neurol Sci 2024; 45:1057-1062. [PMID: 37828389 DOI: 10.1007/s10072-023-07093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Creutzfeldt-Jakob disease (CJD) is a fatal neurodegenerative disease characterized by rapidly progressive dementia, motor impairments, and psychiatric symptoms. Sensory disturbances were occasionally reported as well. The study aims to describe the sensory symptoms of the disease. METHODS The CJD Israeli National Database was screened for patients who presented sensory symptoms throughout the disease course. Symptoms, characteristics, and distribution were reviewed and the demographic and clinical data (sex, etiologies of the disease, age of onset, disease duration, neurological exam finding, tau protein level, EEG and MRI findings) were compared with the demographics and clinical data of CJD without sensory symptoms. Then, the patients with sensory symptoms were divided into patients with symptom distribution consistent with peripheral nervous system (PNS) involvement and central nervous system (CNS) involvement. The demographics and clinical data of the 2 groups were compared. RESULTS Eighty-four CJD patients with sensory symptoms and 645 CJD patients without sensory symptoms were included in the study. Sensory symptoms were more common in genetic E200K CJD patients (14.6% vs. 5.6% respectively, p = 0.0005) (chi-squared test). Numbness and neuropathic pain were the most common symptoms and distribution of symptoms of "stocking gloves" with decreased deep tendon reflexes suggesting peripheral neuropathy in 44% of the patients. In these patients, the classical EEG findings of Periodic Sharp Wave Complexes were less often found (58% vs. 22%, p = 0.02) (chi-squared test). CONCLUSIONS Sensory symptoms are more common in E200K patients and often follow peripheral neuropathy distribution that suggests PNS involvement.
Collapse
Affiliation(s)
- Shmuel Appel
- Department of Neurology, Barzilai University Medical Center, Ashkelon, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel.
| | - Yael Cohen
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Shira Appel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Oren S Cohen
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Neurology, Assaf Harofeh Medical Center, Zerifin, Israel
| | - Joab Chapman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Neurology, The Sagol Neuroscience Center, and Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Hanna Rosenmann
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Zeev Nitsan
- Department of Neurology, Barzilai University Medical Center, Ashkelon, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Esther Kahana
- Department of Neurology, Barzilai University Medical Center, Ashkelon, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
2
|
Poddar S, Mondal H, Podder I. Aetiology, pathogenesis and management of neuropathic itch: A narrative review with recent updates. Indian J Dermatol Venereol Leprol 2024; 90:5-18. [PMID: 37317726 DOI: 10.25259/ijdvl_846_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/17/2023] [Indexed: 06/16/2023]
Abstract
Neuropathic itch is a relatively common yet under-reported cause of systemic pruritus. It is a debilitating condition often associated with pain, which impairs the patient's quality of life. Although much literature exists about renal and hepatic pruritus, there is a dearth of information and awareness about neuropathic itch. The pathogenesis of neuropathic itch is complex and can result from an insult at any point along the itch pathway, ranging from the peripheral receptors and nerves until the brain. There are several causes of neuropathic itch, many of which do not produce any skin lesions and are thus, often missed. A detailed history and clinical examination are necessary for the diagnosis, while laboratory and radiologic investigations may be needed in select cases. Several therapeutic strategies currently exist involving both non-pharmacological and pharmacological measures, the latter including topical, systemic, and invasive options. Further research is ongoing to clarify its pathogenesis and to design newer targeted therapies with minimal adverse effects. This narrative review highlights the current understanding of this condition, focusing on its causes, pathogenesis, diagnosis, and management, along with newer investigational drugs.
