1
|
Grossi A, Rosamilia F, Carestiato S, Salsano E, Ceccherini I, Bachetti T. A systematic review and meta-analysis of GFAP gene variants in Alexander disease. Sci Rep 2024; 14:24341. [PMID: 39420046 PMCID: PMC11487261 DOI: 10.1038/s41598-024-75383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Alexander disease (ALXDRD) is a rare neurodegenerative disorder of astrocytes resulting from pathogenic variants in the GFAP gene. The genotype-phenotype correlation remains elusive due to the variable expressivity of clinical manifestations. In an attempt to clarify the effects of GFAP variants in ALXDRD, numerous studies were collected and analyzed. In particular, we systematically searched for GFAP variants associated with ALXDRD and collected information on the location within the gene and protein, prediction of deleteriousness/pathogenicity, occurrence, sex and country of origin of patients, DNA source, genetic testing, and clinical signs. To identify possible associations, statistical analyses and meta-analyses were applied, thus revealing a higher than expected percentage of adult patients with ALXDRD. Furthermore, substitution of Arginine, the most frequently altered residue among the 550 predominantly missense causative GFAP variants collected, were mostly de novo and more prevalent in early-onset forms of ALXDRD. The effect of defective splicing in modifying the impact of GFAP variants on the age of onset of ALXDRD was also postulated after evaluating the distribution of the corresponding deleterious predictive values. In conclusion, not only previously unrecognized genotype-phenotype correlations were revealed in ALXDRD, but also subtle mechanisms could explain the variable manifestations of the ALXDRD clinical phenotype.
Collapse
Affiliation(s)
- Alice Grossi
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, 16147, Italy
| | - Francesca Rosamilia
- Clinical Bioinformatics, IRCCS Istituto Giannina Gaslini, Genoa, 16147, Italy
| | - Silvia Carestiato
- Department of Neurosciences, Rita Levi Montalcini University of Turin, Turin, 10126, Italy
| | - Ettore Salsano
- SC Malattie Neurologiche Rare, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, 16147, Italy.
- UOSD Laboratory of Genetics and Genomics of rare Diseases, IRCCS Istituto Giannina gaslini, Via G Gaslini, 5, Genova, 16148, Italy.
| | | |
Collapse
|
2
|
Poisson KE, Newsome SD, Graves J, Zamvil SS, Marcus LR. Teenager With Recurrent Ataxia, Ophthalmoplegia, and Encephalopathy Associated With Demyelination: From the National Multiple Sclerosis Society Case Conference Proceedings. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200193. [PMID: 38181318 PMCID: PMC11078149 DOI: 10.1212/nxi.0000000000200193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024]
Abstract
A 15-year-old adolescent boy developed subacute ataxia, encephalopathy, ophthalmoplegia, and dysarthria following a sore throat. An MRI examination revealed multifocal enhancing and nonenhancing supratentorial white matter and symmetric brainstem lesions. After 2 additional presentations with worsening symptoms and lesion accumulation, he was ultimately successfully treated with rituximab for his condition.
Collapse
Affiliation(s)
- Kelsey E Poisson
- From the Nationwide Children's Hospital (K.E.P.), Columbus, OH; Johns Hopkins University School of Medicine (S.D.N.), Baltimore, MD; University of California San Diego School of Medicine (J.G.); University of California, San Francisco (S.S.Z.); and Children's of Alabama (L.R.M.), Birmingham
| | - Scott D Newsome
- From the Nationwide Children's Hospital (K.E.P.), Columbus, OH; Johns Hopkins University School of Medicine (S.D.N.), Baltimore, MD; University of California San Diego School of Medicine (J.G.); University of California, San Francisco (S.S.Z.); and Children's of Alabama (L.R.M.), Birmingham
| | - Jennifer Graves
- From the Nationwide Children's Hospital (K.E.P.), Columbus, OH; Johns Hopkins University School of Medicine (S.D.N.), Baltimore, MD; University of California San Diego School of Medicine (J.G.); University of California, San Francisco (S.S.Z.); and Children's of Alabama (L.R.M.), Birmingham
| | - Scott S Zamvil
- From the Nationwide Children's Hospital (K.E.P.), Columbus, OH; Johns Hopkins University School of Medicine (S.D.N.), Baltimore, MD; University of California San Diego School of Medicine (J.G.); University of California, San Francisco (S.S.Z.); and Children's of Alabama (L.R.M.), Birmingham
| | - Lydia R Marcus
- From the Nationwide Children's Hospital (K.E.P.), Columbus, OH; Johns Hopkins University School of Medicine (S.D.N.), Baltimore, MD; University of California San Diego School of Medicine (J.G.); University of California, San Francisco (S.S.Z.); and Children's of Alabama (L.R.M.), Birmingham
| |
Collapse
|
3
|
Ayrignac X. Disorders with prominent posterior fossa involvement. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:317-332. [PMID: 39322387 DOI: 10.1016/b978-0-323-99209-1.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Inherited white matter disorders include a wide range of disorders of various origins with distinct genetic, pathophysiologic, and metabolic backgrounds. Although most of these diseases have nonspecific clinical and radiologic features, some display distinct clinical and/or imaging (magnetic resonance imaging, MRI) characteristics that might suggest the causative gene. Recent advances in genetic testing allow assessing gene panels that include several hundred genes; however, an MRI-based diagnostic approach is important to narrow the choice of candidate genes, particularly in countries where these techniques are not available. Indeed, white matter disorders with prominent posterior fossa involvement present specific MRI (and clinical) phenotypes that can directly orient the diagnosis. This chapter describes the main genetic disorders with posterior fossa involvement and discusses diagnostic strategies.
Collapse
Affiliation(s)
- Xavier Ayrignac
- Neurology Department, University of Montpellier, Montpellier University Hospital, INSERM, Reference Center for Adult-Onset Leukoencephalopathies, Montpellier, France.
| |
Collapse
|
4
|
Pajares MA, Hernández-Gerez E, Pekny M, Pérez-Sala D. Alexander disease: the road ahead. Neural Regen Res 2023; 18:2156-2160. [PMID: 37056123 DOI: 10.4103/1673-5374.369097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Alexander disease is a rare neurodegenerative disorder caused by mutations in the glial fibrillary acidic protein, a type III intermediate filament protein expressed in astrocytes. Both early (infantile or juvenile) and adult onsets of the disease are known and, in both cases, astrocytes present characteristic aggregates, named Rosenthal fibers. Mutations are spread along the glial fibrillary acidic protein sequence disrupting the typical filament network in a dominant manner. Although the presence of aggregates suggests a proteostasis problem of the mutant forms, this behavior is also observed when the expression of wild-type glial fibrillary acidic protein is increased. Additionally, several isoforms of glial fibrillary acidic protein have been described to date, while the impact of the mutations on their expression and proportion has not been exhaustively studied. Moreover, the posttranslational modification patterns and/or the protein-protein interaction networks of the glial fibrillary acidic protein mutants may be altered, leading to functional changes that may modify the morphology, positioning, and/or the function of several organelles, in turn, impairing astrocyte normal function and subsequently affecting neurons. In particular, mitochondrial function, redox balance and susceptibility to oxidative stress may contribute to the derangement of glial fibrillary acidic protein mutant-expressing astrocytes. To study the disease and to develop putative therapeutic strategies, several experimental models have been developed, a collection that is in constant growth. The fact that most cases of Alexander disease can be related to glial fibrillary acidic protein mutations, together with the availability of new and more relevant experimental models, holds promise for the design and assay of novel therapeutic strategies.
Collapse
Affiliation(s)
- María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - Elena Hernández-Gerez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; University of Newcastle, Newcastle, NSW, and the Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| |
Collapse
|
5
|
Anderson NE, Alexander HS, Messing A. Alexander disease: The story behind an eponym. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2023; 32:399-422. [PMID: 37000960 DOI: 10.1080/0964704x.2023.2190354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In 1949, William Stewart Alexander (1919-2013), a young pathologist from New Zealand working in London, reported the neuropathological findings in a 15-month-old boy who had developed normally until the age of seven months, but thereafter had progressive enlargement of his head and severe developmental delay. The most striking neuropathological abnormality was the presence of numerous Rosenthal fibers in the brain. The distribution of these fibers suggested to Alexander that the primary pathological change involved astrocytes. In the next 15 years, five similar patients were reported, and in 1964 Friede recognized these cases reflected a single disease process and coined the eponym "Alexander's disease" to describe the disorder. In the 1960s, electron microscopy confirmed that Rosenthal fibers were localized to astrocytes. In 2001, it was shown that Alexander disease is caused by mutations in the gene encoding glial fibrillary acidic protein, the major intermediate filament protein in astrocytes. Although the clinical, imaging, and pathological manifestations of Alexander disease are now well known, few people are familiar with Alexander's career. Although he did not make a further contribution to the literature on Alexander disease, his observations and accurate interpretation of the neuropathology have justified the continued use of the eponym "Alexander disease."
