1
|
Pirondini E, Grigsby E, Tang L, Damiani A, Ho J, Montanaro I, Nouduri S, Trant S, Constantine T, Adams G, Franzese K, Mahon B, Fiez J, Crammond D, Stipancic K, Gonzalez-Martinez J. Targeted deep brain stimulation of the motor thalamus improves speech and swallowing motor functions after cerebral lesions. RESEARCH SQUARE 2024:rs.3.rs-5085807. [PMID: 39399682 PMCID: PMC11469375 DOI: 10.21203/rs.3.rs-5085807/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Speech and swallowing are complex motor acts that depend upon the integrity of input neural signals from motor cortical areas to control muscles of the head and neck. Lesions damaging these neural pathways result in weakness of key muscles causing dysarthria and dysphagia, leading to profound social isolation and risk of aspiration and suffocation. Here we show that Deep Brain Stimulation (DBS) of the motor thalamus improved speech and swallowing functions in two participants with dysarthria and dysphagia. First, we proved that DBS increased excitation of the face motor cortex, augmenting motor evoked potentials, and range and speed of motion of orofacial articulators in n = 10 volunteers with intact neural pathways. Then, we demonstrated that this potentiation led to immediate improvement in swallowing functions in a patient with moderate dysphagia and profound dysarthria as a consequence of a traumatic brain lesion. In this subject and in another with mild dysarthria, we showed that DBS immediately ameliorated impairments of respiratory, phonatory, resonatory, and articulatory control thus resulting in a clinically significant improvement in speech intelligibility. Our data provide first-in-human evidence that DBS can be used to treat dysphagia and dysarthria in people with cerebral lesions.
Collapse
|
2
|
Tortato NCB, Ribas G, Frizon LA, Farah M, Teive HAG, Munhoz RP. Efficacy of subthalamic deep brain stimulation programming strategies for gait disorders in Parkinson's disease: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:525. [PMID: 39223361 DOI: 10.1007/s10143-024-02761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Patients with advanced Parkinson's disease often suffer from severe gait and balance problems, impacting quality of live and persisting despite optimization of standard therapies. The aim of this review was to systematically review the efficacy of STN-DBS programming techniques in alleviating gait disturbances in patients with advanced PD. Searches were conducted in PubMed, Embase, and Lilacs databases, covering studies published until May 2024. The review identified 36 articles that explored five distinct STN-DBS techniques aimed at addressing gait and postural instability in Parkinson's patients: low-frequency stimulation, ventral STN stimulation for simultaneous substantia nigra activation, interleaving, asymmetric stimulation and a short pulse width study. Among these, 21 articles were included in the meta-analysis, which revealed significant heterogeneity among studies. Notably, low-frequency STN-DBS demonstrated positive outcomes in total UPDRS-III score and FOG-Q, especially when combined with dopaminergic therapy. The most favorable results were found for low-frequency STN stimulation. The descriptive analysis suggests that unconventional stimulation approaches may be viable for gait problems in patients who do not respond to standard therapies.
Collapse
Affiliation(s)
- Nathália C B Tortato
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Parana, Rua General Carneiro, 181, Curitiba, 80060-900, PR, Brazil.
| | - Gustavo Ribas
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Parana, Rua General Carneiro, 181, Curitiba, 80060-900, PR, Brazil
| | - Leonardo A Frizon
- Neurosurgery Department, Faculdade Pequeno Principe, Av Iguaçu, 333, Curitiba, Brazil
| | - Marina Farah
- Neurology Service, Pontifical Catholic University of Parana, Rua Imaculada Conceição, 1155, Curitiba, Brazil
| | - Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Parana, Rua General Carneiro, 181, Curitiba, 80060-900, PR, Brazil
| | - Renato P Munhoz
- Movement Disorders Centre, Toronto Western Hospital, University of Toronto, 399 Bathurst St, Toronto, Canada
| |
Collapse
|
3
|
Ramdhani RA, Watts J, Kline M, Fitzpatrick T, Niethammer M, Khojandi A. Differential spatiotemporal gait effects with frequency and dopaminergic modulation in STN-DBS. Front Aging Neurosci 2023; 15:1206533. [PMID: 37842127 PMCID: PMC10570440 DOI: 10.3389/fnagi.2023.1206533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Objective The spatiotemporal gait changes in advanced Parkinson's disease (PD) remain a treatment challenge and have variable responses to L-dopa and subthalamic deep brain stimulation (STN-DBS). The purpose of this study was to determine whether low-frequency STN-DBS (LFS; 60 Hz) elicits a differential response to high-frequency STN-DBS (HFS; 180 Hz) in spatiotemporal gait kinematics. Methods Advanced PD subjects with chronic STN-DBS were evaluated in both the OFF and ON medication states with LFS and HFS stimulation. Randomization of electrode contact pairs and frequency conditions was conducted. Instrumented Stand and Walk assessments were carried out for every stimulation/medication condition. LM-ANOVA was employed for analysis. Results Twenty-two PD subjects participated in the study, with a mean age (SD) of 63.9 years. Significant interactions between frequency (both LFS and HFS) and electrode contact pairs (particularly ventrally located contacts) were observed for both spatial (foot elevation, toe-off angle, stride length) and temporal (foot speed, stance, single limb support (SLS) and foot swing) gait parameters. A synergistic effect was also demonstrated with L-dopa and both HFS and LFS for right SLS, left stance, left foot swing, right toe-off angle, and left arm range of motion. HFS produced significant improvement in trunk and lumbar range of motion compared to LFS. Conclusion The study provides evidence of synergism of L-dopa and STN-DBS on lower limb spatial and temporal measures in advanced PD. HFS and LFS STN-DBS produced equivalent effects among all other tested lower limb gait features. HFS produced significant trunk and lumbar kinematic improvements.
Collapse
Affiliation(s)
- Ritesh A. Ramdhani
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jeremy Watts
- Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN, United States
| | - Myriam Kline
- Center for Neurosciences, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, United States
| | - Toni Fitzpatrick
- Center for Neurosciences, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, United States
| | - Martin Niethammer
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Neurosciences, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, United States
| | - Anahita Khojandi
- Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
4
|
Mügge F, Kleinholdermann U, Heun A, Ollenschläger M, Hannink J, Pedrosa DJ. Subthalamic 85 Hz deep brain stimulation improves walking pace and stride length in Parkinson's disease patients. Neurol Res Pract 2023; 5:33. [PMID: 37559161 PMCID: PMC10413698 DOI: 10.1186/s42466-023-00263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Mobile gait sensors represent a compelling tool to objectify the severity of symptoms in patients with idiopathic Parkinson's disease (iPD), but also to determine the therapeutic benefit of interventions. In particular, parameters of Deep Brain stimulation (DBS) with its short latency could be accurately assessed using sensor data. This study aimed at gaining insight into gait changes due to different DBS parameters in patients with subthalamic nucleus (STN) DBS. METHODS An analysis of various gait examinations was performed on 23 of the initially enrolled 27 iPD patients with chronic STN DBS. Stimulation settings were previously adjusted for either amplitude, frequency, or pulse width in a randomised order. A linear mixed effects model was used to analyse changes in gait speed, stride length, and maximum sensor lift. RESULTS The findings of our study indicate significant improvements in gait speed, stride length, and leg lift measurable with mobile gait sensors under different DBS parameter variations. Notably, we observed positive results at 85 Hz, which proved to be more effective than often applied higher frequencies and that these improvements were traceable across almost all conditions. While pulse widths did produce some improvements in leg lift, they were less well tolerated and had inconsistent effects on some of the gait parameters. Our research suggests that using lower frequencies of DBS may offer a more tolerable and effective approach to enhancing gait in individuals with iPD. CONCLUSIONS Our results advocate for lower stimulation frequencies for patients who report gait difficulties, especially those who can adapt their DBS settings remotely. They also show that mobile gait sensors could be incorporated into clinical practice in the near future.
Collapse
Affiliation(s)
- F Mügge
- Department of Neurology, University Hospital of Marburg, Baldingerstraße, Marburg, Germany
| | - U Kleinholdermann
- Department of Neurology, University Hospital of Marburg, Baldingerstraße, Marburg, Germany.
| | - A Heun
- Department of Neurology, University Hospital of Marburg, Baldingerstraße, Marburg, Germany
| | - M Ollenschläger
- Portabiles HealthCare Technologies, Henkestraße 91, 91052, Erlangen, Germany
| | - J Hannink
- Portabiles HealthCare Technologies, Henkestraße 91, 91052, Erlangen, Germany
| | - D J Pedrosa
- Department of Neurology, University Hospital of Marburg, Baldingerstraße, Marburg, Germany
- Center of Mind, Brain and Behaviour, Philipps University Marburg, Hans-Meerwein- Straße, Marburg, Germany
| |
Collapse
|
5
|
Gilbert Z, Mason X, Sebastian R, Tang AM, Martin Del Campo-Vera R, Chen KH, Leonor A, Shao A, Tabarsi E, Chung R, Sundaram S, Kammen A, Cavaleri J, Gogia AS, Heck C, Nune G, Liu CY, Kellis SS, Lee B. A review of neurophysiological effects and efficiency of waveform parameters in deep brain stimulation. Clin Neurophysiol 2023; 152:93-111. [PMID: 37208270 DOI: 10.1016/j.clinph.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.
Collapse
Affiliation(s)
- Zachary Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Rinu Sebastian
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Emiliano Tabarsi
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ryan Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Jonathan Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Angad S Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Christi Heck
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - George Nune
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
6
|
Kola S, Rangam RP, Kandadai RM, Alugolu R, Kedasi R, Swamygowda P, Prasad VVSRK, Meka SSL, Fathima ST, Borgohain R. Changes in Optimal Stimulation Frequency with Time for Gait Disturbances in Patients with PD after STN-DBS-A Longitudinal Study. Ann Indian Acad Neurol 2023; 26:401-407. [PMID: 37970314 PMCID: PMC10645258 DOI: 10.4103/aian.aian_95_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/28/2023] [Accepted: 05/03/2023] [Indexed: 11/17/2023] Open
Abstract
Aim To assess the changes in frequency parameters of STN-DBS stimulation over 6 months required to optimize gait in PD patients. Methods It's a single center, open label longitudinal study of PD patients after STN-DBS with gait disorders. Gait assessment using stand-walk-sit (SWS) test and freezing of gait (FOG) scores were done at baseline and after 6 months. Gait was assessed in five frequencies settings, that is, 60 Hz, 90 Hz, 130 Hz, 180 Hz and stimulation "OFF" during medication ON state. Voltage was maintained. Results Fifteen post-deep brain stimulation (DBS) patients were included. Mean duration after surgery was 3.73 ± 2.82 years. In SWS and FOG at baseline, five patients have good response at 180 Hz frequency, five at 130 Hz, one at 90 Hz, two patients at 60 Hz, one both 60 and 90 Hz, and one at both 90 and 180 HZ. And after 6 months out of the 13 patients who were able to perform the test, four patients had good response at 180 Hz frequency, four at 130 Hz, two at 90 Hz, one each for 60 Hz and battery OFF state, and one for both 130 Hz and 180 Hz. At 6 months, four patients had good response at the same frequency as baseline, while 11 patients have change in frequency from baseline. Conclusion Optimal frequency for gait varies in patients-both low and high frequency may be useful. Optimal frequency for improving gait changes over period of time. Regular assessment and changing frequency may improve gait after DBS.