Collapse
Affiliation(s)
- Shreya Poddar
- Department of Dermatology, Asansol District Hospital, Asansol, West Bengal, India
| | - Himel Mondal
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Deoghar, Jharkhand, India
| | - Indrashis Podder
- Department of Dermatology, College of Medicine & Sagore Dutta Hospital, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Atilgan H, Doody M, Oliver DK, McGrath TM, Shelton AM, Echeverria-Altuna I, Tracey I, Vyazovskiy VV, Manohar SG, Packer AM. Human lesions and animal studies link the claustrum to perception, salience, sleep and pain. Brain 2022; 145:1610-1623. [PMID: 35348621 PMCID: PMC9166552 DOI: 10.1093/brain/awac114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/24/2022] Open
Abstract
The claustrum is the most densely interconnected region in the human brain. Despite the accumulating data from clinical and experimental studies, the functional role of the claustrum remains unknown. Here, we systematically review claustrum lesion studies and discuss their functional implications. Claustral lesions are associated with an array of signs and symptoms, including changes in cognitive, perceptual and motor abilities; electrical activity; mental state; and sleep. The wide range of symptoms observed following claustral lesions do not provide compelling evidence to support prominent current theories of claustrum function such as multisensory integration or salience computation. Conversely, the lesions studies support the hypothesis that the claustrum regulates cortical excitability. We argue that the claustrum is connected to, or part of, multiple brain networks that perform both fundamental and higher cognitive functions. As a multifunctional node in numerous networks, this may explain the manifold effects of claustrum damage on brain and behaviour.
Collapse
Affiliation(s)
- Huriye Atilgan
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Max Doody
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - David K. Oliver
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Thomas M. McGrath
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Andrew M. Shelton
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | | | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital and Merton College, University of Oxford, Oxford OX3 9DU, UK
| | | | - Sanjay G. Manohar
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Adam M. Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
4
|
Chronic itch induced by thalamic deep brain stimulation: a case for a central itch centre. J Transl Med 2021; 19:430. [PMID: 34656120 PMCID: PMC8520252 DOI: 10.1186/s12967-021-03110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022] Open
Abstract
Background Central itch syndrome has been previously described in conditions such as stroke. The neurophysiology of central itch syndrome has been investigated in non-human primates but remains incompletely understood. Methods We report an observational study of a rare case of severe central itch following thalamic deep brain stimulation and postulate the location of the central itch centre in humans. Results The patient was a 47-year-old female, with congenital spinal malformations, multiple previous corrective spinal surgeries and a 30-year history of refractory neuropathic pain in her back and inferior limbs. Following multidisciplinary pain assessment and recommendation, she was referred for spinal cord stimulation, but the procedure failed technically due to scarring related to her multiple previous spinal surgeries. She was therefore referred to our centre and underwent bilateral deep brain stimulation (DBS) of the ventral posterolateral nucleus of the thalamus for management of her chronic pain. Four weeks after switching on the stimulation, the patient reported significant improvement in her pain but developed a full body progressive itch which was then complicated with a rash. Common causes of skin eczema were ruled out by multiple formal dermatological evaluation. A trial of unilateral “off stimulation” was performed showing improvement of the itchy rash. Standard and normalized brain atlases were used to localize the active stimulating contact within the thalamus at a location we postulate as the central itch centre. Conclusions Precise stereotactic imaging points to the lateral portion of the ventral posterolateral and posteroinferior nuclei of the thalamus as critical in the neurophysiology of itch in humans.