Collapse
Affiliation(s)
- Neil E Anderson
- Neurology Department, Auckland City Hospital, Auckland, New Zealand
| | - Hamish S Alexander
- Kenneth G. Jamieson Neurosurgery Department, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Albee Messing
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Muthusamy K, Sivadasan A, Dixon L, Sudhakar S, Thomas M, Danda S, Wszolek ZK, Wierenga K, Dhamija R, Gavrilova R. Adult-onset leukodystrophies: a practical guide, recent treatment updates, and future directions. Front Neurol 2023; 14:1219324. [PMID: 37564735 PMCID: PMC10410460 DOI: 10.3389/fneur.2023.1219324] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 08/12/2023] Open
Abstract
Adult-onset leukodystrophies though individually rare are not uncommon. This group includes several disorders with isolated adult presentations, as well as several childhood leukodystrophies with attenuated phenotypes that present at a later age. Misdiagnoses often occur due to the clinical and radiological overlap with common acquired disorders such as infectious, immune, inflammatory, vascular, metabolic, and toxic etiologies. Increased prevalence of non-specific white matter changes in adult population poses challenges during diagnostic considerations. Clinico-radiological spectrum and molecular landscape of adult-onset leukodystrophies have not been completely elucidated at this time. Diagnostic approach is less well-standardized when compared to the childhood counterpart. Absence of family history and reduced penetrance in certain disorders frequently create a dilemma. Comprehensive evaluation and molecular confirmation when available helps in prognostication, early initiation of treatment in certain disorders, enrollment in clinical trials, and provides valuable information for the family for reproductive counseling. In this review article, we aimed to formulate an approach to adult-onset leukodystrophies that will be useful in routine practice, discuss common adult-onset leukodystrophies with usual and unusual presentations, neuroimaging findings, recent advances in treatment, acquired mimics, and provide an algorithm for comprehensive clinical, radiological, and genetic evaluation that will facilitate early diagnosis and consider active treatment options when available. A high index of suspicion, awareness of the clinico-radiological presentations, and comprehensive genetic evaluation are paramount because treatment options are available for several disorders when diagnosed early in the disease course.
Collapse
Affiliation(s)
- Karthik Muthusamy
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
| | - Ajith Sivadasan
- Department of Neurological Sciences, Christian Medical College, Tamil Nadu, Vellore, India
| | - Luke Dixon
- Department of Radiology, Imperial College, NHS Trust, London, United Kingdom
| | - Sniya Sudhakar
- Department of Radiology, Great Ormond Street Hospital, London, United Kingdom
| | - Maya Thomas
- Department of Neurological Sciences, Christian Medical College, Tamil Nadu, Vellore, India
| | - Sumita Danda
- Department of Medical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Klaas Wierenga
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
| | - Radhika Dhamija
- Department of Clinical Genomics and Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Ralitza Gavrilova
- Department of Clinical Genomics and Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
7
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
8
|
Costei C, Barbarosie M, Bernard G, Brais B, La Piana R. Adult Hereditary White Matter Diseases With Psychiatric Presentation: Clinical Pointers and MRI Algorithm to Guide the Diagnostic Process. J Neuropsychiatry Clin Neurosci 2022; 33:180-193. [PMID: 33951919 DOI: 10.1176/appi.neuropsych.20110294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The investigators aimed to provide clinical and MRI guidelines for determining when genetic workup should be considered in order to exclude hereditary leukoencephalopathies in affected patients with a psychiatric presentation. METHODS A systematic literature review was conducted, and clinical cases are provided. Given the central role of MRI pattern recognition in the diagnosis of white matter disorders, the investigators adapted an MRI algorithm that guides the interpretation of MRI findings and thus directs further investigations, such as genetic testing. RESULTS Twelve genetic leukoencephalopathies that can present with psychiatric symptoms were identified. As examples of presentations that can occur in clinical practice, five clinical vignettes from patients assessed at a referral center for adult genetic leukoencephalopathies are provided. CONCLUSIONS Features such as drug-resistant symptoms, presence of long-standing somatic features, trigger events, consanguinity, and positive family history should orient the clinician toward diagnostic workup to exclude the presence of a genetic white matter disorder. The identification of MRI white matter abnormalities, especially when presenting a specific pattern of involvement, should prompt genetic testing for known forms of genetic leukoencephalopathies.
Collapse
Affiliation(s)
- Catalina Costei
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| | - Michaela Barbarosie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| |
Collapse
|
9
|
Arshiany H, Ezzatian B, Artounian V, Alizadeh F, Mohammadian F. Psychiatric Onset Alexander Disease: An Important Challenge in Neuropsychiatric Diagnosis: A Case Report. Basic Clin Neurosci 2022; 13:269-274. [PMID: 36425948 PMCID: PMC9682316 DOI: 10.32598/bcn.2021.1551.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/28/2021] [Accepted: 01/02/2021] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION Alexander disease is a heterogeneous group of diseases with various manifestations based on the age of disease onset. This rare leukodystrophy syndrome with mutations in the GFAP gene could present with developmental delay and seizure in the infantile form to ataxia and bulbar palsy in adulthood. However, psychiatric symptoms are not well-defined and are usually evaluated after disease diagnosis, not before disease investigations. CASE REPORT Our patient is a 52-year-old Iranian woman with a history of depression since 17 years ago, a suicidal attempt two years ago, and ingestion of a large amount of opium with the intention of suicide 2 months ago. She was presented with disorientation and probably a delirious state in the last interview. Eventually, in comprehensive investigations, white matter hyperintensity in MRI and leukodystrophy was diagnosed to determine the cause of these changes, we did a gene study, found whole exon deletion of the GFAP gene, and made a diagnosis of late-onset Alexander disease. CONCLUSION Neurological-onset manifestation of Alexander disease, specifically late-onset form, is the most common clinical picture of disease and was seen in about 90% of patients, but psychiatric symptoms are not well-known, and psychiatric-onset disease was not described yet. Various gene mutations were described in late-onset Alexander disease; however, the large whole exon deletion which was revealed in our patient is a novel mutation and significantly needs to be explored. Here authors describe a late-onset Alexander disease with psychiatric-onset symptoms and novel large exon deletion in the GFAP gene. HIGHLIGHTS Alexander disease is a rare heterogeneous disorder that could have various symptoms of the central nervous system involvement.The whole-exons deletion of the GFAP gene in an adult patient with features of Alexander disease is the first Gene mutation that was revealed in this case.Psychiatric onset Alexander disease is the one differential diagnosis in the patients with atypical psychiatric symptoms combined with soft neurological signs.Neurologic consultation and appropriate imaging and laboratory procedures could help early diagnosis and potential treatment. PLAIN LANGUAGE SUMMARY Patients with atypical psychiatric symptoms are usually visited more times in the year without any significant benefit. They receive numerous medications and encounter significant complications due to mentioned polypharmacy. However, genetic, metabolic, or neurological causes could be considered in some treatment-resistant cases. We described the rare genetic disorder(Late-Onset Alexander disease) in the Iranian woman with atypical and treatment-resistant depression with suicidal attempts. We proposed holistic assessment in the patients with psychiatric symptoms which have atypical course or response to treatment or are accompanied by neurological and cognitive symptoms.
Collapse
Affiliation(s)
- Hedieh Arshiany
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Ezzatian
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Valentin Artounian
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alizadeh
- Department of Genomic Psychiatry and Behavioral Genomics, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadian
- Department of Genomic Psychiatry and Behavioral Genomics, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Bachetti T, Zanni ED, Adamo A, Rosamilia F, Sechi MM, Solla P, Bozzo M, Ceccherini I, Sechi G. Beneficial Effect of Phenytoin and Carbamazepine on GFAP Gene Expression and Mutant GFAP Folding in a Cellular Model of Alexander's Disease. Front Pharmacol 2021; 12:723218. [PMID: 34950024 PMCID: PMC8688807 DOI: 10.3389/fphar.2021.723218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
Alexander’s disease (AxD) is a rare, usually relentlessly progressive disorder of astroglial cells in the central nervous system related to mutations in the gene encoding the type III intermediate filament protein, glial fibrillary acidic protein (GFAP). The pathophysiology of AxD is only partially understood. Available data indicate that an excessive GFAP gene expression may play a role. In particular, a “threshold hypothesis” has been reported, suggesting that mutant GFAP representing about 20% of the total cellular GFAP should be sufficient to cause disease. Thus, strategies based on reducing cellular mutant GFAP protein levels and/or activating biological processes involved in the correct protein folding could be effective in counteracting the toxic effect of misfolded GFAP. Considering that clomipramine (CLM), which has been selected by a wide small molecules screening as the greatest inhibitory potential drug against GFAP expression, is contraindicated because of its proconvulsant activity in the infantile form of AxD, which is also characterized by the occurrence of epileptic seizures, two powerful antiepileptic agents, carbamazepine (CBZ) and phenytoin (PHT), which share specific stereochemical features in common with CLM, were taken into consideration in a reliable in vitro model of AxD. In the present work, we document for the first time that CBZ and PHT have a definite inhibitory effect on pathological GFAP cellular expression and folding. Moreover, we confirm previous results of a similar beneficial effect of CLM. In addition, we have demonstrated that CBZ and CLM play a refolding effect on mutant GFAP proteins, likely ascribed at the induction of CRYAB expression, resulting in the decrease of mutant GFAP aggregates formation. As CBZ and PHT are currently approved for use in humans, their documented effects on pathological GFAP cellular expression and folding may indicate a potential therapeutic role as disease-modifying agents of these drugs in the clinical management of AxD, particularly in AxD patients with focal epilepsy with and without secondary generalization.