Collapse
Affiliation(s)
- Sruthi Kola
- Department of Neurology, Government Medical College, Ananthapuram, Andhra Pradesh, India
| | - Ravi Prakash Rangam
- Department of Neurology, Government Medical College, Ananthapuram, Andhra Pradesh, India
| | | | - Rajesh Alugolu
- Department of Neurosurgery, Citi Neuro Centre, Telangana, India
| | - Raghuram Kedasi
- Department of Neurosurgery, Nizam’s Institute of Medical Sciences (NIMS), Telangana, India
| | - Pavan Swamygowda
- Department of Neurosurgery, Nizam’s Institute of Medical Sciences (NIMS), Telangana, India
| | - VVSRK Prasad
- Department of Neurology, Citi Neuro Centre, Telangana, India
| | - Sai Sri Lakshmi Meka
- Department of Neurology, Government Medical College, Ananthapuram, Andhra Pradesh, India
| | - Syed T. Fathima
- Department of Neurology, Government Medical College, Ananthapuram, Andhra Pradesh, India
| | - Rupam Borgohain
- Department of Neurology, Citi Neuro Centre, Telangana, India
| |
Collapse
|
7
|
Dai L, Xu W, Song Y, Huang P, Li N, Hollunder B, Horn A, Wu Y, Zhang C, Sun B, Li D. Subthalamic deep brain stimulation for refractory Gilles de la Tourette's syndrome: clinical outcome and functional connectivity. J Neurol 2022; 269:6116-6126. [PMID: 35861855 PMCID: PMC9553760 DOI: 10.1007/s00415-022-11266-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is a promising novel approach for managing refractory Gilles de la Tourette's syndrome (GTS). The subthalamic nucleus (STN) is the most common DBS target for treating movement disorders, and smaller case studies have reported the efficacy of bilateral STN-DBS treatment for relieving tic symptoms. However, management of GTS and treatment mechanism of STN-DBS in GTS remain to be elucidated. METHODS Ten patients undergoing STN-DBS were included. Tics severity was evaluated using the Yale Global Tic Severity Scale. The severities of comorbid psychiatric symptoms of obsessive-compulsive behavior (OCB), attention-deficit/hyperactivity disorder, anxiety, and depression; social and occupational functioning; and quality of life were assessed. Volumes of tissue activated were used as seed points for functional connectivity analysis performed using a control dataset. RESULTS The overall tics severity significantly reduced, with 62.9% ± 26.2% and 58.8% ± 27.2% improvements at the 6- and 12-months follow-up, respectively. All three patients with comorbid OCB showed improvement in their OCB symptoms at both the follow-ups. STN-DBS treatment was reasonably well tolerated by the patients with GTS. The most commonly reported side effect was light dysarthria. The stimulation effect of STN-DBS might regulate these symptoms through functional connectivity with the thalamus, pallidum, substantia nigra pars reticulata, putamen, insula, and anterior cingulate cortices. CONCLUSIONS STN-DBS was associated with symptomatic improvement in severe and refractory GTS without significant adverse events. The STN is a promising DBS target by stimulating both sensorimotor and limbic subregions, and specific brain area doses affect treatment outcomes.
Collapse
Affiliation(s)
- Lulin Dai
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenying Xu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunhai Song
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Shanghai Children's Medical Center, Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningfei Li
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Barbara Hollunder
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- MGH Neurosurgery and Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Yiwen Wu
- Department of Neurology, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Zhang C, Wu QQ, Hou Y, Wang Q, Zhang GJ, Zhao WB, Wang X, Wang H, Li WG. Ophthalmologic problems correlates with cognitive impairment in patients with Parkinson's disease. Front Neurosci 2022; 16:928980. [PMID: 36278010 PMCID: PMC9583907 DOI: 10.3389/fnins.2022.928980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Visual impairment is a common non-motor symptom (NMS) in patients with Parkinson's disease (PD) and its implications for cognitive impairment remain controversial. We wished to survey the prevalence of visual impairment in Chinese Parkinson's patients based on the Visual Impairment in Parkinson's Disease Questionnaire (VIPD-Q), identify the pathogens that lead to visual impairment, and develop a predictive model for cognitive impairment risk in Parkinson's based on ophthalmic parameters. Methods A total of 205 patients with Parkinson's disease and 200 age-matched controls completed the VIPD-Q and underwent neuro-ophthalmologic examinations, including ocular fundus photography and optical coherence tomography. We conducted nomogram analysis and the predictive model was summarized using the multivariate logistic and LASSO regression and verified via bootstrap validation. Results One or more ophthalmologic symptoms were present in 57% of patients with Parkinson's disease, compared with 14% of the controls (χ2-test; p < 0.001). The visual impairment questionnaire showed good sensitivity and specificity (area under the curve [AUC] = 0.918, p < 0.001) and a strong correlation with MoCA scores (Pearson r = −0.4652, p < 0.001). Comparing visual impairment scores between pre- and post-deep brain stimulation groups showed that DBS improved visual function (U-test, p < 0.001). The thickness of the retinal nerve fiber layer and vessel percentage area predicted cognitive impairment in PD. Interpretation The study findings provide novel mechanistic insights into visual impairment and cognitive decline in Parkinson's disease. The results inform an effective tool for predicting cognitive deterioration in Parkinson's based on ophthalmic parameters.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Qian-qian Wu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Hou
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Qi Wang
- Department of Gerontology, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guang-jian Zhang
- Department of Neurology, Weifang People's Hospital, Weifang, China
| | - Wen-bo Zhao
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Xu Wang
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Hong Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei-guo Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Wei-guo Li
| |
Collapse
|
9
|
Parkinson's Disease Symptoms Associated with Developing On-State Axial Symptoms Early after Subthalamic Deep Brain Stimulation. Diagnostics (Basel) 2022; 12:diagnostics12041001. [PMID: 35454049 PMCID: PMC9027591 DOI: 10.3390/diagnostics12041001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The relationship between axial symptoms in Parkinson’s disease (PD) and subthalamic deep brain stimulation (STN-DBS) is still unclear. Purpose: We searched for particular clinical characteristics before STN-DBS linked to on-state axial problems after surgery. Methods: We retrospectively analyzed baseline motor, emotional and cognitive features from PD patients with early axial symptoms (within 4 years after STN-DBS) and late axial symptoms (after 4 years). We also considered a group of PD patients without axial symptoms for at least 4 years after surgery. Results: At baseline, early-axial PD patients (n = 28) had a higher on-state Unified Parkinson’s Disease Rating Scale III (15.0 ± 5.6 to 11.6 ± 6.2, p = 0.020), higher axial score (2.4 ± 1.8 to 0.7 ± 1.0, p < 0.001) and worse dopaminergic response (0.62 ± 0.12 to 0.70 ± 0.11, p = 0.005), than non-axial PD patients (n = 51). Early-axial PD patients had short-term recall impairment, not seen in non-axial PD (36.3 ± 7.6 to 40.3 ± 9.3, p = 0.041). These variables were similar between late-axial PD (n = 18) and non-axial PD, but late-axial PD showed worse frontal dysfunction. Conclusions: PD patients with early axial symptoms after DBS may have a significantly worse presurgical motor phenotype, poorer dopaminergic response and memory impairment. This may correspond to a more severe form of PD.
Collapse
|
10
|
Frey J, Cagle J, Johnson KA, Wong JK, Hilliard JD, Butson CR, Okun MS, de Hemptinne C. Past, Present, and Future of Deep Brain Stimulation: Hardware, Software, Imaging, Physiology and Novel Approaches. Front Neurol 2022; 13:825178. [PMID: 35356461 PMCID: PMC8959612 DOI: 10.3389/fneur.2022.825178] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) has advanced treatment options for a variety of neurologic and neuropsychiatric conditions. As the technology for DBS continues to progress, treatment efficacy will continue to improve and disease indications will expand. Hardware advances such as longer-lasting batteries will reduce the frequency of battery replacement and segmented leads will facilitate improvements in the effectiveness of stimulation and have the potential to minimize stimulation side effects. Targeting advances such as specialized imaging sequences and "connectomics" will facilitate improved accuracy for lead positioning and trajectory planning. Software advances such as closed-loop stimulation and remote programming will enable DBS to be a more personalized and accessible technology. The future of DBS continues to be promising and holds the potential to further improve quality of life. In this review we will address the past, present and future of DBS.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jackson Cagle
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kara A. Johnson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Justin D. Hilliard
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Christopher R. Butson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Coralie de Hemptinne
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Cole RC, Okine DN, Yeager BE, Narayanan NS. Neuromodulation of cognition in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:435-455. [PMID: 35248205 DOI: 10.1016/bs.pbr.2022.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Neuromodulation is a widely used treatment for motor symptoms of Parkinson's disease (PD). It can be a highly effective treatment as a result of knowledge of circuit dysfunction associated with motor symptoms in PD. However, the mechanisms underlying cognitive symptoms of PD are less well-known, and the effects of neuromodulation on these symptoms are less consistent. Nonetheless, neuromodulation provides a unique opportunity to modulate motor and cognitive circuits while minimizing off-target side effects. We review the modalities of neuromodulation used in PD and the potential implications for cognitive symptoms. There have been some encouraging findings with both invasive and noninvasive modalities of neuromodulation, and there are promising advances being made in the field of therapeutic neuromodulation. Substantial work is needed to determine which modulation targets are most effective for the different types of cognitive deficits of PD.