Collapse
|
5
|
Sacco S, Paoletti M, Staffaroni AM, Kang H, Rojas J, Marx G, Goh SY, Luisa Mandelli M, Allen IE, Kramer JH, Bastianello S, Henry RG, Rosen H, Caverzasi E, Geschwind MD. Multimodal MRI staging for tracking progression and clinical-imaging correlation in sporadic Creutzfeldt-Jakob disease. Neuroimage Clin 2020; 30:102523. [PMID: 33636540 PMCID: PMC7906895 DOI: 10.1016/j.nicl.2020.102523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022]
Abstract
Diffusion imaging is very useful for the diagnosis of sporadic Creutzfeldt-Jakob disease, but it has limitations in tracking disease progression as mean diffusivity changes non-linearly across the disease course. We previously showed that mean diffusivity changes across the disease course follow a quasi J-shaped curve, characterized by decreased values in earlier phases and increasing values later in the disease course. Understanding how MRI metrics change over-time, as well as their correlations with clinical deficits are crucial steps in developing radiological biomarkers for trials. Specifically, as mean diffusivity does not change linearly and atrophy mainly occurs in later stages, neither alone is likely to be a sufficient biomarker throughout the disease course. We therefore developed a model combining mean diffusivity and Volume loss (MRI Disease-Staging) to take into account mean diffusivity's non-linearity. We then assessed the associations between clinical outcomes and mean diffusivity alone, Volume alone and finally MRI Disease-Staging. In 37 sporadic Creutzfeldt-Jakob disease subjects and 30 age- and sex-matched healthy controls, high angular resolution diffusion and high-resolution T1 imaging was performed cross-sectionally to compute z-scores for mean diffusivity (MD) and Volume. Average MD and Volume were extracted from 41 GM volume of interest (VOI) per hemisphere, within the images registered to the Montreal Neurological Institute (MNI) space. Each subject's volume of interest was classified as either "involved" or "not involved" using a statistical threshold of ± 2 standard deviation (SD) for mean diffusivity changes and/or -2 SD for Volume. Volumes of interest were MRI Disease-Staged as: 0 = no abnormalities; 1 = decreased mean diffusivity only; 2 = decreased mean diffusivity and Volume; 3 = normal ("pseudo-normalized") mean diffusivity, reduced Volume; 4 = increased mean diffusivity, reduced Volume. We correlated Volume, MD and MRI Disease-Staging with several clinical outcomes (scales, score and symptoms) using 4 major regions of interest (Total, Cortical, Subcortical and Cerebellar gray matter) or smaller regions pre-specified based on known neuroanatomical correlates. Volume and MD z-scores correlated inversely with each other in all four major ROIs (cortical, subcortical, cerebellar and total) highlighting that ROIs with lower Volumes had higher MD and vice-versa. Regarding correlations with symptoms and scores, higher MD correlated with worse Mini-Mental State Examination and Barthel scores in cortical and cerebellar gray matter, but subjects with cortical sensory deficits showed lower MD in the primary sensory cortex. Volume loss correlated with lower Mini-Mental State Examination, Barthel scores and pyramidal signs. Interestingly, for both Volume and MD, changes within the cerebellar ROI showed strong correlations with both MMSE and Barthel. Supporting using a combination of MD and Volume to track sCJD progression, MRI Disease-Staging showed correlations with more clinical outcomes than Volume or MD alone, specifically with Mini-Mental State Examination, Barthel score, pyramidal signs, higher cortical sensory deficits, as well as executive and visual-spatial deficits. Additionally, when subjects in the cohort were subdivided into tertiles based on their Barthel scores and their percentile of disease duration/course ("Time-Ratio"), subjects in the lowest (most impaired) Barthel tertile showed a much greater proportion of more advanced MRI Disease-Stages than the those in the highest tertile. Similarly, subjects in the last Time-Ratio tertile (last tertile of disease) showed a much greater proportion of more advanced MRI Disease-Stages than the earliest tertile. Therefore, in later disease stages, as measured by time or Barthel, there is overall more Volume loss and increasing MD. A combined multiparametric quantitative MRI Disease-Staging is a useful tool to track sporadic Creutzfeldt-Jakob- disease progression radiologically.
Collapse
Affiliation(s)
- Simone Sacco
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
- Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Matteo Paoletti
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Adam M. Staffaroni
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Huicong Kang
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
- Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Julio Rojas
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Gabe Marx
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Sheng-yang Goh
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Maria Luisa Mandelli
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Isabel E. Allen
- Department of Epidemiology and Biostatistics, University of California San Francisco San Francisco (UCSF), San Francisco, CA, USA
| | - Joel H. Kramer
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Stefano Bastianello
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Roland G. Henry
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Howie.J. Rosen
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Eduardo Caverzasi
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Michael D. Geschwind
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
6
|
Meixiong J, Dong X, Weng HJ. Neuropathic Itch. Cells 2020; 9:cells9102263. [PMID: 33050211 PMCID: PMC7601786 DOI: 10.3390/cells9102263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Neurologic insults as varied as inflammation, stroke, and fibromyalgia elicit neuropathic pain and itch. Noxious sensation results when aberrantly increased afferent signaling reaches percept-forming cortical neurons and can occur due to increased sensory signaling, decreased inhibitory signaling, or a combination of both processes. To treat these symptoms, detailed knowledge of sensory transmission, from innervated end organ to cortex, is required. Molecular, genetic, and behavioral dissection of itch in animals and patients has improved understanding of the receptors, cells, and circuits involved. In this review, we will discuss neuropathic itch with a focus on the itch-specific circuit.