Collapse
Affiliation(s)
- Tiziana Bachetti
- UOSD Laboratorio di Genetica e Genomica delle Malattie Rare, IRCCS Gaslini, Genova, Italy.,Laboratorio di Neurobiologia dello Sviluppo, DISTAV, Università di Genova, Genova, Italy
| | - Eleonora Di Zanni
- UOSD Laboratorio di Genetica e Genomica delle Malattie Rare, IRCCS Gaslini, Genova, Italy
| | - Annalisa Adamo
- UOSD Laboratorio di Genetica e Genomica delle Malattie Rare, IRCCS Gaslini, Genova, Italy
| | - Francesca Rosamilia
- Dipartimento di Scienze della Salute, DISSAL, Università di Genova, Genova, Italy
| | - M Margherita Sechi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Paolo Solla
- Department of Medical, Surgical and Experimental Sciences (G.P.S.; P.S.), University of Sassari, Sassari, Italy
| | - Matteo Bozzo
- Laboratorio di Neurobiologia dello Sviluppo, DISTAV, Università di Genova, Genova, Italy
| | - Isabella Ceccherini
- UOSD Laboratorio di Genetica e Genomica delle Malattie Rare, IRCCS Gaslini, Genova, Italy
| | - GianPietro Sechi
- Department of Medical, Surgical and Experimental Sciences (G.P.S.; P.S.), University of Sassari, Sassari, Italy
| |
Collapse
|
11
|
Abstract
Fifty years have passed since the discovery of glial fibrillary acidic protein (GFAP) by Lawrence Eng and colleagues. Now recognized as a member of the intermediate filament family of proteins, it has become a subject for study in fields as diverse as structural biology, cell biology, gene expression, basic neuroscience, clinical genetics and gene therapy. This review covers each of these areas, presenting an overview of current understanding and controversies regarding GFAP with the goal of stimulating continued study of this fascinating protein.
Collapse
Affiliation(s)
- Albee Messing
- Waisman Center, University of Wisconsin-Madison.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Michael Brenner
- Department of Neurobiology, University of Alabama-Birmingham
| |
Collapse
|
12
|
Song X, Jiang J, Tian W, Zhan F, Zhu Z, Li B, Tang H, Cao L. A report of two cases of bulbospinal form Alexander disease and preliminary exploration of the disease. Mol Med Rep 2021; 24:572. [PMID: 34109421 PMCID: PMC8201446 DOI: 10.3892/mmr.2021.12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/10/2021] [Indexed: 11/05/2022] Open
Abstract
Alexander disease (AxD) is a cerebral white matter disease affecting a wide range of ages, from infants to adults. In the present study, two cases of bulbospinal form AxD were reported, and a preliminary exploration of AxD was conducted thorough clinical, functional magnetic resonance imaging (fMRI) and functional analyses. In total, two de novo mutations in the glial fibrillary acidic protein (GFAP) gene (c.214G>A and c.1235C>T) were identified in unrelated patients (one in each patient). Both patients showed increased regional neural activity and functional connectivity in the cerebellum and posterior parietal cortex according to fMRI analysis. Notably, grey matter atrophy was discovered in the patient with c.214G>A variant. Functional experiments revealed aberrant accumulation of mutant GFAP and decreased solubility of c.1235C>T variant. Under pathological conditions, autophagic flux was activated for GFAP aggregate degradation. Moreover, transcriptional data of AxD and healthy human brain samples were obtained from the Gene Expression Omnibus database. Gene set enrichment analysis revealed an upregulation of immune‑related responses and downregulation of ion transport, synaptic transmission and neurotransmitter homeostasis. Enrichment analysis of cell‑specific differentially expressed genes also indicated a marked inflammatory environment in AxD. Overall, the clinical features of the two patients with bulbospinal form AxD were thoroughly described. To the best of our knowledge, the brain atrophy pattern and spontaneous brain functional network activity of patients with AxD were explored for the first time. Cytological experiments provided evidence of the pathogenicity of the identified variants. Furthermore, bioinformatics analysis found that inflammatory immune‑related reactions may play a critical role in AxD, which may be conducive to the understanding of this disease.
Collapse
Affiliation(s)
- Xiaoxuan Song
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jingwen Jiang
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Wotu Tian
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Feixia Zhan
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zeyu Zhu
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Binyin Li
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Huidong Tang
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Li Cao
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
13
|
Accogli A, Geraldo AF, Piccolo G, Riva A, Scala M, Balagura G, Salpietro V, Madia F, Maghnie M, Zara F, Striano P, Tortora D, Severino M, Capra V. Diagnostic Approach to Macrocephaly in Children. Front Pediatr 2021; 9:794069. [PMID: 35096710 PMCID: PMC8795981 DOI: 10.3389/fped.2021.794069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/02/2021] [Indexed: 01/19/2023] Open
Abstract
Macrocephaly affects up to 5% of the pediatric population and is defined as an abnormally large head with an occipitofrontal circumference (OFC) >2 standard deviations (SD) above the mean for a given age and sex. Taking into account that about 2-3% of the healthy population has an OFC between 2 and 3 SD, macrocephaly is considered as "clinically relevant" when OFC is above 3 SD. This implies the urgent need for a diagnostic workflow to use in the clinical setting to dissect the several causes of increased OFC, from the benign form of familial macrocephaly and the Benign enlargement of subarachnoid spaces (BESS) to many pathological conditions, including genetic disorders. Moreover, macrocephaly should be differentiated by megalencephaly (MEG), which refers exclusively to brain overgrowth, exceeding twice the SD (3SD-"clinically relevant" megalencephaly). While macrocephaly can be isolated and benign or may be the first indication of an underlying congenital, genetic, or acquired disorder, megalencephaly is most likely due to a genetic cause. Apart from the head size evaluation, a detailed family and personal history, neuroimaging, and a careful clinical evaluation are crucial to reach the correct diagnosis. In this review, we seek to underline the clinical aspects of macrocephaly and megalencephaly, emphasizing the main differential diagnosis with a major focus on common genetic disorders. We thus provide a clinico-radiological algorithm to guide pediatricians in the assessment of children with macrocephaly.
Collapse
Affiliation(s)
- Andrea Accogli
- Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Ana Filipa Geraldo
- Diagnostic Neuroradiology Unit, Imaging Department, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Gianluca Piccolo
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Ganna Balagura
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Vincenzo Salpietro
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Francesca Madia
- Pediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mohamad Maghnie
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Pediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Valeria Capra
- Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| |
Collapse
|
14
|
Parkinsonism phenotype in a family with adult onset Alexander disease and a novel mutation of GFAP. Clin Neurol Neurosurg 2020; 195:105893. [PMID: 32417628 DOI: 10.1016/j.clineuro.2020.105893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/24/2022]
|
15
|
Resende LL, de Paiva ARB, Kok F, da Costa Leite C, Lucato LT. Adult Leukodystrophies: A Step-by-Step Diagnostic Approach. Radiographics 2020; 39:153-168. [PMID: 30620693 DOI: 10.1148/rg.2019180081] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leukodystrophies usually affect children, but in the last several decades, many instances of adult leukodystrophies have been reported in the medical literature. Because the clinical manifestation of these diseases can be nonspecific, MRI can help with establishing a diagnosis. A step-by-step approach to assist in the diagnosis of adult leukodystrophies is proposed in this article. The first step is to identify symmetric white matter involvement, which is more commonly observed in these patients. The next step is to fit the symmetric white matter involvement into one of the proposed patterns. However, a patient may present with more than one pattern of white matter involvement. Thus, the third step is to evaluate for five distinct characteristics-including enhancement, lesions with signal intensity similar to that of cerebrospinal fluid, susceptibility-weighted MRI signal intensity abnormalities, abnormal peaks at MR spectroscopy, and spinal cord involvement-to further narrow the differential diagnosis. ©RSNA, 2019.