Collapse
Affiliation(s)
- Rachel C Cole
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Derrick N Okine
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Brooke E Yeager
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | | |
Collapse
|
12
|
Tinkhauser G, Moraud EM. Controlling Clinical States Governed by Different Temporal Dynamics With Closed-Loop Deep Brain Stimulation: A Principled Framework. Front Neurosci 2021; 15:734186. [PMID: 34858126 PMCID: PMC8632004 DOI: 10.3389/fnins.2021.734186] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Closed-loop strategies for deep brain stimulation (DBS) are paving the way for improving the efficacy of existing neuromodulation therapies across neurological disorders. Unlike continuous DBS, closed-loop DBS approaches (cl-DBS) optimize the delivery of stimulation in the temporal domain. However, clinical and neurophysiological manifestations exhibit highly diverse temporal properties and evolve over multiple time-constants. Moreover, throughout the day, patients are engaged in different activities such as walking, talking, or sleeping that may require specific therapeutic adjustments. This broad range of temporal properties, along with inter-dependencies affecting parallel manifestations, need to be integrated in the development of therapies to achieve a sustained, optimized control of multiple symptoms over time. This requires an extended view on future cl-DBS design. Here we propose a conceptual framework to guide the development of multi-objective therapies embedding parallel control loops. Its modular organization allows to optimize the personalization of cl-DBS therapies to heterogeneous patient profiles. We provide an overview of clinical states and symptoms, as well as putative electrophysiological biomarkers that may be integrated within this structure. This integrative framework may guide future developments and become an integral part of next-generation precision medicine instruments.
Collapse
Affiliation(s)
- Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Eduardo Martin Moraud
- Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), Ecole Polytechnique Fédérale de Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
13
|
Chen T, Lin F, Cai G. Comparison of the Efficacy of Deep Brain Stimulation in Different Targets in Improving Gait in Parkinson's Disease: A Systematic Review and Bayesian Network Meta-Analysis. Front Hum Neurosci 2021; 15:749722. [PMID: 34744665 PMCID: PMC8568957 DOI: 10.3389/fnhum.2021.749722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022] Open
Abstract
Background: Although a variety of targets for deep brain stimulation (DBS) have been found to be effective in Parkinson's disease (PD), it remains unclear which target for DBS leads to the best improvement in gait disorders in patients with PD. The purpose of this network meta-analysis (NMA) is to compare the efficacy of subthalamic nucleus (STN)-DBS, internal globus pallidus (GPi)-DBS, and pedunculopontine nucleus (PPN)-DBS, in improving gait disorders in patients with PD. Methods: We searched the PubMed database for articles published from January 1990 to December 2020. We used various languages to search for relevant documents to reduce language bias. A Bayesian NMA and systematic review of randomized and non-randomized controlled trials were conducted to explore the effects of different targets for DBS on gait damage. Result: In the 34 included studies, 538 patients with PD met the inclusion criteria. The NMA results of the effect of the DBS “on and off” on the mean change of the gait of the patients in medication-off show that GPi-DBS, STN-DBS, and PPN-DBS are significantly better than the baseline [GPi-DBS: –0.79(–1.2, –0.41), STN-DBS: –0.97(–1.1, –0.81), and PPN-DBS: –0.56(–1.1, –0.021)]. According to the surface under the cumulative ranking (SUCRA) score, the STN-DBS (SUCRA = 74.15%) ranked first, followed by the GPi-DBS (SUCRA = 48.30%), and the PPN-DBS (SUCRA = 27.20%) ranked last. The NMA results of the effect of the DBS “on and off” on the mean change of the gait of the patients in medication-on show that, compared with baseline, GPi-DBS and STN-DBS proved to be significantly effective [GPi-DBS: –0.53 (–1.0, –0.088) and STN-DBS: –0.47(–0.66, –0.29)]. The GPi-DBS ranked first (SUCRA = 59.00%), followed by STN-DBS(SUCRA = 51.70%), and PPN-DBS(SUCRA = 35.93%) ranked last. Conclusion: The meta-analysis results show that both the STN-DBS and GPi-DBS can affect certain aspects of PD gait disorder.
Collapse
Affiliation(s)
- Tianyi Chen
- School of Mathematics, Shandong University, Jinan, China
| | - Fabin Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| |
Collapse
|
14
|
Conway ZJ, Silburn PA, Perera T, O'Maley K, Cole MH. Low-frequency STN-DBS provides acute gait improvements in Parkinson's disease: a double-blinded randomised cross-over feasibility trial. J Neuroeng Rehabil 2021; 18:125. [PMID: 34376190 PMCID: PMC8353795 DOI: 10.1186/s12984-021-00921-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/02/2021] [Indexed: 02/01/2023] Open
Abstract
Background Some people with Parkinson’s disease (PD) report poorer dynamic postural stability following high-frequency deep brain stimulation of the subthalamic nucleus (STN-DBS), which may contribute to an increased falls risk. However, some studies have shown low-frequency (60 Hz) STN-DBS improves clinical measures of postural stability, potentially providing support for this treatment. This double-blind randomised crossover study aimed to investigate the effects of low-frequency STN-DBS compared to high-frequency stimulation on objective measures of gait rhythmicity in people with PD. Methods During high- and low-frequency STN-DBS and while off-medication, participants completed assessments of symptom severity and walking (e.g., Timed Up-and-Go). During comfortable walking, the harmonic ratio, an objective measures of gait rhythmicity, was derived from head- and trunk-mounted accelerometers to provide insight in dynamic postural stability. Lower harmonic ratios represent less rhythmic walking and have discriminated people with PD who experience falls. Linear mixed model analyses were performed on fourteen participants. Results Low-frequency STN-DBS significantly improved medial–lateral and vertical trunk rhythmicity compared to high-frequency. Improvements were independent of electrode location and total electrical energy delivered. No differences were noted between stimulation conditions for temporal gait measures, clinical mobility measures, motor symptom severity or the presence of gait retropulsion. Conclusions This study provides evidence for the acute benefits of low-frequency stimulation for gait outcomes in STN-DBS PD patients, independent of electrode location. However, the perceived benefits of this therapy may be diminished for people who experienced significant tremor pre-operatively, as lower frequencies may cause these symptoms to re-emerge. Trial registration: This study was prospectively registered with the Australian and New Zealand Clinical Trials Registry on 5 June 2018 (ACTRN12618000944235). Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00921-4.
Collapse
Affiliation(s)
- Zachary J Conway
- School of Behavioural and Health Sciences, Australian Catholic University, P.O. Box 456, Brisbane, QLD, 4014, Australia.
| | - Peter A Silburn
- Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Neurosciences Queensland, Brisbane, QLD, Australia
| | - Thushara Perera
- The Bionics Institute, East Melbourne, VIC, Australia.,Department of Medical Bionics, The University of Melbourne, Parkville, VIC, Australia
| | | | - Michael H Cole
- School of Behavioural and Health Sciences, Australian Catholic University, P.O. Box 456, Brisbane, QLD, 4014, Australia. .,Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia. .,Development and Disability over the Lifespan Program, Healthy Brain and Mind Research Centre, Australian Catholic University, Brisbane, Australia.
| |
Collapse
|
15
|
Vijiaratnam N, Girges C, Wirth T, Grover T, Preda F, Tripoliti E, Foley J, Scelzo E, Macerollo A, Akram H, Hyam J, Zrinzo L, Limousin P, Foltynie T. Long-term success of low-frequency subthalamic nucleus stimulation for Parkinson's disease depends on tremor severity and symptom duration. Brain Commun 2021; 3:fcab165. [PMID: 34396114 PMCID: PMC8361419 DOI: 10.1093/braincomms/fcab165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 11/15/2022] Open
Abstract
Patients with Parkinson’s disease can develop axial symptoms, including speech, gait and balance difficulties. Chronic high-frequency (>100 Hz) deep brain stimulation can contribute to these impairments while low-frequency stimulation (<100 Hz) may improve symptoms but only in some individuals. Factors predicting which patients benefit from low-frequency stimulation in the long term remain unclear. This study aims to confirm that low-frequency stimulation improves axial symptoms, and to go further to also explore which factors predict the durability of its effects. We recruited patients who developed axial motor symptoms while using high-frequency stimulation and objectively assessed the short-term impact of low-frequency stimulation on axial symptoms, other aspects of motor function and quality of life. A retrospective chart review was then conducted on a larger cohort to identify which patient characteristics were associated with not only the need to trial low-frequency stimulation, but also those which predicted its sustained use. Among 20 prospective patients, low-frequency stimulation objectively improved mean motor and axial symptom severity and quality of life in the short term. Among a retrospective cohort of 168 patients, those with less severe tremor and those in whom axial symptoms had emerged sooner after subthalamic nucleus deep brain stimulation were more likely to be switched to and remain on long-term low-frequency stimulation. These data suggest that low-frequency stimulation results in objective mean improvements in overall motor function and axial symptoms among a group of patients, while individual patient characteristics can predict sustained long-term benefits. Longer follow-up in the context of a larger, controlled, double-blinded study would be required to provide definitive evidence of the role of low-frequency deep brain stimulation.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Christine Girges
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Thomas Wirth
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Timothy Grover
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Francesca Preda
- Unit of Neurology of Ospedale "M. Bufalini" of Cesena, Cesena, Italy
| | - Elina Tripoliti
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Jennifer Foley
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Emma Scelzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Antonella Macerollo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK.,Department of Neurology, the Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Jonathan Hyam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
16
|
Aubignat M, Lefranc M, Tir M, Krystkowiak P. Deep brain stimulation programming in Parkinson's disease: Introduction of current issues and perspectives. Rev Neurol (Paris) 2020; 176:770-779. [DOI: 10.1016/j.neurol.2020.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/28/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
|
17
|
Mottaghi S, Buchholz O, Hofmann UG. Systematic Evaluation of DBS Parameters in the Hemi-Parkinsonian Rat Model. Front Neurosci 2020; 14:561008. [PMID: 33162878 PMCID: PMC7581801 DOI: 10.3389/fnins.2020.561008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/03/2020] [Indexed: 11/24/2022] Open
Abstract
Electrical stimulation of the subthalamic nucleus (STN) is clinically employed to ameliorate several symptoms of manifest Parkinson’s Disease (PD). Stimulation parameters utilized by chronically implanted pulse generators comprise biphasic rectangular short (60–100 μs) pulses with a repetition frequency between 130 and 180 Hz. A better insight into the effect of electrical stimulation parameters could potentially reveal new possibilities for the improvement of deep brain stimulation (DBS) as a treatment. To this end, we employed single-sided 6-hydroxidopamine (6-OHDA) lesioning of the medial forebrain bundle (MFB) in rats to systematically investigate alternative stimulation parameters. These hemi-parkinsonian (hemi-PD) rats underwent individualized, ipsilateral electrical stimulation to the STN of the lesioned hemisphere, while the transiently induced contralateral rotational behavior was quantified to assess the effect of DBS parameter variations. The number of induced rotations during 30 s of stimulation was strongly correlated with the amplitude of the stimulation pulses. Despite a general linear relation between DBS frequency and rotational characteristics, a plateau effect was observed in the rotation count throughout the clinically used frequency range. Alternative waveforms to the conventional biphasic rectangular (Rect) pulse shapes [Triangular (Tri), Sinusoidal (Sine), and Sawtooth (Lin.Dec.)] required higher charges per phase to display similar behavior in rats as compared to the conventional pulse shape. The Euclidean Distance (ED) was used to quantify similarities between different angular trajectories. Overall, our study confirmed that the effect of different amplitude and frequency parameters of STN-DBS in the hemi-PD rat model was similar to those in human PD patients. This shows that induced contralateral rotation is a valuable readout in testing stimulation parameters. Our study supports the call for more pre-clinical studies using this measurement to assess the effect of other DBS parameters such as pulse-width and interphase intervals.