Collapse
Affiliation(s)
- James Meixiong
- Solomon H. Snyder Department of Neuroscience and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Department of Dermatology, and Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hao-Jui Weng
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
7
|
Abstract
Neuropathic itch is a pathological condition that is due to damage within the nervous system. This type of itch can be severe and unrelenting, which has a very negative impact on quality of life. Neuropathic itch is more common than generally appreciated because most types of neuropathic pain have a neuropathic itch counterpart. Unfortunately, much like neuropathic pain, there is a lack of effective treatments for neuropathic itch. Here, we consider the neural basis of itch and then describe how injuries within these neural circuits can lead to neuropathic itch in both animal models and human disease states.
Collapse
|
8
|
Steinhoff M, Schmelz M, Szabó IL, Oaklander AL. Clinical presentation, management, and pathophysiology of neuropathic itch. Lancet Neurol 2018; 17:709-720. [PMID: 30033061 DOI: 10.1016/s1474-4422(18)30217-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 05/15/2018] [Accepted: 06/01/2018] [Indexed: 12/19/2022]
Abstract
Unlike conventional itch, neuropathic itch develops in normal skin from excess peripheral firing or dampened central inhibition of itch pathway neurons. Neuropathic itch is a symptom of the same central and peripheral nervous system disorders that cause neuropathic pain, such as sensory polyneuropathy, radiculopathy, herpes zoster, stroke, or multiple sclerosis, and lesion location affects symptoms more than aetiology. The causes of neuropathic itch are heterogeneous, and thus diagnosis is based primarily on recognising characteristic, disease-specific clinical presentations. However, the diagnosis of neuropathic itch is challenging, different subforms exist (eg, focal vs widespread, peripheral vs central), and the mechanisms of neuropathic itch are poorly understood, resulting in reduced treatment availability. Currently available strategies include treating or preventing causal diseases, such as diabetes or herpes zoster, and topical or systemic medications that calm excess neuronal firing. Discovery of itch mediators such as gastrin releasing peptide, receptors (eg, neurokinin-1), and pathways (eg, Janus kinases) might encourage much needed new research into targeted treatments of neuropathic itch.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; HMC Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medicine-Qatar, Doha, Qatar; College of Medicine, Qatar University, Medical School, Doha, Qatar.