Collapse
Affiliation(s)
- Lucas Lopes Resende
- From the Neuroradiology Section, Instituto de Radiologia (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), R. Dr. Ovídio Pires de Campos 75, São Paulo, SP 05403-010, Brazil (L.L.R., C.d.C.L., L.T.L.); and Neurogenetics Unit, Department of Neurology, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil (A.R.B.d.P., F.K.)
| | - Anderson Rodrigues Brandão de Paiva
- From the Neuroradiology Section, Instituto de Radiologia (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), R. Dr. Ovídio Pires de Campos 75, São Paulo, SP 05403-010, Brazil (L.L.R., C.d.C.L., L.T.L.); and Neurogenetics Unit, Department of Neurology, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil (A.R.B.d.P., F.K.)
| | - Fernando Kok
- From the Neuroradiology Section, Instituto de Radiologia (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), R. Dr. Ovídio Pires de Campos 75, São Paulo, SP 05403-010, Brazil (L.L.R., C.d.C.L., L.T.L.); and Neurogenetics Unit, Department of Neurology, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil (A.R.B.d.P., F.K.)
| | - Claudia da Costa Leite
- From the Neuroradiology Section, Instituto de Radiologia (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), R. Dr. Ovídio Pires de Campos 75, São Paulo, SP 05403-010, Brazil (L.L.R., C.d.C.L., L.T.L.); and Neurogenetics Unit, Department of Neurology, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil (A.R.B.d.P., F.K.)
| | - Leandro Tavares Lucato
- From the Neuroradiology Section, Instituto de Radiologia (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), R. Dr. Ovídio Pires de Campos 75, São Paulo, SP 05403-010, Brazil (L.L.R., C.d.C.L., L.T.L.); and Neurogenetics Unit, Department of Neurology, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil (A.R.B.d.P., F.K.)
| |
Collapse
|
16
|
Chang VTW, Chang HM. Review: Recent advances in the understanding of the pathophysiology of neuromyelitis optica spectrum disorder. Neuropathol Appl Neurobiol 2019; 46:199-218. [PMID: 31353503 DOI: 10.1111/nan.12574] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
Neuromyelitis optica is an autoimmune inflammatory disorder of the central nervous system that preferentially targets the spinal cord and optic nerve. Following the discovery of circulating antibodies against the astrocytic aquaporin 4 (AQP4) water channel protein, recent studies have expanded our knowledge of the unique complexities of the pathogenesis of neuromyelitis optica and its relationship with the immune response. This review describes and summarizes the recent advances in our understanding of the molecular mechanisms underlying neuromyelitis optica disease pathology and examines their potential as therapeutic targets. Additionally, we update the most recent research by proposing major unanswered questions regarding how peripheral AQP4 antibodies are produced and their entry into the central nervous system, the causes of AQP4-IgG-seronegative disease, why peripheral AQP4-expressing organs are spared from damage, and the impact of this disease on pregnancy.
Collapse
Affiliation(s)
- V T W Chang
- St George's, University of London, London, UK
| | - H-M Chang
- Department of Obstetrics and Gynaecology, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
17
|
Casasnovas C, Verdura E, Vélez V, Schlüter A, Pons-Escoda A, Homedes C, Ruiz M, Fourcade S, Launay N, Pujol A. A novel mutation in the GFAP gene expands the phenotype of Alexander disease. J Med Genet 2019; 56:846-849. [PMID: 31004048 DOI: 10.1136/jmedgenet-2018-105959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/21/2019] [Accepted: 03/29/2019] [Indexed: 11/03/2022]
Abstract
BACKGROUND Alexander disease, an autosomal dominant leukodystrophy, is caused by missense mutations in GFAP. Although mostly diagnosed in children, associated with severe leukoencephalopathy, milder adult forms also exist. METHODS A family affected by adult-onset spastic paraplegia underwent neurological examination and cerebral MRI. Two patients were sequenced by whole exome sequencing (WES). A candidate variant was functionally tested in an astrocytoma cell line. RESULTS The novel variant in GFAP (Glial Fibrillary Acidic Protein) N-terminal head domain (p.Gly18Val) cosegregated in multiple relatives (LOD score: 2.7). All patients, even those with the mildest forms, showed characteristic signal changes or atrophy in the brainstem and spinal cord MRIs, and abnormal MRS. In vitro, this variant did not cause significant protein aggregation, in contrast to most Alexander disease mutations characterised so far. However, cell area analysis showed larger size, a feature previously described in patients and mouse models. CONCLUSION We suggest that this variant causes variable expressivity and an attenuated phenotype of Alexander disease type II, probably associated with alternative pathogenic mechanisms, that is, astrocyte enlargement. GFAP analysis should be considered in adult-onset neurological presentations with pyramidal and bulbar symptoms, in particular when characteristic findings, such as the tadpole sign, are present in MRI. WES is a powerful tool to diagnose atypical cases.
Collapse
Affiliation(s)
- Carlos Casasnovas
- Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Catalonia, Spain.,Neurometabolic Diseases Laboratory, Institut d'Investigacio Biomedica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Catalonia, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Edgard Verdura
- Neurometabolic Diseases Laboratory, Institut d'Investigacio Biomedica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Catalonia, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Valentina Vélez
- Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Catalonia, Spain.,Neurometabolic Diseases Laboratory, Institut d'Investigacio Biomedica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Catalonia, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Institut d'Investigacio Biomedica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Catalonia, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Albert Pons-Escoda
- Neuroradiology Unit, Institut de Diagnòstic per la Imatge-IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Catalonia, Spain
| | - Christian Homedes
- Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Catalonia, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Institut d'Investigacio Biomedica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Catalonia, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Institut d'Investigacio Biomedica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Catalonia, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Nathalie Launay
- Neurometabolic Diseases Laboratory, Institut d'Investigacio Biomedica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Catalonia, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institut d'Investigacio Biomedica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Catalonia, Spain .,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
18
|
A Novel Mutation in the Adult-Onset Alexander's Disease GFAP Gene. Case Rep Med 2019; 2019:2986538. [PMID: 30755773 PMCID: PMC6348877 DOI: 10.1155/2019/2986538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/03/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022] Open
Abstract
The case describes a 25-year-old Caucasian female diagnosed with Alexander's disease (AxD) as an outpatient after extensive inpatient workup. Her presenting complaints included incontinence, clumsiness, seizures, dysphagia, and dysarthria. She was also found to have pancytopenia and dysautonomia. A full neurologic and hematologic workup yielded very little results, until a thorough literature search of her presenting complaints and radiologic findings pointed to adult-onset Alexander's Disease. Alexander's disease is a rare genetic leukodystrophy with a broad variety of presentations. Despite its infrequency in adults and the difficulty in diagnosis, the prevalence of AxD has been increasing due to ease of genetic analysis and identification of key clinical and radiological findings. This case illustrates the necessity of vigilance and persistence in the face of unusual patient presentations; occasionally, the sound of hoofbeats is zebras.
Collapse
|
19
|
Stitt DW, Gavrilova R, Watson R, Hassan A. An unusual presentation of late-onset Alexander's disease with slow orthostatic tremor and a novel GFAP variant. Neurocase 2018; 24:266-268. [PMID: 30755139 DOI: 10.1080/13554794.2019.1580749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Alexander disease (AxD) is a leukodystrophy, described in infantile, juvenile and adult onset forms, due to mutations in the glial fibrillary acid protein (GFAP) gene. Adult-onset AxD (AOAD) has a range of clinical and radiographic phenotypes with the oldest reported onset in the seventh decade.We report a case of AOAD, with onset in the eighth decade, presenting with slow variant orthostatic tremor, which has not been previously described. Genetic analysis revealed a GFAP variant (c.1158C>A) that has not been previously reported. Our case serves to expand the diagnostic spectrum of AOAD both clinically and genetically.
Collapse
Affiliation(s)
- Derek W Stitt
- a Department of Neurology , Mayo Clinic , Rochester , MN , USA
| | - Ralitza Gavrilova
- a Department of Neurology , Mayo Clinic , Rochester , MN , USA.,b Department of Medical Genetics , Mayo Clinic , Rochester , MN , USA
| | - Robert Watson
- c Division of Neuroradiology , Mayo Clinic , Rochester , MN , USA
| | - Anhar Hassan
- a Department of Neurology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
20
|
Abstract
The leukodystrophies are a group of inherited white matter disorders with a heterogeneous genetic background, considerable phenotypic variability and disease onset at all ages. This Review focuses on leukodystrophies with major prevalence or primary onset in adulthood. We summarize 20 leukodystrophies with adult presentations, providing information on the underlying genetic mutations and on biochemical assays that aid diagnosis, where available. Definitions, clinical characteristics, age of onset, MRI findings and treatment options are all described, providing a comprehensive overview of the current knowledge of the various adulthood leukodystrophies. We highlight the distinction between adult-onset leukodystrophies and other inherited disorders with white matter involvement, and we propose a diagnostic pathway for timely recognition of adulthood leukodystrophies in a routine clinical setting. In addition, we provide detailed clinical information on selected adult-onset leukodystrophies, including X-linked adrenoleukodystrophy, metachromatic leukodystrophy, cerebrotendinous xanthomatosis, hereditary diffuse leukoencephalopathy with axonal spheroids, autosomal dominant adult-onset demyelinating leukodystrophy, adult polyglucosan body disease, and leukoencephalopathy with vanishing white matter. Ultimately, this Review aims to provide helpful suggestions to identify treatable adulthood leukodystrophies at an early stage in the disease course.
Collapse
Affiliation(s)
- Wolfgang Köhler
- Department of Neurology, University Hospital Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Julian Curiel
- Division of Neurology, Children's Hospital of Philadelphia, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
21
|
Abstract
Alexander disease is a rare and generally fatal disorder of the central nervous system, originally defined by the distinctive neuropathology consisting of abundant Rosenthal fibers within the cytoplasm and processes of astrocytes. More recently, mutations in GFAP, encoding glial fibrillary acidic protein, the major intermediate filament protein of astrocytes, have been identified in nearly all patients. No other genetic causes have yet been identified. The precise mechanisms by which mutations lead to disease are poorly understood. Despite the genetic homogeneity, there are a wide range of clinical phenotypes. The genetic issues and the approach to diagnosis are the prime consideration in this chapter.