Collapse
Affiliation(s)
- Soheil Mottaghi
- Section for Neuroelectronic Systems, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Technical Faculty, University of Freiburg, Freiburg, Germany
| | - Oliver Buchholz
- Section for Neuroelectronic Systems, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich G Hofmann
- Section for Neuroelectronic Systems, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Technical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Paff M, Loh A, Sarica C, Lozano AM, Fasano A. Update on Current Technologies for Deep Brain Stimulation in Parkinson's Disease. J Mov Disord 2020; 13:185-198. [PMID: 32854482 PMCID: PMC7502302 DOI: 10.14802/jmd.20052] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 01/19/2023] Open
Abstract
Deep brain stimulation (DBS) is becoming increasingly central in the treatment of patients with Parkinson's disease and other movement disorders. Recent developments in DBS lead and implantable pulse generator design provide increased flexibility for programming, potentially improving the therapeutic benefit of stimulation. Directional DBS leads may increase the therapeutic window of stimulation by providing a means of avoiding current spread to structures that might give rise to stimulation-related side effects. Similarly, control of current to individual contacts on a DBS lead allows for shaping of the electric field produced between multiple active contacts. The following review aims to describe the recent developments in DBS system technology and the features of each commercially available DBS system. The advantages of each system are reviewed, and general considerations for choosing the most appropriate system are discussed.
Collapse
Affiliation(s)
- Michelle Paff
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Canada
| | - Can Sarica
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Canada
| | - Andres M. Lozano
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson’s Disease, Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Canada
- Krembil Brain Institute, Toronto, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Canada
| |
Collapse
|
19
|
David FJ, Munoz MJ, Corcos DM. The effect of STN DBS on modulating brain oscillations: consequences for motor and cognitive behavior. Exp Brain Res 2020; 238:1659-1676. [PMID: 32494849 PMCID: PMC7415701 DOI: 10.1007/s00221-020-05834-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
In this review, we highlight Professor John Rothwell's contribution towards understanding basal ganglia function and dysfunction, as well as the effects of subthalamic nucleus deep brain stimulation (STN DBS). The first section summarizes the rate and oscillatory models of basal ganglia dysfunction with a focus on the oscillation model. The second section summarizes the motor, gait, and cognitive mechanisms of action of STN DBS. In the final section, we summarize the effects of STN DBS on motor and cognitive tasks. The studies reviewed in this section support the conclusion that high-frequency STN DBS improves the motor symptoms of Parkinson's disease. With respect to cognition, STN DBS can be detrimental to performance especially when the task is cognitively demanding. Consolidating findings from many studies, we find that while motor network oscillatory activity is primarily correlated to the beta-band, cognitive network oscillatory activity is not confined to one band but is subserved by activity in multiple frequency bands. Because of these findings, we propose a modified motor and associative/cognitive oscillatory model that can explain the consistent positive motor benefits and the negative and null cognitive effects of STN DBS. This is clinically relevant because STN DBS should enhance oscillatory activity that is related to both motor and cognitive networks to improve both motor and cognitive performance.
Collapse
Affiliation(s)
- Fabian J David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA.
| | - Miranda J Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
20
|
Grover T, Georgiev D, Kalliola R, Mahlknecht P, Zacharia A, Candelario J, Hyam J, Zrinzo L, Hariz M, Foltynie T, Limousin P, Jahanshahi M, Tripoliti E. Effect of Low versus High Frequency Subthalamic Deep Brain Stimulation on Speech Intelligibility and Verbal Fluency in Parkinson's Disease: A Double-Blind Study. JOURNAL OF PARKINSONS DISEASE 2020; 9:141-151. [PMID: 30594934 DOI: 10.3233/jpd-181368] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Subthalamic deep brain stimulation (STN-DBS) is an established treatment for late stage Parkinson's disease (PD). Speech intelligibility (SI) and verbal fluency (VF) have been shown to deteriorate following chronic STN-DBS. It has been suggested that speech might respond favourably to low frequency stimulation (LFS). OBJECTIVE We examined how SI, perceptual speech characteristics, phonemic and semantic VF and processes underlying it (clustering and switching) respond to LFS of 60 and 80 Hz in comparison to high frequency stimulation (HFS) (110, 130 and 200 Hz). METHODS In this double-blind study, 15 STN-DBS PD patients (mean age 65, SD = 5.8, 14 right handed, three females), were assessed at five stimulation frequencies: 60 Hz, 80 Hz, 110 Hz, 130 Hz and 200 Hz. In addition to the clinical neurological assessment of speech, VF and SI were assessed. RESULTS SI and in particular articulation, respiration, phonation and prosody improved with LFS (all p < 0.05). Phonemic VF switching improved with LFS (p = 0.005) but this did not translate to an improved phonemic VF score. A trend for improved semantic VF was found. A negative correlation was found between perceptual characteristics of speech and duration of chronic stimulation (all p < 0.05). CONCLUSIONS These findings highlight the need for meticulous programming of frequency to maximise SI in chronic STN-DBS. The findings further implicate stimulation frequency in changes to specific processes underlying VF, namely phonemic switching and demonstrate the potential to address such deficits through advanced adjustment of stimulation parameters.
Collapse
Affiliation(s)
- Timothy Grover
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Dejan Georgiev
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK.,Department of Neurology, University Medical Centre Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Slovenia.,Faculty of Computer and Information Sciences, University of Ljubljana, Slovenia
| | - Rania Kalliola
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Philipp Mahlknecht
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK.,Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - André Zacharia
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Joseph Candelario
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Jonathan Hyam
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Marwan Hariz
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Marjan Jahanshahi
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Elina Tripoliti
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
21
|
Gao C, Liu J, Tan Y, Chen S. Freezing of gait in Parkinson's disease: pathophysiology, risk factors and treatments. Transl Neurodegener 2020; 9:12. [PMID: 32322387 PMCID: PMC7161193 DOI: 10.1186/s40035-020-00191-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background Freezing of gait (FOG) is a common, disabling symptom of Parkinson's disease (PD), but the mechanisms and treatments of FOG remain great challenges for clinicians and researchers. The main focus of this review is to summarize the possible mechanisms underlying FOG, the risk factors for screening and predicting the onset of FOG, and the clinical trials involving various therapeutic strategies. In addition, the limitations and recommendations for future research design are also discussed. Main body In the mechanism section, we briefly introduced the physiological process of gait control and hypotheses about the mechanism of FOG. In the risk factor section, gait disorders, PIGD phenotype, lower striatal DAT uptake were found to be independent risk factors of FOG with consistent evidence. In the treatment section, we summarized the clinical trials of pharmacological and non-pharmacological treatments. Despite the limited effectiveness of current medications for FOG, especially levodopa resistant FOG, there were some drugs that showed promise such as istradefylline and rasagiline. Non-pharmacological treatments encompass invasive brain and spinal cord stimulation, noninvasive repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) and vagus nerve stimulation (VNS), and physiotherapeutic approaches including cues and other training strategies. Several novel therapeutic strategies seem to be effective, such as rTMS over supplementary motor area (SMA), dual-site DBS, spinal cord stimulation (SCS) and VNS. Of physiotherapy, wearable cueing devices seem to be generally effective and promising. Conclusion FOG model hypotheses are helpful for better understanding and characterizing FOG and they provide clues for further research exploration. Several risk factors of FOG have been identified, but need combinatorial optimization for predicting FOG more precisely. Although firm conclusions cannot be drawn on therapeutic efficacy, the literature suggested that some therapeutic strategies showed promise.
Collapse
Affiliation(s)
- Chao Gao
- 1Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- 1Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyan Tan
- 1Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- 1Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province China
| |
Collapse
|
22
|
Macerollo A, Zrinzo L, Akram H, Foltynie T, Limousin P. Subthalamic nucleus deep brain stimulation for Parkinson’s disease: current trends and future directions. Expert Rev Med Devices 2020; 17:1063-1074. [DOI: 10.1080/17434440.2020.1747433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Antonella Macerollo
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
- School of Psychology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Harith Akram
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Patricia Limousin
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| |
Collapse
|
23
|
Speech Intelligibility During Clinical and Low Frequency. Brain Sci 2020; 10:brainsci10010026. [PMID: 31906549 PMCID: PMC7016584 DOI: 10.3390/brainsci10010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 11/16/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has become an effective and widely used tool in the treatment of Parkinson’s disease (PD). STN-DBS has varied effects on speech. Clinical speech ratings suggest worsening following STN-DBS, but quantitative intelligibility, perceptual, and acoustic studies have produced mixed and inconsistent results. Improvements in phonation and declines in articulation have frequently been reported during different speech tasks under different stimulation conditions. Questions remain about preferred STN-DBS stimulation settings. Seven right-handed, native speakers of English with PD treated with bilateral STN-DBS were studied off medication at three stimulation conditions: stimulators off, 60 Hz (low frequency stimulation—LFS), and the typical clinical setting of 185 Hz (High frequency—HFS). Spontaneous speech was recorded in each condition and excerpts were prepared for transcription (intelligibility) and difficulty judgements. Separate excerpts were prepared for listeners to rate abnormalities in voice, articulation, fluency, and rate. Intelligibility for spontaneous speech was reduced at both HFS and LFS when compared to STN-DBS off. On the average, speech produced at HFS was more intelligible than that produced at LFS, but HFS made the intelligibility task (transcription) subjectively more difficult. Both voice quality and articulation were judged to be more abnormal with DBS on. STN-DBS reduced the intelligibility of spontaneous speech at both LFS and HFS but lowering the frequency did not improve intelligibility. Voice quality ratings with STN-DBS were correlated with the ratings made without stimulation. This was not true for articulation ratings. STN-DBS exacerbated existing voice problems and may have introduced new articulatory abnormalities. The results from individual DBS subjects showed both improved and reduced intelligibility varied as a function of DBS, with perceived changes in voice appearing to be more reflective of intelligibility than perceived changes in articulation.