| | - Martin Schmelz
- Department of Experimental Pain Research, CBTM Mannheim, Heidelberg University, Mannheim, Germany
| | - Imre Lőrinc Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anne Louise Oaklander
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neuropathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Rosen JD, Fostini AC, Yosipovitch G. Diagnosis and Management of Neuropathic Itch. Dermatol Clin 2018; 36:213-224. [DOI: 10.1016/j.det.2018.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Givaty G, Maggio N, Cohen OS, Blatt I, Chapman J. Early pathology in sleep studies of patients with familial Creutzfeldt-Jakob disease. J Sleep Res 2016; 25:571-575. [PMID: 27251902 DOI: 10.1111/jsr.12405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 02/21/2016] [Indexed: 11/29/2022]
Abstract
In this study, we aimed to assess sleep function in patients with recent-onset familial Creutzfeldt-Jakob disease (fCJD). The largest cluster of fCJD patients is found in Jews of Libyan origin, linked to the prion protein gene (PRNP) E200K mutation. The high index of suspicion in these patients often leads to early diagnosis, with complaints of insomnia being a very common presenting symptom of the disease. The study included 10 fCJD patients diagnosed by clinical manifestations, magnetic resonance imaging (MRI) scan of the brain, elevated tau protein in the cerebrospinal fluid (CSF) and positive PRNP E200K mutation. Standard polysomnography was performed after a brief interview confirming the presence of sleep disturbances. All patients showed a pathological sleep pattern according to all scoring evaluation settings. The sleep stages were characterized by (i) disappearance of sleep spindles; (ii) outbursts of periodic sharp waves and shallowing of sleep consisting in increased Stage 2 and wake periods during the night, as well as decrease of slow-wave sleep and rapid eye movement (REM) sleep. Recordings of respiratory functions reported irregular breathing with central and obstructive apnea and hypopnea. The typical hypotonia occurring during the night and atonia during REM sleep were replaced by hyperactive sleep consisting of multiple jerks, movements and parasomnia (mainly talking) throughout the night. In conclusion, we report unique pathological sleep patterns in early fCJD associated with the E200K mutation. Specific respiratory disturbances and lack of atonia could possibly serve as new, early diagnostic tools in the disease.
Collapse
Affiliation(s)
- Gili Givaty
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren S Cohen
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Blatt
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Appel S, Chapman J, Cohen OS, Rosenmann H, Nitsan Z, Blatt I. Seizures in E200K familial and sporadic Creutzfeldt-Jakob disease. Acta Neurol Scand 2015; 131:152-7. [PMID: 25319029 DOI: 10.1111/ane.12304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although seizures (other than myoclonus) are frequently reported in Creutzfeldt-Jakob disease (CJD), their frequency, clinical manifestations, and effect on the disease course is unknown. OBJECTIVES To characterize the frequency of seizures in E200K familial and sporadic CJD, to describe its semiology, EEG and MRI findings. METHODS In this retrospective study, we reviewed all patients with CJD who were seen in the Sheba Medical Center between the years 2003-2012 and underwent clinical evaluation, genetic testing, EEG and MRI studies. The diagnosis of seizures was carried out based on documentation of episodes consistent with seizures or episode of unresponsiveness correlated with ictal activity in EEG. RESULTS Sixty-four probable patients with CJD were included in the study, 57 (89%) with E200K familial (fCJD) and 7 (11%) with sporadic (sCJD). Seizures occurred in 8 patients: 3 of 7 (43%) in patients with sCJD compared to 5/57 (9%) in patients with E200K fCJD (P = 0.04, chi-square test). Two of E200K fCJD patients with seizures had other non-prion etiologies for seizures (brain metastasis, known history of temporal lobe epilepsy which started 44 years before the diagnosis of CJD). Seizures occurred late in the course of the disease with an average of 12 days between the onset of seizures and death. CONCLUSION Seizures in E200K fCJD were infrequent and occurred late in the disease course. This difference suggests that E200K fCJD represents a separate subtype of the disease with distinct clinical characteristics.
Collapse
Affiliation(s)
- S. Appel
- Department of Neurology; Barzilai Medical Center, affiliated to Ben Gurion University; Ashkelon Israel
| | - J. Chapman
- Department of Neurology; Sheba Medical Center; Ramat-Gan Israel
- Sackler Faculty of medicine; Tel-Aviv University; Tel Aviv Israel
| | - O. S. Cohen
- Department of Neurology; Sheba Medical Center; Ramat-Gan Israel
- Sackler Faculty of medicine; Tel-Aviv University; Tel Aviv Israel
| | - H. Rosenmann
- Department of Neurology; Hadassah University Hospital; Jerusalem Israel
| | - Z. Nitsan
- Department of Neurology; Barzilai Medical Center, affiliated to Ben Gurion University; Ashkelon Israel
| | - I. Blatt
- Department of Neurology; Sheba Medical Center; Ramat-Gan Israel
- Sackler Faculty of medicine; Tel-Aviv University; Tel Aviv Israel
| |
Collapse
|
12
|
Zerr I, Polyakova TA. [Creutzfeldt-Jakob disease: clinical and diagnostic aspects]. Zh Nevrol Psikhiatr Im S S Korsakova 2015. [PMID: 28635779 DOI: 10.17116/jnevro2015115629-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this article, authors analyzed a modern approach to the diagnosis of Creutzfeldt-Jakob disease (CJD) based on the clinical signs, cerebrospinal fluid markers, electroencephalography and magnetic resonance imaging. It was demonstrated for the first time that patients with late-onset CJD differed from younger CJD patients with respect to MRI profiles and initial clinical presentation. To date, cerebrospinal fluid (CSF) analysis, particularly protein 14-3-3 testing, presents an important approach to the identification of disease cases. A spectrum of differential diagnosis of rapid progressive dementia varied from neurodegenerative dementias to dementia due to acute neurological conditions. Real-time quaking-induced conversion (RT-QuIC) allows the amplification of miniscule amounts of scrapie prion protein. Recent studies applied the RT-QuIC methodology to CSF for the diagnosis of human prion diseases.