Collapse
Affiliation(s)
- Albee Messing
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
22
|
Neuroimaging of Pediatric Metabolic Disorders with Emphasis on Diffusion-Weighted Imaging and MR Spectroscopy: A Pictorial Essay. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0251-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Lichtenstein ML, Dwosh E, Roy Chowdhury A, Farrer MJ, McKenzie MB, Guella I, Evans DM, Nygaard HB, Shewchuk JR, Hayden S, Barton JJS, Feldman HH. Neurobehavioral characterization of adult-onset Alexander disease: A family study. Neurol Clin Pract 2017; 7:425-429. [PMID: 29620072 DOI: 10.1212/cpj.0000000000000356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/13/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Maya L Lichtenstein
- Division of Neurology, Department of Medicine (MLL, HBN, SH, JJSB, HHF), Department of Medical Genetics, Faculty of Medicine (ED), Centre for Applied Neurogenetics, Department of Medical Genetics (MJF, MBM, IG, DME), Division of Neuroradiology, Department of Radiology (JRS), and Department of Ophthalmology and Visual Sciences (JJSB), University of British Columbia, Vancouver, Canada; Department of Geriatric Medicine (ARC), Khoo Teck Puat Hospital, Singapore; and Department of Neuroscience (HHF), University of California San Diego
| | - Emily Dwosh
- Division of Neurology, Department of Medicine (MLL, HBN, SH, JJSB, HHF), Department of Medical Genetics, Faculty of Medicine (ED), Centre for Applied Neurogenetics, Department of Medical Genetics (MJF, MBM, IG, DME), Division of Neuroradiology, Department of Radiology (JRS), and Department of Ophthalmology and Visual Sciences (JJSB), University of British Columbia, Vancouver, Canada; Department of Geriatric Medicine (ARC), Khoo Teck Puat Hospital, Singapore; and Department of Neuroscience (HHF), University of California San Diego
| | - Anupama Roy Chowdhury
- Division of Neurology, Department of Medicine (MLL, HBN, SH, JJSB, HHF), Department of Medical Genetics, Faculty of Medicine (ED), Centre for Applied Neurogenetics, Department of Medical Genetics (MJF, MBM, IG, DME), Division of Neuroradiology, Department of Radiology (JRS), and Department of Ophthalmology and Visual Sciences (JJSB), University of British Columbia, Vancouver, Canada; Department of Geriatric Medicine (ARC), Khoo Teck Puat Hospital, Singapore; and Department of Neuroscience (HHF), University of California San Diego
| | - Matthew J Farrer
- Division of Neurology, Department of Medicine (MLL, HBN, SH, JJSB, HHF), Department of Medical Genetics, Faculty of Medicine (ED), Centre for Applied Neurogenetics, Department of Medical Genetics (MJF, MBM, IG, DME), Division of Neuroradiology, Department of Radiology (JRS), and Department of Ophthalmology and Visual Sciences (JJSB), University of British Columbia, Vancouver, Canada; Department of Geriatric Medicine (ARC), Khoo Teck Puat Hospital, Singapore; and Department of Neuroscience (HHF), University of California San Diego
| | - Marna B McKenzie
- Division of Neurology, Department of Medicine (MLL, HBN, SH, JJSB, HHF), Department of Medical Genetics, Faculty of Medicine (ED), Centre for Applied Neurogenetics, Department of Medical Genetics (MJF, MBM, IG, DME), Division of Neuroradiology, Department of Radiology (JRS), and Department of Ophthalmology and Visual Sciences (JJSB), University of British Columbia, Vancouver, Canada; Department of Geriatric Medicine (ARC), Khoo Teck Puat Hospital, Singapore; and Department of Neuroscience (HHF), University of California San Diego
| | - Ilaria Guella
- Division of Neurology, Department of Medicine (MLL, HBN, SH, JJSB, HHF), Department of Medical Genetics, Faculty of Medicine (ED), Centre for Applied Neurogenetics, Department of Medical Genetics (MJF, MBM, IG, DME), Division of Neuroradiology, Department of Radiology (JRS), and Department of Ophthalmology and Visual Sciences (JJSB), University of British Columbia, Vancouver, Canada; Department of Geriatric Medicine (ARC), Khoo Teck Puat Hospital, Singapore; and Department of Neuroscience (HHF), University of California San Diego
| | - Daniel M Evans
- Division of Neurology, Department of Medicine (MLL, HBN, SH, JJSB, HHF), Department of Medical Genetics, Faculty of Medicine (ED), Centre for Applied Neurogenetics, Department of Medical Genetics (MJF, MBM, IG, DME), Division of Neuroradiology, Department of Radiology (JRS), and Department of Ophthalmology and Visual Sciences (JJSB), University of British Columbia, Vancouver, Canada; Department of Geriatric Medicine (ARC), Khoo Teck Puat Hospital, Singapore; and Department of Neuroscience (HHF), University of California San Diego
| | - Haakon B Nygaard
- Division of Neurology, Department of Medicine (MLL, HBN, SH, JJSB, HHF), Department of Medical Genetics, Faculty of Medicine (ED), Centre for Applied Neurogenetics, Department of Medical Genetics (MJF, MBM, IG, DME), Division of Neuroradiology, Department of Radiology (JRS), and Department of Ophthalmology and Visual Sciences (JJSB), University of British Columbia, Vancouver, Canada; Department of Geriatric Medicine (ARC), Khoo Teck Puat Hospital, Singapore; and Department of Neuroscience (HHF), University of California San Diego
| | - Jason R Shewchuk
- Division of Neurology, Department of Medicine (MLL, HBN, SH, JJSB, HHF), Department of Medical Genetics, Faculty of Medicine (ED), Centre for Applied Neurogenetics, Department of Medical Genetics (MJF, MBM, IG, DME), Division of Neuroradiology, Department of Radiology (JRS), and Department of Ophthalmology and Visual Sciences (JJSB), University of British Columbia, Vancouver, Canada; Department of Geriatric Medicine (ARC), Khoo Teck Puat Hospital, Singapore; and Department of Neuroscience (HHF), University of California San Diego
| | - Sherri Hayden
- Division of Neurology, Department of Medicine (MLL, HBN, SH, JJSB, HHF), Department of Medical Genetics, Faculty of Medicine (ED), Centre for Applied Neurogenetics, Department of Medical Genetics (MJF, MBM, IG, DME), Division of Neuroradiology, Department of Radiology (JRS), and Department of Ophthalmology and Visual Sciences (JJSB), University of British Columbia, Vancouver, Canada; Department of Geriatric Medicine (ARC), Khoo Teck Puat Hospital, Singapore; and Department of Neuroscience (HHF), University of California San Diego
| | - Jason J S Barton
- Division of Neurology, Department of Medicine (MLL, HBN, SH, JJSB, HHF), Department of Medical Genetics, Faculty of Medicine (ED), Centre for Applied Neurogenetics, Department of Medical Genetics (MJF, MBM, IG, DME), Division of Neuroradiology, Department of Radiology (JRS), and Department of Ophthalmology and Visual Sciences (JJSB), University of British Columbia, Vancouver, Canada; Department of Geriatric Medicine (ARC), Khoo Teck Puat Hospital, Singapore; and Department of Neuroscience (HHF), University of California San Diego
| | - Howard H Feldman
- Division of Neurology, Department of Medicine (MLL, HBN, SH, JJSB, HHF), Department of Medical Genetics, Faculty of Medicine (ED), Centre for Applied Neurogenetics, Department of Medical Genetics (MJF, MBM, IG, DME), Division of Neuroradiology, Department of Radiology (JRS), and Department of Ophthalmology and Visual Sciences (JJSB), University of British Columbia, Vancouver, Canada; Department of Geriatric Medicine (ARC), Khoo Teck Puat Hospital, Singapore; and Department of Neuroscience (HHF), University of California San Diego
| |
Collapse
|
24
|
Liu Y, Zhou H, Wang H, Gong X, Zhou A, Zhao L, Li X, Zhang X. Atypical MRI features in familial adult onset Alexander disease: case report. BMC Neurol 2016; 16:211. [PMID: 27814755 PMCID: PMC5097349 DOI: 10.1186/s12883-016-0734-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background Alexander disease (AxD) is a rare neurological disease, especially in adults. It shows variable clinical and radiological features. Case presentation We diagnosed a female with AxD presenting with paroxysmal numbness of the limbs at the onset age of 28-year-old, progressing gradually to spastic paraparesis at age 30. One year later, she had ataxia, bulbar paralysis, bowel and bladder urgency. Her mother had a similar neurological symptoms and died within 2 years after onset (at the age of 47), and her maternal aunt also had similar but mild symptoms at the onset age of 54-year-old. Her brain magnetic resonance imaging (MRI) showed abnormal signals in periventricular white matter with severe atrophy in the medulla oblongata and thoracic spinal cord, and mild atrophy in cervical spinal cord, which is unusual in the adult form of AxD. She and her daughter’s glial fibrillary acidic protein (GFAP) gene analysis revealed the same heterozygous missense mutation, c.1246C > T, p.R416W, despite of no neurological symptoms in her daughter. Conclusions Our case report enriches the understanding of the familial adult AxD. Genetic analysis is necessary when patients have the above mentioned symptoms and signs, MRI findings, especially with family history.