Collapse
|
24
|
Jia F, Zhang J, Wang H, Liang Z, Liu W, Wang X, Liu Y, Guo Y, Ling Z, Cai X, Wu X, Wu J, Lv W, Xu X, Zhang W, Li L. Variable- versus constant-frequency deep-brain stimulation in patients with advanced Parkinson's disease: study protocol for a randomized controlled trial. Trials 2019; 20:749. [PMID: 31856908 PMCID: PMC6924017 DOI: 10.1186/s13063-019-3884-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deep-brain stimulation targeting the subthalamic nucleus (STN) can be used to treat motor symptoms and dyskinesia in the advanced stages of Parkinson's disease (PD). High-frequency stimulation (HFS) of the STN can lead to consistent, long-term improvement of PD symptoms. However, the effects of HFS on the axial symptoms of PD, specifically freezing of gait, can be limited or cause further impairment. While this can be alleviated via relatively low-frequency stimulation (LFS) in selected patients, LFS does not control all motor symptoms of PD. Recently, the National Engineering Laboratory for Neuromodulation reported preliminary findings regarding an efficient way to combine the advantages of HFS and LFS to form variable-frequency stimulation (VFS). However, this novel therapeutic strategy has not been formally tested in a randomized trial. METHODS/DESIGN We propose a multicenter, double-blind clinical trial involving 11 study hospitals and an established deep-brain stimulation team. The participants will be divided into a VFS and a constant-frequency stimulation group. The primary outcome will be changes in stand-walk-sit task scores after 3 months of treatment in the "medication off" condition. Secondary outcome measures include specific item scores on the Freezing of Gait Questionnaire and quality of life. The aim of this trial is to investigate the efficacy and safety of VFS compared with constant-frequency stimulation. DISCUSSION This is the first randomized controlled trial to comprehensively evaluate the effectiveness and safety of VFS of the STN in patients with advanced PD. VFS may represent a new option for clinical treatment of PD in the future. TRIAL REGISTRATION ClinicalTrials.gov, NCT03053726. Registered on February 15, 2017.
Collapse
Affiliation(s)
- Fumin Jia
- National Engineering laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Huimin Wang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Zhanhua Liang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Weiguo Liu
- Department of Neurosurgery, Nanjing Brain Hospital, Nanjing, Jiangsu, China
| | - Xuelian Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University of Chinese PLA, Xi'an, Shanxi, China
| | - Yiming Liu
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yi Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Zhipei Ling
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xiaodong Cai
- Department of Neurosurgery, the Second People's Hospital of Shenzhen, Guangzhou, China
| | - Xi Wu
- Department of Neurosurgery, Changhai Hospital of Shanghai, Shanghai, China
| | - Jianjun Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen Lv
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Xu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Wenbin Zhang
- Department of Neurosurgery, Nanjing Brain Hospital, Nanjing, Jiangsu, China
| | - Luming Li
- National Engineering laboratory for Neuromodulation, Tsinghua University, Beijing, China. .,Tsinghua-Berkeley Shenzhen Institute, Precision Medicine & Healthcare Research Center, Shenzhen, Guangdong, China. .,Tsinghua university, School of Aerospace Engineering, Man-Machine-Environment Engineering Institute, Beijing, China. .,Beijing Institute for Brain Disorders, Center of Epilepsy, Beijing, China.
| |
Collapse
|
25
|
Karl JA, Ouyang B, Verhagen Metman L. A Novel Dual-Frequency Deep Brain Stimulation Paradigm for Parkinson's Disease. Neurol Ther 2019; 8:483-489. [PMID: 31243712 PMCID: PMC6858889 DOI: 10.1007/s40120-019-0140-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION Deep brain stimulation (DBS) of the subthalamic nucleus (STN) using high-frequency (130-185 Hz) stimulation (HFS) is more effective for appendicular than for axial symptoms. Low-frequency stimulation (LFS) of the STN may reduce gait/balance and speech impairment but can result in worsened appendicular symptoms, limiting its clinical usefulness. A novel dual-frequency paradigm (interleave-interlink, IL-IL) was created in order to reduce gait/balance and speech impairment while maintaining appendicular symptom control in Parkinson's disease (PD) patients chronically stimulated with DBS. METHODS Two overlapping LFS programs are applied to each DBS lead, with the overlapping area focused around the optimal electrode contact. As a result, this area receives HFS, controlling appendicular symptoms. The non-overlapping area receives LFS, potentially reducing gait/balance and speech impairment. Patients were separated into three categories based on their chief complaint(s): gait/balance impairment, speech impairment, and/or incomplete PD symptom control. The Clinical- Global Impression of Change scale (CGI-C) was completed retrospectively based on patient/caregiver feedback in patients who remained on IL-IL (at 3 months and at the last follow-up). RESULTS Seventy-six patients were switched from optimized HFS to IL-IL. Fifty-five (72%) patients remained on IL-IL after 22 ± 8.7 months. The median (range) CGI-C for gait was 2 (1-5) at 3 months and 3 (1-4) at last follow-up, for dysarthria it was 4 (1-4) at 3 months and 4 (1-5) at last follow-up, and for PD motor it was 2 (1-3) at 3 months and 2 (1-3) at last follow-up. CONCLUSION A substantial number of patients remained on IL-IL because of subjective improvements in gait/balance, speech, or PD symptoms. A prospective, double-blind, crossover study with objective/quantitative outcome measures is underway.
Collapse
Affiliation(s)
- Jessica A Karl
- Movement Disorder Section of Neurological Sciences, Rush University Medical Center, 1725 W. Harrison Street, Suite 755, Chicago, IL, 60612, USA.
| | - Bichun Ouyang
- Movement Disorder Section of Neurological Sciences, Rush University Medical Center, 1725 W. Harrison Street, Suite 755, Chicago, IL, 60612, USA
| | - Leo Verhagen Metman
- Movement Disorder Section of Neurological Sciences, Rush University Medical Center, 1725 W. Harrison Street, Suite 755, Chicago, IL, 60612, USA
| |
Collapse
|
26
|
Müller MLTM, Marusic U, van Emde Boas M, Weiss D, Bohnen NI. Treatment options for postural instability and gait difficulties in Parkinson's disease. Expert Rev Neurother 2019; 19:1229-1251. [PMID: 31418599 DOI: 10.1080/14737175.2019.1656067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Gait and balance disorders in Parkinson's disease (PD) represent a major therapeutic challenge as frequent falls and freezing of gait impair quality of life and predict mortality. Limited dopaminergic therapy responses implicate non-dopaminergic mechanisms calling for alternative therapies.Areas covered: The authors provide a review that encompasses pathophysiological changes involved in axial motor impairments in PD, pharmacological approaches, exercise, and physical therapy, improving physical activity levels, invasive and non-invasive neurostimulation, cueing interventions and wearable technology, and cognitive interventions.Expert opinion: There are many promising therapies available that, to a variable degree, affect gait and balance disorders in PD. However, not one therapy is the 'silver bullet' that provides full relief and ultimately meaningfully improves the patient's quality of life. Sedentariness, apathy, and emergence of frailty in advancing PD, especially in the setting of medical comorbidities, are perhaps the biggest threats to experience sustained benefits with any of the available therapeutic options and therefore need to be aggressively treated as early as possible. Multimodal or combination therapies may provide complementary benefits to manage axial motor features in PD, but selection of treatment modalities should be tailored to the individual patient's needs.
Collapse
Affiliation(s)
- Martijn L T M Müller
- Functional Neuroimaging, Cognitive and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA
| | - Uros Marusic
- Institute for Kinesiology Research, Science and Research Centre of Koper, Koper, Slovenia.,Department of Health Sciences, Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Miriam van Emde Boas
- Functional Neuroimaging, Cognitive and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Weiss
- Centre for Neurology, Department for Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Nicolaas I Bohnen
- Functional Neuroimaging, Cognitive and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, USA
| |
Collapse
|
27
|
Phokaewvarangkul O, Boonpang K, Bhidayasiri R. Subthalamic deep brain stimulation aggravates speech problems in Parkinson's disease: Objective and subjective analysis of the influence of stimulation frequency and electrode contact location. Parkinsonism Relat Disord 2019; 66:110-116. [PMID: 31327627 DOI: 10.1016/j.parkreldis.2019.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Speech disorders, including stuttering and hypophonia, have been reported in patients with Parkinson's disease (PD) after subthalamic deep brain stimulation (STN-DBS). OBJECTIVE To evaluate the effect of stimulation frequency or electrode contact location on speech disorders in PD patients with STN-DBS. METHOD In this case-controlled study, we enrolled 50 PD patients with, and 100 PD patients without STN-DBS to compare their vocal intensities, measured by a sound pressure meter, and perceptual speech ratings, obtained from the speech sections of the United Parkinson's Disease Rating Scale (UPDRS) and subjective ratings regarding the impediment of functional communication by stuttering. For patients with STN-DBS, comparisons were made between high-frequency (HFS; 130 Hz), low-frequency (LFS; 80 Hz), and off-stimulation. We also evaluated the effect of electrode contact locations on speech function. RESULTS Patients with STN-DBS had decreased vocal intensities and UPDRS scores compared to those without (p < 0.05). Vocal intensity was significantly lower during HFS than during LFS and off-stimulation (both, p < 0.05). Stuttering impeded STN-DBS patients' communication to greater extent than for those without (p < 0.001). Vocal intensity was lower when active contacts were in the dorsal zone compared to those in the ventral zone (p < 0.05). Only STN-DBS treatment was a predictive factor for low vocal intensity (OR = 9.53, p = 0.04). CONCLUSION High-frequency STN-DBS with dorsal zone contacts can aggravate certain speech problems in PD patients. Therefore, it is important to balance between motor control and speech impairments in these patients.