Collapse
Affiliation(s)
- I Zerr
- National Center of Neurodegenerative and Prion Diseases, Georg-August Gottingen University, Gottingen, Germany
| | - T A Polyakova
- Russian Medical Academy of Postgraduate Education, Moscow
| |
Collapse
|
13
|
Cohen OS, Chapman J, Korczyn AD, Warman-Alaluf N, Orlev Y, Givaty G, Nitsan Z, Appel S, Rosenmann H, Kahana E, Shechter-Amir D. Characterization of sleep disorders in patients with E200K familial Creutzfeldt-Jakob disease. J Neurol 2014; 262:443-50. [PMID: 25451855 DOI: 10.1007/s00415-014-7593-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 11/29/2022]
Abstract
The largest cluster of E200K familial Creutzfeldt-Jakob disease (fCJD) which occurs is in Jews of Libyan origin in Israel. Insomnia is a very common early complaint in those patients and may even be the presenting symptom. The aim of this study was to assess and characterize sleep pathology in E200K fCJD patients. To do so, sleep studies of 10 consecutive fCJD patients were compared with those of 39 age and gender-matched controls. All patients presented pathological sleep characterized by fragmentation of sleep, loss of sleep spindles and reduced REM sleep amount. Respiration was characterized by irregular rhythm, periodic breathing, apneas and hypopneas, either central or obstructive. EMG recordings revealed repeated movements in sleep, with loss of REM atonia. Comparing to controls, a significant decrease of total sleep time, sleep efficacy and slow-wave sleep as well as a significant increase in the number of awakenings, apnea-hypopnea index and mixed and central apneas were evident in CJD patients. Comparison of two sequential sleep studies in one patient revealed a 40 % reduction of the total sleep time, a 40 % reduction in sleep efficacy and a 40-fold increase of the number of arousals in the second study. A significant correlation was found between the disease severity, as reflected by the CJD Neurological Scale and Periodic leg movement index. These definite and characteristic sleep pathologies in patients with fCJD associated with the E200K mutation may serve as a new diagnostic tool in the disease.
Collapse
Affiliation(s)
- Oren S Cohen
- Department of Neurology, The Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Ramat Gan, Israel,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Pruritus, also known as itch, is a very common, unpleasant sensation that elicits an urge to scratch. Its origin is not always in the skin, and neuropathic itch that is caused by neuronal or glial damage is common, but poorly understood by both dermatologists and neurologists. Although pruritus has not been considered as serious a symptom as pain, it is difficult to treat and--if chronic--can severely impair quality of life. Neuropathic itch is often associated with other clinical symptoms, most commonly neuropathic pain, and hypersensitization to stimuli is present in both pruritus and pain of neuropathic origin. The shared aetiology can aid in finding suitable treatment for itch in some cases, but more detailed knowledge of the mechanisms of itch, along with standardized, well-controlled trials, is needed. Pruritus research is an emerging but currently very active field, and our understanding of this sensation is rapidly increasing. Here, we review new discoveries regarding the role of the nervous system and the contribution of different pathways in pruritus, discuss the different aetiologies of neuropathic itch, and outline currently available and potential strategies for managing neuropathic pruritus.