Collapse
Affiliation(s)
- Yonghong Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 6 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Heng Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 6 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Huabing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 6 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Xiaoqing Gong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 6 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Anna Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 6 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Lin Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 6 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Xindi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 6 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 6 Tiantanxili, Dongcheng District, Beijing, 100050, China.
| |
Collapse
|
25
|
Esmer C, Villegas-Aguilera M, Morales-Ibarra JJ, Bravo-Oro A. [An atypical presentation of Infantile Alexander disease lacking macrocephaly]. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:196-201. [PMID: 29421207 DOI: 10.1016/j.bmhimx.2016.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/17/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Alexander disease is a rare form of leukodystrophy that involves mainly astrocytes; it is inherited in an autosomal recessive manner and occurs by mutations in the GFAP gene, located on chromosome 17q21. It can occur at any age and its infantile form is characterized by macrocephaly, seizures, severe motor and cognitive delay, and progressive spasticity or ataxia. CASE REPORT An 8-month-old female was evaluated with a history of neurodevelopmental delay and unprovoked focal motor seizures. Physical examination showed normal head circumference, increased motor responses to tactile and noise stimuli, pyramidal signs and no visceromegalies. Widespread hypodense white matter was found on magnetic resonance and lumbar puncture showed hyperproteinorrachia. Krabbe disease was ruled out by enzymatic assay and gene sequencing of GALC. In the reassessment of the case, abnormalities in neuroimaging lead to suspicion of Alexander disease, and GFAP gene sequencing reported a pathogenic mutation in exon 4 c.716G>A, which caused a change of arginine to histidine at position 239 of the protein (p.Arg239His). CONCLUSIONS The radiographic signs observed in the resonance were decisive for the diagnosis, later confirmed by molecular study. It is important to consider that certain mutations are not associated with macrocephaly, which may cause delay in diagnosis.
Collapse
Affiliation(s)
- Carmen Esmer
- Departamento de Neurogenética, Hospital Central Dr. Ignacio Morones Prieto, San Luis Potosí, San Luis Potosí, México
| | - Miguel Villegas-Aguilera
- Departamento de Neuropediatría, Hospital Central Dr. Ignacio Morones Prieto, San Luis Potosí, San Luis Potosí, México
| | - Juan José Morales-Ibarra
- Departamento de Neuropediatría, Hospital Central Dr. Ignacio Morones Prieto, San Luis Potosí, San Luis Potosí, México
| | - Antonio Bravo-Oro
- Departamento de Neuropediatría, Hospital Central Dr. Ignacio Morones Prieto, San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
26
|
Ahmad O, Rowe DB. Adult-onset Alexander's disease mimicking degenerative disease. Pract Neurol 2015; 15:393-5. [DOI: 10.1136/practneurol-2015-001144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 11/04/2022]
|
27
|
Weisfeld-Adams JD, Katz Sand IB, Honce JM, Lublin FD. Differential diagnosis of Mendelian and mitochondrial disorders in patients with suspected multiple sclerosis. Brain 2015; 138:517-39. [PMID: 25636970 DOI: 10.1093/brain/awu397] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Several single gene disorders share clinical and radiologic characteristics with multiple sclerosis and have the potential to be overlooked in the differential diagnostic evaluation of both adult and paediatric patients with multiple sclerosis. This group includes lysosomal storage disorders, various mitochondrial diseases, other neurometabolic disorders, and several other miscellaneous disorders. Recognition of a single-gene disorder as causal for a patient's 'multiple sclerosis-like' phenotype is critically important for accurate direction of patient management, and evokes broader genetic counselling implications for affected families. Here we review single gene disorders that have the potential to mimic multiple sclerosis, provide an overview of clinical and investigational characteristics of each disorder, and present guidelines for when clinicians should suspect an underlying heritable disorder that requires diagnostic confirmation in a patient with a definite or probable diagnosis of multiple sclerosis.
Collapse
Affiliation(s)
- James D Weisfeld-Adams
- 1 Division of Clinical Genetics and Metabolism, Department of Paediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA 2 Inherited Metabolic Diseases Clinic, Children's Hospital Colorado, Aurora, Colorado 80045, USA 3 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ilana B Katz Sand
- 4 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Justin M Honce
- 5 Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Fred D Lublin
- 4 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
28
|
Scola RH, Lorenzoni PJ, Kay CSK, Werneck LC. Adult-onset Alexander disease: could facial myokymia be a symptom? ARQUIVOS DE NEURO-PSIQUIATRIA 2014; 72:897-8. [PMID: 25410460 DOI: 10.1590/0004-282x20140164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/18/2014] [Indexed: 11/22/2022]
Affiliation(s)
- Rosana Herminia Scola
- Serviço de Neurologia, Departamento de Clínica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Paulo J Lorenzoni
- Serviço de Neurologia, Departamento de Clínica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Cláudia S K Kay
- Serviço de Neurologia, Departamento de Clínica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Lineu C Werneck
- Serviço de Neurologia, Departamento de Clínica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
29
|
Nannucci S, Donnini I, Pantoni L. Inherited leukoencephalopathies with clinical onset in middle and old age. J Neurol Sci 2014; 347:1-13. [PMID: 25307983 DOI: 10.1016/j.jns.2014.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/20/2014] [Accepted: 09/15/2014] [Indexed: 01/30/2023]
Abstract
The currently widespread use of neuroimaging has led neurologists to often face the problem of the differential diagnosis of white matter diseases. There are various forms of leukoencephalopathies (vascular, inflammatory and immunomediated, infectious, metabolic, neoplastic) and sometimes white matter lesions are expression of a genetic disease. While many inherited leukoencephalopathies fall in the child neurologist's interest, others may have a delayed or even a typical onset in the middle or old age. This field is rapidly growing and, in the last few years, many new inherited white matter diseases have been described and genetically defined. A non-delayed recognition of middle and old age inherited leukoencephalopathies appears important to avoid unnecessary tests and therapies in the patient and to possibly anticipate the diagnosis in relatives. The aim of this review is to provide a guide to direct the diagnostic process when facing a patient with a suspicion of an inherited form of leukoencephalopathy and with clinical onset in middle or old age. Based on a MEDLINE search from 1990 to 2013, we identified 24 middle and old age onset inherited leukoencephalopathies and reviewed in this relation the most recent findings focusing on their differential diagnosis. We provide summary tables to use as a check list of clinical and neuroimaging findings that are most commonly associated with these forms of leukoencephalopathies. When present, we reported specific characteristics of single diseases. Several genetic diseases may be suspected in patients with middle or old age and white matter abnormalities. In only few instances, pathognomonic clinical or associated neuroimaging features help identifying a specific disease. Therefore, a comprehensive knowledge of the characteristics of these inherited white matter diseases appears important to improve the diagnostic work-up, optimize the choice of genetic tests, increase the number of diagnosed patients, and stimulate the research interest in this field.
Collapse
Affiliation(s)
- Serena Nannucci
- NEUROFARBA Department, Neuroscience section, University of Florence, Florence, Italy
| | - Ida Donnini
- NEUROFARBA Department, Neuroscience section, University of Florence, Florence, Italy
| | - Leonardo Pantoni
- Stroke Unit and Neurology, Azienda Ospedaliero Universitaria Careggi, Florence, Italy.
| |
Collapse
|
30
|
Leite CC, Lucato LT, Santos GT, Kok F, Brandão AR, Castillo M. Imaging of adult leukodystrophies. ARQUIVOS DE NEURO-PSIQUIATRIA 2014; 72:625-32. [DOI: 10.1590/0004-282x20140095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/27/2014] [Indexed: 11/21/2022]
Abstract
Leukodystrophies are genetically determined white matter disorders. Even though leukodystrophies essentially affect children in early infancy and childhood, these disorders may affect adults. In adults, leukodystrophies may present a distinct clinical and imaging presentation other than those found in childhood. Clinical awareness of late-onset leukodystrophies should be increased as new therapies emerge. MRI is a useful tool to evaluate white matter disorders and some characteristics findings can help the diagnosis of leukodystrophies. This review article briefly describes the imaging characteristics of the most common adult leukodystrophies.
Collapse
Affiliation(s)
- Claudia Costa Leite
- Universidade de São Paulo, Brazil; University of North Carolina, United States
| | | | | | | | | | | |
Collapse
|
31
|
Krishna SH, McKinney AM, Lucato LT. Congenital Genetic Inborn Errors of Metabolism Presenting as an Adult or Persisting Into Adulthood: Neuroimaging in the More Common or Recognizable Disorders. Semin Ultrasound CT MR 2014; 35:160-91. [DOI: 10.1053/j.sult.2013.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Adult onset Alexander disease presenting with progressive spastic paraplegia. Parkinsonism Relat Disord 2014; 20:241-2. [DOI: 10.1016/j.parkreldis.2013.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/06/2013] [Accepted: 10/13/2013] [Indexed: 11/21/2022]
|
33
|
Graff-Radford J, Schwartz K, Gavrilova RH, Lachance DH, Kumar N. Neuroimaging and clinical features in type II (late-onset) Alexander disease. Neurology 2013; 82:49-56. [PMID: 24306001 DOI: 10.1212/01.wnl.0000438230.33223.bc] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To describe the imaging and clinical features in type II (late-onset) Alexander disease (AxD). METHODS We retrospectively identified all cases of type II AxD evaluated at Mayo Clinic, Rochester from January 1996 to February 2012. Clinical and neuroimaging data abstracted from the record included age at onset of symptoms, age at diagnosis, first symptom, neurologic symptoms, physical/neurologic findings on examination, genetic testing and/or biopsy (if performed), and MRI findings. RESULTS Thirteen patients with type II AxD were identified. Median age at onset was 38 years (range: 12-63). Five patients were female. Eleven of 13 patients had atrophy of the medulla while all 13 had medullary T2 hyperintensity. In 7 patients, these brainstem regions showed patchy enhancement. Five subjects had T2 signal change in the middle cerebellar peduncle, with associated contrast enhancement in 4 subjects. Eleven of 12 patients with T2 fluid-attenuated inversion recovery (FLAIR) imaging had pial FLAIR signal change in the medulla. Nine of 12 patients with spinal cord imaging had cord atrophy, and 3 of 9 of these evaluated with contrast had cervical cord enhancement. CONCLUSIONS Our study confirms prior reports of atrophy and signal change of the medulla and spinal cord in late-onset AxD. We expand on previous imaging studies by identifying middle cerebellar peduncle and pial FLAIR signal changes as important diagnostic clues. Variable patchy enhancement may occur in regions of T2 hyperintensity, leading to diagnostic uncertainty. In addition, we demonstrate that previously emphasized clinical features such as palatal tremor may not be common. We affirm that age at onset predicts clinical phenotype and imaging findings.