Collapse
Affiliation(s)
- Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Kamolwan Boonpang
- Chulalongkorn Centre of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
| |
Collapse
|
28
|
Chen KS, Chen R. Invasive and Noninvasive Brain Stimulation in Parkinson's Disease: Clinical Effects and Future Perspectives. Clin Pharmacol Ther 2019; 106:763-775. [DOI: 10.1002/cpt.1542] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/07/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Kai‐Hsiang Stanley Chen
- Krembil Research Institute University Health Network Toronto Ontario Canada
- Department of Neurology National Taiwan University Hospital Hsin‐Chu Branch Hsin‐Chu Taiwan
| | - Robert Chen
- Krembil Research Institute University Health Network Toronto Ontario Canada
- Division of Neurology Department of Medicine University of Toronto Toronto Ontario Canada
- Edmond J. Safra Program in Parkinson's Disease University Health Network Toronto Ontario Canada
| |
Collapse
|
29
|
Koeglsperger T, Palleis C, Hell F, Mehrkens JH, Bötzel K. Deep Brain Stimulation Programming for Movement Disorders: Current Concepts and Evidence-Based Strategies. Front Neurol 2019; 10:410. [PMID: 31231293 PMCID: PMC6558426 DOI: 10.3389/fneur.2019.00410] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Deep brain stimulation (DBS) has become the treatment of choice for advanced stages of Parkinson's disease, medically intractable essential tremor, and complicated segmental and generalized dystonia. In addition to accurate electrode placement in the target area, effective programming of DBS devices is considered the most important factor for the individual outcome after DBS. Programming of the implanted pulse generator (IPG) is the only modifiable factor once DBS leads have been implanted and it becomes even more relevant in cases in which the electrodes are located at the border of the intended target structure and when side effects become challenging. At present, adjusting stimulation parameters depends to a large extent on personal experience. Based on a comprehensive literature search, we here summarize previous studies that examined the significance of distinct stimulation strategies for ameliorating disease signs and symptoms. We assess the effect of adjusting the stimulus amplitude (A), frequency (f), and pulse width (pw) on clinical symptoms and examine more recent techniques for modulating neuronal elements by electrical stimulation, such as interleaving (Medtronic®) or directional current steering (Boston Scientific®, Abbott®). We thus provide an evidence-based strategy for achieving the best clinical effect with different disorders and avoiding adverse effects in DBS of the subthalamic nucleus (STN), the ventro-intermedius nucleus (VIM), and the globus pallidus internus (GPi).
Collapse
Affiliation(s)
- Thomas Koeglsperger
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Carla Palleis
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Franz Hell
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jan H Mehrkens
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
30
|
Effects of Deep Brain Stimulation of the Subthalamic Nucleus Settings on Voice Quality, Intensity, and Prosody in Parkinson’s Disease: Preliminary Evidence for Speech Optimization. Can J Neurol Sci 2019; 46:287-294. [DOI: 10.1017/cjn.2019.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
ABSTRACT:Objective: To systematically evaluate how different deep brain stimulation of the subthalamic nucleus (STN-DBS) amplitude, frequency, and pulse-width electrical parameter settings impact speech intensity, voice quality, and prosody of speech in Parkinson’s disease (PD). Methods: Ten individuals with PD receiving bilateral STN-DBS treatments were seen for three baseline and five treatment visits. The five treatment visits involved an examination of the standard clinical settings as well as manipulation of different combinations of frequency (low, mid, and high), pulse width (low, mid, and high), and voltage (low, mid, and high) of stimulation. Measures of speech intensity, jitter, shimmer, harmonics–noise ratio, semitone standard deviation, and listener ratings of voice quality and prosody were obtained for each STN-DBS manipulation. Results: The combinations of lower frequency, lower pulse width, and higher voltage settings were associated with improved speech outcomes compared to the current standard clinical settings. In addition, decreased total electrical energy delivered to the STN appears to be associated with speech improvements. Conclusions: This study provides preliminary evidence that STN-DBS may be optimized for Parkinson-related problems with voice quality, speech intensity, and prosody of speech.
Collapse
|
31
|
Di Giulio I, Kalliolia E, Georgiev D, Peters AL, Voyce DC, Akram H, Foltynie T, Limousin P, Day BL. Chronic Subthalamic Nucleus Stimulation in Parkinson's Disease: Optimal Frequency for Gait Depends on Stimulation Site and Axial Symptoms. Front Neurol 2019; 10:29. [PMID: 30800094 PMCID: PMC6375830 DOI: 10.3389/fneur.2019.00029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/10/2019] [Indexed: 11/28/2022] Open
Abstract
Axial symptoms emerge in a significant proportion of patients with Parkinson's disease (PD) within 5 years of deep brain stimulation (STN-DBS). Lowering the stimulation frequency may reduce these symptoms. The objectives of the current study were to establish the relationship between gait performance and STN-DBS frequency in chronically stimulated patients with PD, and to identify factors underlying variability in this relationship. Twenty-four patients treated chronically with STN-DBS (>4 years) were studied off-medication. The effect of stimulation frequency (40–140 Hz, 20 Hz-steps, constant energy) on gait was assessed in 6 sessions spread over 1 day. Half of the trials/session involved walking through a narrow doorway. The influence of stimulation voltage was investigated separately in 10 patients. Gait was measured using 3D motion capture and axial symptoms severity was assessed clinically. A novel statistical method established the optimal frequency(ies) for each patient by operating on frequency-tuning curves for multiple gait parameters. Narrowly-tuned optimal frequencies (20 Hz bandwidth) were found in 79% of patients. Frequency change produced a larger effect on gait performance than voltage change. Optimal frequency varied between patients (between 60 and 140 Hz). Contact site in the right STN and severity of axial symptoms were independent predictors of optimal frequency (P = 0.009), with lower frequencies associated with more dorsal contacts and worse axial symptoms. We conclude that gait performance is sensitive to small changes in STN-DBS frequency. The optimal frequency varies considerably between patients and is associated with electrode contact site and severity of axial symptoms. Between-subject variability of optimal frequency may stem from variable pathology outside the basal ganglia.
Collapse
Affiliation(s)
- Irene Di Giulio
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Eirini Kalliolia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,St. Luke's Hospital Thessaloniki, Thessaloniki, Greece
| | - Dejan Georgiev
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Neurology, University Medical Centre, Ljubljana, Slovenia
| | - Amy L Peters
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Physical Medicine and Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel C Voyce
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Brian L Day
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
32
|
Valldeoriola F. Simultaneous low-frequency deep brain stimulation of the substantia nigra pars reticulata and high-frequency stimulation of the subthalamic nucleus to treat levodopa unresponsive freezing of gait in Parkinson's disease: A pilot study. Parkinsonism Relat Disord 2018; 63:231. [PMID: 30580908 DOI: 10.1016/j.parkreldis.2018.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Francesc Valldeoriola
- Institut de Neurociencies, Hospital Clínic de Barcelona, University of Barcelona, Spain.
| |
Collapse
|
33
|
Morello ANDC, Beber BC, Fagundes VC, Cielo CA, Rieder CRM. Dysphonia and Dysarthria in People With Parkinson's Disease After Subthalamic Nucleus Deep Brain Stimulation: Effect of Frequency Modulation. J Voice 2018; 34:477-484. [PMID: 30454944 DOI: 10.1016/j.jvoice.2018.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 11/20/2022]
Abstract
PURPOSE Subthalamic nucleus deep brain stimulation (STN-DBS) parameters, for example the frequency of stimulation, seem to affect speech and voice aspects. However, this influence is not well understood. This study aimed to investigate the impact of low- and high-frequency STN-DBS on voice and speech for people with Parkinson's disease. METHODS Nineteen individuals with Parkinson's disease who received bilateral STN-DBS were assessed for motor performance (Unified Parkinson's Disease Rating Scale-III), perceptual evaluation of voice (grade, roughness, breathiness, asthenia, strain, and instability [GRBASI]), dysarthria assessment, and computerized acoustic analysis of voice upon receiving low-frequency (60 Hz) and high-frequency (130 Hz) STN-DBS. RESULTS In the GRBASI protocol, asthenia, and instability were significantly better at 130 Hz of stimulation. In the dysarthria evaluation, the phonation aspect, articulation, and grade of dysarthria showed deterioration at the same high-frequency condition. There was no significant difference for any vocal acoustic measures. CONCLUSION The high-frequency of STN-DBS may affect speech and voice differently, leading to an amelioration of the vocal production, but with adverse effects in the speech control.
Collapse
Affiliation(s)
- Aline Nunes Da Cruz Morello
- Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Bárbara Costa Beber
- Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Valéria Carvalho Fagundes
- Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Carlos R M Rieder
- Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
34
|
Conway ZJ, Silburn PA, Thevathasan W, Maley KO, Naughton GA, Cole MH. Alternate Subthalamic Nucleus Deep Brain Stimulation Parameters to Manage Motor Symptoms of Parkinson's Disease: Systematic Review and Meta-analysis. Mov Disord Clin Pract 2018; 6:17-26. [PMID: 30746411 DOI: 10.1002/mdc3.12681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/06/2022] Open
Abstract
Background The use of alternate frequencies, amplitudes, and pulse widths to manage motor symptoms in Parkinson's disease (PD) patients with subthalamic nucleus deep brain stimulation (STN-DBS) is of clinical interest, but currently lacks systematic evidence. Objective/Hypothesis Systematically review whether alternate STN-DBS settings influence the therapy's efficacy for managing PD motor symptoms. Methods Systematic searches identified studies that; involved bilateral STN-DBS PD patients; manipulated ≥ 1 STN-DBS parameter (e.g., amplitude); assessed ≥ 1 motor symptom (e.g., tremor); and contrasted the experimental and chronic stimulation settings. A Mantel-Haenszel random-effects meta-analysis compared the UPDRS-III sub-scores at low (60-Hz) and high frequencies ( ≥ 130 Hz). Inter-study heterogeneity was assessed with the Cohen's χ2 and I2 index, while the standard GRADE evidence assessment examined strength of evidence. Results Of the 21 included studies, 17 investigated the effect of alternate stimulation frequencies, five examined alternate stimulation amplitudes, and two studied changes in pulse width. Given the available data, meta-analyses were only possible for alternate stimulation frequencies. Analysis of the heterogeneity amongst the included studies indicated significant variability between studies and, on the basis of the GRADE framework, the pooled evidence from the meta-analysis studies was of very low quality due to the significant risks of bias. Conclusions The meta-analysis reported a very low quality of evidence for the efficacy of low-frequency STN-DBS for managing PD motor symptoms. Furthermore, it highlighted that lower amplitudes lead to the re-emergence of motor symptoms and further research is needed to understand the potential benefits of alternate STN-DBS parameters for PD patients.