Collapse
|
15
|
Abstract
Research over the past 15 years has helped to clarify the anatomy and physiology of itch, the clinical features of neuropathic itch syndromes and the scientific underpinning of effective treatments. Two itch-sensitive pathways exist: a histamine-stimulated pathway that uses mechanically insensitive C-fibres, and a cowhage-stimulated pathway primarily involving polymodal C-fibres. Interactions with pain continue to be central to explaining various aspects of itch. Certain spinal interneurons (Bhlhb5) inhibit itch pathways within the dorsal horn; they may represent mediators between noxious and pruritic pathways, and allow scratch to inhibit itch. In the brain, functional imaging studies reveal diffuse activation maps for itch that overlap, but not identically, with pain maps. Neuropathic itch syndromes are chronic itch states due to dysfunction of peripheral or central nervous system structures. The most recognized are postherpetic itch, brachioradial pruritus, trigeminal trophic syndrome, and ischaemic stroke-related itch. These disorders affect a patient's quality of life to a similar extent as neuropathic pain. Treatment of neuropathic itch focuses on behavioural interventions (e.g., skin protection) followed by stepwise trials of topical agents (e.g., capsaicin), antiepileptic drugs (e.g., gabapentin), injection of other agents (e.g., botulinum A toxin), and neurostimulation techniques (e.g., cutaneous field stimulation). The involved mechanisms of action include desensitization of nerve fibres (in the case of capsaicin) and postsynaptic blockade of calcium channels (for gabapentin). In the future, particular histamine receptors, protease pathway molecules, and vanilloids may serve as targets for novel antipruritic agents.
Collapse
Affiliation(s)
- Amar Dhand
- Department of Neurology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0114, USA
| | | |
Collapse
|
16
|
Papoiu ADP, Coghill RC, Kraft RA, Wang H, Yosipovitch G. A tale of two itches. Common features and notable differences in brain activation evoked by cowhage and histamine induced itch. Neuroimage 2011; 59:3611-23. [PMID: 22100770 DOI: 10.1016/j.neuroimage.2011.10.099] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 01/07/2023] Open
Abstract
Previous PET and fMRI brain imaging studies targeting neural networks processing itch sensation have used histamine as the sole itch inducer. In contrast with histamine, cowhage-induced itch is mediated via proteinase activated receptors PAR2 and is transmitted through a separate spinothalamic pathway, therefore imaging the brain activation evoked by cowhage could provide further insight into central processing of itch. We report for the first time a functional MRI Arterial Spin Labeling (ASL) study of neuronal processing of itch induced by cowhage, analyzed in contrast with histamine-induced itch. We also explored the brain responses induced by histamine and cowhage combined in a tight sequence. The results of our analyses obtained in a group of 15 healthy volunteers suggested that cowhage and histamine co-activated a core group of brain structures, while also revealing notable differences. Core areas activated by both stimuli were found in the thalamus, primary and secondary somatosensory cortices, posterior parietal cortex, superior and middle temporal cortices, PCC, ACC, precuneus and cuneus. Cowhage induced a notably distinct and more extensive involvement of the insular cortex, claustrum, basal ganglia, putamen, thalamic nuclei and pulvinar. The differences observed between these two itch modalities were investigated to determine the impact of quantitative versus qualitative factors, and correlations between itch intensity and the patterns in brain activation were explored. Our analysis revealed that the most significant differences between cowhage and histamine itch were not affected by stimulus intensity, although a subset of regions displayed activations which were intensity-dependent. The combined application of cowhage and histamine highlighted the role of insula and claustrum in the processing of both itch modalities in the same time. The present results suggest the existence of overlapping but also distinct neuronal networks processing these two different types of itch.
Collapse
Affiliation(s)
- Alexandru D P Papoiu
- Department of Dermatology, Wake Forest University & Virginia Polytechnic Institute Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|