Collapse
Affiliation(s)
- Jonathan Graff-Radford
- From the Departments of Neurology (J.G.-R., R.H.G., D.H.L., N.K.), Radiology (K.S.), and Medical Genetics (R.H.G.), Mayo Clinic, Rochester, MN
| | | | | | | | | |
Collapse
|
34
|
de Vries B, Eising E, Broos LAM, Koelewijn SC, Todorov B, Frants RR, Boer JM, Ferrari MD, Hoen PAC', van den Maagdenberg AMJM. RNA expression profiling in brains of familial hemiplegic migraine type 1 knock-in mice. Cephalalgia 2013; 34:174-82. [PMID: 23985897 DOI: 10.1177/0333102413502736] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Various CACNA1A missense mutations cause familial hemiplegic migraine type 1 (FHM1), a rare monogenic subtype of migraine with aura. FHM1 mutation R192Q is associated with pure hemiplegic migraine, whereas the S218L mutation causes hemiplegic migraine, cerebellar ataxia, seizures, and mild head trauma-induced brain edema. Transgenic knock-in (KI) migraine mouse models were generated that carried either the FHM1 R192Q or the S218L mutation and were shown to exhibit increased CaV2.1 channel activity. Here we investigated their cerebellar and caudal cortical transcriptome. METHODS Caudal cortical and cerebellar RNA expression profiles from mutant and wild-type mice were studied using microarrays. Respective brain regions were selected based on their relevance to migraine aura and ataxia. Relevant expression changes were further investigated at RNA and protein level by quantitative polymerase chain reaction (qPCR) and/or immunohistochemistry, respectively. RESULTS Expression differences in the cerebellum were most pronounced in S218L mice. Particularly, tyrosine hydroxylase, a marker of delayed cerebellar maturation, appeared strongly upregulated in S218L cerebella. In contrast, only minimal expression differences were observed in the caudal cortex of either mutant mice strain. CONCLUSION Despite pronounced consequences of migraine gene mutations at the neurobiological level, changes in cortical RNA expression in FHM1 migraine mice compared to wild-type are modest. In contrast, pronounced RNA expression changes are seen in the cerebellum of S218L mice and may explain their cerebellar ataxia phenotype.
Collapse
Affiliation(s)
- Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Autonomic dysfunction in adult-onset alexander disease. Clin Auton Res 2013; 23:333-8. [DOI: 10.1007/s10286-013-0205-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 06/13/2013] [Indexed: 11/25/2022]
|
36
|
Effects of a polymorphism in the GFAP promoter on the age of onset and ambulatory disability in late-onset Alexander disease. J Hum Genet 2013; 58:635-8. [PMID: 23903069 DOI: 10.1038/jhg.2013.83] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/18/2013] [Accepted: 07/09/2013] [Indexed: 01/01/2023]
Abstract
Alexander disease (AxD) is a rare neurodegenerative disorder. Most patients with AxD have a de novo dominant missense mutation in the glial fibrillary acidic protein (GFAP) gene. Patients with late-onset AxD exhibit a more variable onset and severity than patients with early-onset AxD, suggesting the existence of factors that modify the clinical phenotype of late-onset AxD. A -250-bp C/A single-nucleotide polymorphism (SNP) of the GFAP promoter (rs2070935) in the activator protein-1 binding site is a candidate factor for modification of the clinical phenotype. We analyzed the SNP in 10 patients with late-onset AxD and evaluated the effects of the SNP on the clinical course of late-onset AxD. Three of four cases with the C/C genotype lost the ability to walk in their 30s or 40s, whereas all six cases with the other genotypes retained the ability to walk throughout their 30s. The age of onset in patients with the C/C genotype was significantly earlier than in patients with the other genotypes (P<0.05). A more severe phenotype was observed in the patient in whom the C allele of rs2070935 was in cis with the GFAP mutation compared with the patient in whom the C allele of rs2070935 was in trans with the GFAP mutation. Our investigation revealed the possibility that the C/C genotype at rs2070935 of the GFAP promoter in late-onset AxD was associated with an earlier onset and a more rapid progression of ambulatory disability compared with the other genotypes.
Collapse
|
37
|
Schmidt H, Kretzschmar B, Lingor P, Pauli S, Schramm P, Otto M, Ohlenbusch A, Brockmann K. Acute onset of adult Alexander disease. J Neurol Sci 2013; 331:152-4. [DOI: 10.1016/j.jns.2013.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
|
38
|
Follow-up study of 22 Chinese children with Alexander disease and analysis of parental origin of de novo GFAP mutations. J Hum Genet 2013; 58:183-8. [DOI: 10.1038/jhg.2012.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Ceftriaxone for Alexander's Disease: A Four-Year Follow-Up. JIMD Rep 2012; 9:67-71. [PMID: 23430549 DOI: 10.1007/8904_2012_180] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 02/06/2023] Open
Abstract
In 2010, we reported the successful clinical outcome related to a 20-month course of intravenous, cyclical ceftriaxone, in a patient with adult-onset Alexander's disease. We now provide evidence that the progression of the patient's signs/symptoms was halted and reversed with a 4-year-long extension of the trial.The patient's clinical signs/symptoms were evaluated before the start and every 6 months for 6 years. For the early 2 years, without therapy, and for the following 4 years, after intravenous ceftriaxone 2 g daily, for 3 weeks monthly during the initial 4 months, then for 15 days monthly.Gait ataxia and dysarthria were assessed clinically on a 0 to 4 scale. Palatal myoclonus and nystagmus/oscillopsia were monitored by videotape and a self-evaluation scale. The degree of disability, measured by a modified Rankin scale, and the brain MRI were periodically evaluated.Before ceftriaxone therapy, in a 2-year period, gait ataxia and dysarthria worsened from mild to marked, palatal myoclonus spread from the soft palate to lower facial muscles, and the patient complained of oscillopsia. After 4 years of ceftriaxone therapy, gait ataxia and dysarthria improved, from marked to mild at clinical rating scales. The palatal myoclonus was undetectable; the patient did not complained of oscillopsia and declared a progressively better quality of life. Ceftriaxone was safe.This case report provides Class IV evidence that intravenous cycles of ceftriaxone may halt and/or reverse the progression of neurodegeneration in patients with adult-onset Alexander's disease and may significantly improve their quality of life.
Collapse
|
40
|
Clinical neurogenetics: recent advances. J Neurol 2012; 259:2255-60. [DOI: 10.1007/s00415-012-6602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/25/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
|
41
|
Rossi A, Ratelade J, Papadopoulos MC, Bennett JL, Verkman AS. Neuromyelitis optica IgG does not alter aquaporin-4 water permeability, plasma membrane M1/M23 isoform content, or supramolecular assembly. Glia 2012; 60:2027-39. [PMID: 22987455 DOI: 10.1002/glia.22417] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/15/2012] [Indexed: 12/24/2022]
Abstract
Neuromyelitis optica (NMO) is thought to be caused by immunoglobulin G autoantibodies (NMO-IgG) against astrocyte water channel aquaporin-4 (AQP4). A recent study (Hinson et al. (2012) Proc Natl Acad Sci USA 109:1245-1250) reported that NMO-IgG inhibits AQP4 water permeability directly and causes rapid cellular internalization of the M1 but not M23 isoform of AQP4, resulting in AQP4 clustering, enhanced complement-dependent cytotoxicity, and tissue swelling. Here, we report evidence challenging this proposed mechanism of NMO-IgG-mediated pathology. We measured osmotic water permeability by stopped-flow light scattering on plasma membrane vesicles isolated from AQP4-expressing CHO cells, an approach that can detect changes in water permeability as small as 5% and is not confounded by internalization effects. We found similar single-molecule water permeability for M1-AQP4 tetramers and M23-AQP4 clusters (orthogonal arrays of particles, OAPs). Exposure of AQP4 to high concentrations of NMO-IgG from six seropositive NMO patients, and to high-affinity recombinant monoclonal NMO antibodies, did not reduce AQP4 water permeability. Also, NMO-IgG did not reduce water permeability in AQP4-reconstituted proteoliposomes. In transfected cells expressing M1- or M23-AQP4 individually, NMO-IgG caused more rapid internalization of M23- than M1-AQP4. In cells coexpressing both isoforms, M1- and M23-AQP4 comingled in OAPs that were internalized together in response to NMO-IgG. Super-resolution imaging and native gel electrophoresis showed that the size of AQP4 OAPs was not altered by NMO sera or recombinant NMO antibodies. We conclude that NMO-IgG does not: (i) inhibit AQP4 water permeability, (ii) cause preferential internalization of M1-AQP4, or (iii) cause intramembrane AQP4 clustering.