Collapse
Affiliation(s)
- Zachary J Conway
- School of Behavioural and Health Sciences Australian Catholic University Brisbane Queensland Australia
| | - Peter A Silburn
- Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia.,Neurosciences Queensland Brisbane Queensland Australia
| | - Wesley Thevathasan
- The Bionics Institute East Melbourne Victoria Australia.,Department of Neurology Royal Melbourne and Austin Hospitals Melbourne Victoria Australia.,Department of Medicine University of Melbourne Parkville Victoria Australia
| | | | - Geraldine A Naughton
- School of Behavioural and Health Sciences Australian Catholic University Melbourne Victoria Australia
| | - Michael H Cole
- School of Behavioural and Health Sciences Australian Catholic University Brisbane Queensland Australia
| |
Collapse
|
35
|
Decreasing subthalamic deep brain stimulation frequency reverses cognitive interference during gait initiation in Parkinson’s disease. Clin Neurophysiol 2018; 129:2482-2491. [DOI: 10.1016/j.clinph.2018.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/25/2018] [Accepted: 07/25/2018] [Indexed: 11/18/2022]
|
36
|
Anidi C, O'Day JJ, Anderson RW, Afzal MF, Syrkin-Nikolau J, Velisar A, Bronte-Stewart HM. Neuromodulation targets pathological not physiological beta bursts during gait in Parkinson's disease. Neurobiol Dis 2018; 120:107-117. [PMID: 30196050 DOI: 10.1016/j.nbd.2018.09.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/18/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022] Open
Abstract
Freezing of gait (FOG) is a devastating axial motor symptom in Parkinson's disease (PD) leading to falls, institutionalization, and even death. The response of FOG to dopaminergic medication and deep brain stimulation (DBS) is complex, variable, and yet to be optimized. Fundamental gaps in the knowledge of the underlying neurobiomechanical mechanisms of FOG render this symptom one of the unsolved challenges in the treatment of PD. Subcortical neural mechanisms of gait impairment and FOG in PD are largely unknown due to the challenge of accessing deep brain circuitry and measuring neural signals in real time in freely-moving subjects. Additionally, there is a lack of gait tasks that reliably elicit FOG. Since FOG is episodic, we hypothesized that dynamic features of subthalamic (STN) beta oscillations, or beta bursts, may contribute to the Freezer phenotype in PD during gait tasks that elicit FOG. We also investigated whether STN DBS at 60 Hz or 140 Hz affected beta burst dynamics and gait impairment differently in Freezers and Non-Freezers. Synchronized STN local field potentials, from an implanted, sensing neurostimulator (Activa® PC + S, Medtronic, Inc.), and gait kinematics were recorded in 12 PD subjects, off-medication during forward walking and stepping-in-place tasks under the following randomly presented conditions: NO, 60 Hz, and 140 Hz DBS. Prolonged movement band beta burst durations differentiated Freezers from Non-Freezers, were a pathological neural feature of FOG and were shortened during DBS which improved gait. Normal gait parameters, accompanied by shorter bursts in Non-Freezers, were unchanged during DBS. The difference between the mean burst duration between hemispheres (STNs) of all individuals strongly correlated with the difference in stride time between their legs but there was no correlation between mean burst duration of each STN and stride time of the contralateral leg, suggesting an interaction between hemispheres influences gait. These results suggest that prolonged STN beta burst durations measured during gait is an important biomarker for FOG and that STN DBS modulated long not short burst durations, thereby acting to restore physiological sensorimotor information processing, while improving gait.
Collapse
Affiliation(s)
- Chioma Anidi
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Johanna J O'Day
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Ross W Anderson
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Muhammad Furqan Afzal
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Judy Syrkin-Nikolau
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Anca Velisar
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Helen M Bronte-Stewart
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA; Stanford University, Department of Neurosurgery, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
37
|
Valldeoriola F, Muñoz E, Rumià J, Roldán P, Cámara A, Compta Y, Martí MJ, Tolosa E. Simultaneous low-frequency deep brain stimulation of the substantia nigra pars reticulata and high-frequency stimulation of the subthalamic nucleus to treat levodopa unresponsive freezing of gait in Parkinson's disease: A pilot study. Parkinsonism Relat Disord 2018; 60:153-157. [PMID: 30241951 DOI: 10.1016/j.parkreldis.2018.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Experimental studies suggest that low-frequency (LF) (63 Hz) deep brain stimulation (DBS) of the substantia nigra pars reticulata (SNr) could be useful to regulate gait disorders refractory to medical treatment in Parkinson's disease (PD). The SNr neurons could act as high-frequency (HF) pacemakers within locomotor control systems. Currently, no specific therapies can treat gait disorders in PD with insufficient response to dopaminergic treatment. OBJECTIVE To investigate whether LF-SNr-DBS combined with standard HF stimulation of the subthalamic nucleus (STN) is clinically relevant in improving gait disorders that no longer respond to levodopa in PD patients, compared with HF-STN or LF-SNr stimulation alone. METHODS Patients received LF-SNr or HF-STN stimulation alone or combined (COMB) stimulation of both nuclei (crossover design). The nucleus to be stimulated was randomly assigned and clinical evaluations performed by a blinded examiner after three months follow-up for each. Clinical assessment included the Freezing of Gait questionnaire, Tinetti Balance and Walking Assessing tool, and Unified Parkinson's Disease Rating. RESULTS We included six patients (mean age 59.1 years, disease duration 16.1 years). All patients suffered motor fluctuations and dyskinesias. The best results were obtained with COMB in four patients (who preferred and remained with COMB over 3 years of follow-up) and with HF-STN in two patients. SNr stimulation alone did not produce better results than COMB or STN in any patient. CONCLUSION COMB and HF-STN stimulation improved PD-associated gait disorders in this preliminary case series, sustained over time. Further multicenter investigations are required to better explore this therapeutic option.
Collapse
Affiliation(s)
- Francesc Valldeoriola
- Institut de Neurociències, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain.
| | - Esteban Muñoz
- Institut de Neurociències, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Jordi Rumià
- Institut de Neurociències, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Pedro Roldán
- Institut de Neurociències, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Ana Cámara
- Institut de Neurociències, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Yaroslau Compta
- Institut de Neurociències, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - María José Martí
- Institut de Neurociències, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| | - Eduardo Tolosa
- Institut de Neurociències, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain
| |
Collapse
|
38
|
Xie T, Bloom L, Padmanaban M, Bertacchi B, Kang W, MacCracken E, Dachman A, Vigil J, Satzer D, Zadikoff C, Markopoulou K, Warnke P, Kang UJ. Long-term effect of low frequency stimulation of STN on dysphagia, freezing of gait and other motor symptoms in PD. J Neurol Neurosurg Psychiatry 2018; 89:989-994. [PMID: 29654112 DOI: 10.1136/jnnp-2018-318060] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/01/2018] [Accepted: 03/24/2018] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To evaluate the long-term effect of 60 Hz stimulation of the subthalamic nucleus (STN) on dysphagia, freezing of gait (FOG) and other motor symptoms in patients with Parkinson's disease (PD) who have FOG at the usual 130 Hz stimulation. METHODS This is a prospective, sequence randomised, crossover, double-blind study. PD patients with medication refractory FOG at 130 Hz stimulation of the STN were randomised to the sequences of 130 Hz, 60 Hz or deep brain stimulation off to assess swallowing function (videofluoroscopic evaluation and swallowing questionnaire), FOG severity (stand-walk-sit test and FOG questionnaire) and motor function (Unified PD Rating Scale, Part III motor examination (UPDRS-III)) at initial visit (V1) and follow-up visit (V2, after being on 60 Hz stimulation for an average of 14.5 months), in their usual medications on state. The frequency of aspiration events, perceived swallowing difficulty and FOG severity at 60 Hz compared with 130 Hz stimulation at V2, and their corresponding changes at V2 compared with V1 at 60 Hz were set as primary outcomes, with similar comparisons in UPDRS-III and its subscores as secondary outcomes. RESULTS All 11 enrolled participants completed V1 and 10 completed V2. We found the benefits of 60 Hz stimulation compared with 130 Hz in reducing aspiration frequency, perceived swallowing difficulty, FOG severity, bradykinesia and overall axial and motor symptoms at V1 and persistent benefits on all of them except dysphagia at V2, with overall decreasing efficacy when comparing V2 to V1. CONCLUSIONS The 60 Hz stimulation, when compared with 130 Hz, has long-term benefits on reducing FOG, bradykinesia and overall axial and motor symptoms except dysphagia, although the overall benefits decrease with long-term use. CLINICAL TRIAL REGISTRATION NCT02549859; Pre-results.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Lisa Bloom
- Speech and Swallowing Section, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Mahesh Padmanaban
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Breanna Bertacchi
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Wenjun Kang
- Center for Research Informatics, University of Chicago, Chicago, Illinois, USA
| | - Ellen MacCracken
- Speech and Swallowing Section, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Abraham Dachman
- Department of Radiology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Julie Vigil
- Speech and Swallowing Section, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - David Satzer
- Department of Neurosurgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Cindy Zadikoff
- Department of Neurology, Northwestern University Medical Center, Chicago, Illinois, USA
| | - Katerina Markopoulou
- Department of Neurology, NorthShore University HealthSystem, Glenview, Illinois, USA
| | - Peter Warnke
- Department of Neurosurgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Un Jung Kang
- Department of Neurology, Columbia University Medical Center, New York City, New York, USA
| |
Collapse
|
39
|
Parmentier É, De Pasqua V, D'Ostilio K, Depierreux F, Garraux G, Maertens de Noordhout A. Correlation between deep brain stimulation effects on freezing of gait and audio-spinal reflex. Clin Neurophysiol 2018; 129:2083-2088. [PMID: 30077869 DOI: 10.1016/j.clinph.2018.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE A network of cortical, subcortical and brainstem structures might be involved in freezing of gait (FOG). Subthalamic nucleus (STN) deep brain stimulation (DBS) could modulate this network. The audio-spinal reflex (ASR), reduced in PD, but increased by treatment, can be used to further investigate that locomotor network. The aim of this study is to find whether a correlation exists between ASR and FOG in PD patients under DBS. METHODS In 14 PD patients with STN DBS and previous FOG, ASR was recorded, with DBS switched on and off. We also assessed FOG Questionnaire (FOGQ) and Unified Parkinson's Disease Rating Scale (UPDRS) Part III. RESULTS Switching "on" DBS increased ASR amplitude (+ 33.2% with DBS ON, p = 0.048). We also found a significant inverse correlation between FOGQ and modulation of ASR by DBS (r = -0.59, r2 = 0.35, p < 0.05). CONCLUSIONS This study shows that the incremental effect of DBS on ASR is greater in PD patients with less severe FOG. SIGNIFICANCE This study shows a link between electrophysiological and clinical data about gait control. It might contribute to better understand why some DBS patients report heavy FOG and others do not. ASR might be used to evaluate or maybe predict the effect of stimulation parameters changes on FOG.