Collapse
Affiliation(s)
- Andrea Rossi
- Department of Medicine, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
42
|
Neuromyelitis optica: aquaporin-4 based pathogenesis mechanisms and new therapies. Int J Biochem Cell Biol 2012; 44:1519-30. [PMID: 22713791 DOI: 10.1016/j.biocel.2012.06.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/29/2012] [Accepted: 06/10/2012] [Indexed: 12/21/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune 'aquaporinopathy' of the central nervous system that causes inflammatory demyelinating lesions primarily in spinal cord and optic nerve, leading to paralysis and blindness. NMO lesions show loss of aquaporin-4 (AQP4), GFAP and myelin, infiltration of granulocytes and macrophages, and perivascular deposition of activated complement. Most patients with NMO are seropositive for immunoglobulin autoantibodies (AQP4-IgG) against AQP4, the principal water channel of astrocytes. There is strong evidence that AQP4-IgG is pathogenic in NMO, probably by a mechanism involving complement-dependent astrocyte cytotoxicity, causing leukocyte infiltration, cytokine release and blood-brain barrier disruption, which leads to oligodendrocyte death, myelin loss and neuron death. Here, we review the evidence for this and alternative proposed NMO pathogenesis mechanisms, such as AQP4-IgG-induced internalization of AQP4 and glutamate transporters, complement-independent cell-mediated cytotoxicity, and AQP4-IgG inhibition of AQP4 water transport function. Based on the initiating pathogenic role of AQP4-IgG binding to astrocyte AQP4 in NMO, selective blocker therapies are under development in which AQP4-targeted monoclonal antibodies or small molecules block binding of AQP4-IgG to astrocytes and consequent downstream pathology.
Collapse
|
43
|
Hida A, Ishiura H, Arai N, Fukuoka H, Hasuo K, Goto J, Uesaka Y, Tsuji S, Takeuchi S. Adult-onset Alexander disease with an R66Q mutation in GFAP presented with severe vocal cord paralysis during sleep. J Neurol 2012; 259:2234-6. [PMID: 22619055 DOI: 10.1007/s00415-012-6540-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
|
44
|
Abstract
Alexander disease is a rare leukodystrophy that most often presents in infancy but also includes neonatal, juvenile, and adult variants. Juvenile Alexander disease presents primarily with bulbar symptoms between 2 and 12 years of age. The diagnosis is often suggested by the clinical course and brain magnetic resonance image pattern and then confirmed by the presence of a mutation in the glial fibrillary acidic protein gene. A young girl presented with globus sensation and magnetic resonance imaging of the brain revealed abnormalities mainly involving white matter tracts of the medulla oblongata and cerebellum. The presence of a mutation in the glial fibrillary acidic protein gene confirmed the diagnosis of juvenile Alexander disease. A high index of clinical suspicion is necessary for the diagnosis of late-onset presentations of Alexander disease.
Collapse
Affiliation(s)
- Maria Joana Osorio
- Children's Hospital of Pittsburgh, Division of Child Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, PA, USA.
| | | | | |
Collapse
|
45
|
Messing A, Li R, Naidu S, Taylor JP, Silverman L, Flint D, van der Knaap MS, Brenner M. Archetypal and new families with Alexander disease and novel mutations in GFAP. ARCHIVES OF NEUROLOGY 2012; 69:208-14. [PMID: 21987397 PMCID: PMC3574575 DOI: 10.1001/archneurol.2011.1181] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To describe genetic analyses of the 2 most thoroughly studied, historically seminal multigenerational families with Alexander disease described prior to the identification of GFAP as the related gene, as well as 1 newly discovered family. DESIGN Clinical histories were obtained and DNA was analyzed from blood, cheek epithelial cells, or fixed paraffin-embedded surgical samples. SUBJECTS Affected and unaffected adult members of 3 families and affected children were included. MAIN OUTCOME MEASURES Mutations in GFAP and behavior of mutant protein in cellular transfection assays. RESULTS Family A contains 4 siblings in whom we found a novel p.Ser247Pro mutation that was paternally inherited. The phenotypes of these siblings include 1 unaffected adult, 1 individual with juvenile-onset disease, and 2 individuals with adult-onset disease. Family B spans 4 generations, including the first described patient with adult-onset disease originally reported in 1968. Analysis of members of the later generations revealed a novel p.Asp417Ala mutation. Family C contains 3 generations. We detected a novel p.Gln426Leu mutation that, to our knowledge, is the farthest C-terminal mutation known. CONCLUSIONS These families display clear evidence of variable phenotypes but do not support recessive inheritance. While germline mosaicism cannot be excluded for 1 family (A), we propose that for genetic counseling purposes the risk of germline mosaicism should be described as less than 1%.
Collapse
Affiliation(s)
- Albee Messing
- Waisman Center, Department of Comparative Biosciences, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI 53705, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Yoshida T, Nakagawa M. Clinical aspects and pathology of Alexander disease, and morphological and functional alteration of astrocytes induced by GFAP mutation. Neuropathology 2011; 32:440-6. [DOI: 10.1111/j.1440-1789.2011.01268.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
47
|
Late-onset Alexander disease with a V87L mutation in glial fibrillary acidic protein (GFAP) and calcifying lesions in the sub-cortex and cortex. J Neurol 2011; 259:457-61. [PMID: 21822933 DOI: 10.1007/s00415-011-6201-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/21/2011] [Accepted: 07/23/2011] [Indexed: 10/17/2022]
Abstract
Glial fibrillary acidic protein (GFAP) mutation has been reported in Alexander disease. We report a 31-year-old woman suffering from Alexander disease with a V87L mutation in GFAP. She showed psychomotor regression and a history of seizures, in addition to pendular nystagmus, dysarthria, spastic gait, and bladder dysfunction. Brain magnetic resonance imaging (MRI) showed atrophy of the medulla oblongata and mild cervical cord atrophy, deep white matter abnormalities, periventricular rim, and signal changes of the medulla oblongata and dentate hilum. Sequence analysis of her GFAP gene showed a heterozygous c.273G>C mutation predictive of a p.V87L amino acid substitution. We concluded that she was actually affected with Alexander disease. Twenty months later she fell down and sustained a head contusion. Urgent head computed tomography (CT) showed calcification in the subcortical and cortical regions, which may relate to the psychomotor regression and history of seizures. Calcification in the subcortical and cortical regions on head CT has not been reported in Alexander disease; this may be associated with a V87L mutation in GFAP.
Collapse
|
48
|
Yoshida T, Sasaki M, Yoshida M, Namekawa M, Okamoto Y, Tsujino S, Sasayama H, Mizuta I, Nakagawa M. Nationwide survey of Alexander disease in Japan and proposed new guidelines for diagnosis. J Neurol 2011; 258:1998-2008. [PMID: 21533827 DOI: 10.1007/s00415-011-6056-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/10/2011] [Accepted: 04/11/2011] [Indexed: 11/28/2022]
Abstract
Alexander disease (AxD) is a rare neurodegenerative disorder characterized by white matter degeneration and formation of cytoplasmic inclusions. Glial fibrillary acidic protein (GFAP) mutations have been reported in various forms of AxD since 2001. However, a definitive diagnosis remains difficult because of uncertain prevalence, and different clinical features seen in infantile AxD and adult AxD may lead to confusion and misdiagnosis. Here we report an epidemiological study conducted in Japan. Two nationwide questionnaire-based surveys were conducted using tentative diagnostic criteria. We gathered information regarding prevalence, neurological findings, magnetic resonance imaging (MRI) findings, electrophysiological findings, genetic information, and the results of therapeutic interventions and home care. Prevalence of various forms of AxD was determined as 27.3% (infantile), 24.2% (juvenile), and 48.5% (adult). Prevalence of AxD in Japan was estimated to be approximately 1 case per 2.7 million individuals. The main characteristics of infantile and juvenile AxD include delayed psychomotor development or mental retardation, convulsions, macrocephaly, and predominant cerebral white matter abnormalities in the frontal lobe on brain MRI. The main characteristics of adult AxD include bulbar signs, muscle weakness with hyperreflexia, and signal abnormalities and/or atrophy of medulla oblongata and cervical spinal cord on MRI. To ensure correct diagnosis of AxD, the physician should understand the importance of the process of GFAP genetic testing, which provides definitive diagnosis. Therefore, we propose new clinical guidelines for diagnosing AxD based on simplified classifications: cerebral AxD (type 1), bulbospinal AxD (type 2), and intermediate form (type 3).
Collapse
Affiliation(s)
- Tomokatsu Yoshida
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kajii-chou 465, Kamigyo-ku, Kyoto 602-0841, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|