Collapse
Affiliation(s)
- Éric Parmentier
- Neurology Department, Centre Hospitalier Universitaire, Liège, Belgium; Cyclotron Research Centre, University of Liège, Belgium.
| | - Victor De Pasqua
- Neurology Department, Centre Hospitalier Régional de la Citadelle, Liège, Belgium
| | - Kévin D'Ostilio
- Neurology Department, Centre Hospitalier Régional de la Citadelle, Liège, Belgium
| | - Frédérique Depierreux
- Neurology Department, Centre Hospitalier Universitaire, Liège, Belgium; Cyclotron Research Centre, University of Liège, Belgium
| | - Gaëtan Garraux
- Neurology Department, Centre Hospitalier Universitaire, Liège, Belgium; Cyclotron Research Centre, University of Liège, Belgium
| | | |
Collapse
|
40
|
Müller EJ, Robinson PA. Quantitative theory of deep brain stimulation of the subthalamic nucleus for the suppression of pathological rhythms in Parkinson's disease. PLoS Comput Biol 2018; 14:e1006217. [PMID: 29813060 PMCID: PMC5993558 DOI: 10.1371/journal.pcbi.1006217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/08/2018] [Accepted: 05/21/2018] [Indexed: 11/28/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is modeled to explore the mechanisms of this effective, but poorly understood, treatment for motor symptoms of drug-refractory Parkinson's disease and dystonia. First, a neural field model of the corticothalamic-basal ganglia (CTBG) system is developed that reproduces key clinical features of Parkinson's disease, including its characteristic 4-8 Hz and 13-30 Hz electrophysiological signatures. Deep brain stimulation of the STN is then modeled and shown to suppress the pathological 13-30 Hz (beta) activity for physiologically realistic and optimized stimulus parameters. This supports the idea that suppression of abnormally coherent activity in the CTBG system is a major factor in DBS therapy for Parkinson's disease, by permitting normal dynamics to resume. At high stimulus intensities, nonlinear effects in the target population mediate wave-wave interactions between resonant beta activity and the stimulus pulse train, leading to complex spectral structure that shows remarkable similarity to that seen in steady-state evoked potential experiments.
Collapse
Affiliation(s)
- Eli J. Müller
- School of Physics, The University of Sydney, Sydney, New South Wales, Australia
- Center for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter A. Robinson
- School of Physics, The University of Sydney, Sydney, New South Wales, Australia
- Center for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
41
|
Rossi M, Bruno V, Arena J, Cammarota Á, Merello M. Challenges in PD Patient Management After DBS: A Pragmatic Review. Mov Disord Clin Pract 2018; 5:246-254. [PMID: 30363375 PMCID: PMC6174419 DOI: 10.1002/mdc3.12592] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 01/01/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or internal globus pallidus (GPi) represents an effective and universally applied therapy for Parkinson's disease (PD) motor complications. However, certain procedure-related problems and unrealistic patient expectations may detract specialists from indicating DBS more widely despite significant clinical effects. METHODS This review provides a pragmatic educational summary of the most conflicting postoperative management issues in patients undergoing DBS for PD. RESULTS DBS in PD has been associated with certain complications and post-procedural management issues, which can complicate surgical outcome interpretation. Many PD patients consider DBS outcomes negative due to unfulfilled expectations, even when significant motor symptom improvement is achieved. Speech, gait, postural stability, and cognition may worsen after DBS and body weight may increase. Although DBS may induce impulse control disorders in some cases, in others, it may actually improve them when dopamine agonist dosage is reduced after surgery. However, apathy may also arise, especially when dopaminergic medication tapering is rapid. Gradual loss of response with time suggests disease progression, rather than the wearing off of DBS effects. Furthermore, implantable pulse generator expiration is considered a movement disorder emergency, as it may worsen parkinsonian symptoms or cause life-threatening akinetic crises due to malignant DBS withdrawal syndrome. CONCLUSION Major unsolved issues occurring after DBS therapy preclude complete patient satisfaction. Multidisciplinary management at experienced centers, as well as careful and comprehensive delivery of information to patients, should contribute to make DBS outcome expectations more realistic and allow post procedural complications to be better accepted.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
| | - Verónica Bruno
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
- Argentine National Scientific and Technological Research Council (CONICET)Buenos AiresArgentina
| | - Julieta Arena
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
| | - Ángel Cammarota
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
| | - Marcelo Merello
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
- Argentine National Scientific and Technological Research Council (CONICET)Buenos AiresArgentina
| |
Collapse
|
42
|
Debû B, De Oliveira Godeiro C, Lino JC, Moro E. Managing Gait, Balance, and Posture in Parkinson's Disease. Curr Neurol Neurosci Rep 2018; 18:23. [PMID: 29623455 DOI: 10.1007/s11910-018-0828-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Postural instability and gait difficulties inexorably worsen with Parkinson's disease (PD) progression and become treatment resistant, with a severe impact on autonomy and quality of life. We review the main characteristics of balance instability, gait disabilities, and static postural alterations in advanced PD, and the available treatment strategies. RECENT FINDINGS It remains very difficult to satisfactorily alleviate gait and postural disturbances in advanced PD. Medical and surgical interventions often fail to provide satisfactory or durable alleviation of these axial symptoms, that may actually call for differential treatments. Exercise and adapted physical activity programs can contribute to improving the patients' condition. Gait, balance, and postural disabilities are often lumped together under the Postural Instability and Gait Difficulties umbrella term. This may lead to sub-optimal patients' management as data suggest that postural, balance, and gait problems might depend on distinct underlying mechanisms. We advocate for a multidisciplinary approach from the day of diagnosis.
Collapse
Affiliation(s)
- Bettina Debû
- University Grenoble Alpes, Grenoble, France.
- INSERM U1216, Grenoble, France.
| | - Clecio De Oliveira Godeiro
- INSERM U1216, Grenoble, France
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France
- Division of Neurology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jarbas Correa Lino
- INSERM U1216, Grenoble, France
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France
- Division of Neurology, CHU Amiens, Amiens, France
| | - Elena Moro
- University Grenoble Alpes, Grenoble, France
- INSERM U1216, Grenoble, France
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
43
|
Huang C, Chu H, Zhang Y, Wang X. Deep Brain Stimulation to Alleviate Freezing of Gait and Cognitive Dysfunction in Parkinson's Disease: Update on Current Research and Future Perspectives. Front Neurosci 2018; 12:29. [PMID: 29503606 PMCID: PMC5821065 DOI: 10.3389/fnins.2018.00029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/15/2018] [Indexed: 01/10/2023] Open
Abstract
Freezing of gait (FOG) is a gait disorder featured by recurrent episodes of temporary gait halting and mainly found in advanced Parkinson's disease (PD). FOG has a severe impact on the quality of life of patients with PD. The pathogenesis of FOG is unclear and considered to be related to several brain areas and neural circuits. Its close connection with cognitive disorder has been proposed and some researchers explain the pathogenesis using the cognitive model theory. FOG occurs concurrently with cognitive disorder in some PD patients, who are poorly responsive to medication therapy. Deep brain stimulation (DBS) proves effective for FOG in PD patients. Cognitive impairment plays a role in the formation of FOG. Therefore, if DBS works by improving the cognitive function, both two challenging conditions can be ameliorated by DBS. We reviewed the clinical studies related to DBS for FOG in PD patients over the past decade. In spite of the varying stimulation parameters used in different studies, DBS of either subthalamic nucleus (STN) or pedunculopontine nucleus (PPN) alone or in combination can improve the symptoms of FOG. Moreover, the treatment efficacy can last for 1–2 years and DBS is generally safe. Although few studies have been conducted concerning the use of DBS for cognitive disorder in FOG patients, the existing studies seem to indicate that PPN is a potential therapeutic target to both FOG and cognitive disorder. However, most of the studies have a small sample size and involve sporadic cases, so it remains uncertain which nucleus is the optimal target of stimulation. Prospective clinical trials with a larger sample size are needed to systematically assess the efficacy of DBS for FOG and cognitive disorder.
Collapse
Affiliation(s)
- Chuyi Huang
- Department of Neurology, Shanghai TongRen Hospital, School of Medicine Shanghai, Jiao Tong University, Shanghai, China
| | - Heling Chu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Zhang
- Department of Neurology, Shanghai TongRen Hospital, School of Medicine Shanghai, Jiao Tong University, Shanghai, China
| | - Xiaoping Wang
- Department of Neurology, Shanghai TongRen Hospital, School of Medicine Shanghai, Jiao Tong University, Shanghai, China
| |
Collapse
|
44
|
Dayal V, Limousin P, Foltynie T. Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease: The Effect of Varying Stimulation Parameters. JOURNAL OF PARKINSONS DISEASE 2018; 7:235-245. [PMID: 28505983 PMCID: PMC5438474 DOI: 10.3233/jpd-171077] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Subthalamic Nucleus Deep Brain Stimulation (STN DBS) is a well-established and effective treatment modality for selected patients with Parkinson's disease (PD). Since its advent, systematic exploration of the effect of stimulation parameters including the stimulation intensity, frequency, and pulse width have been carried out to establish optimal therapeutic ranges. This review examines published data on these stimulation parameters in terms of efficacy of treatment and adverse effects. Altering stimulation intensity is the mainstay of titration in DBS programming via alterations in voltage or current settings, and is characterised by a lower efficacy threshold and a higher side effect threshold which define the therapeutic window. In addition, much work has been done in exploring the effects of frequency modulation, which may help patients with gait freezing and other axial symptoms. However, there is a paucity of data on the use of ultra-short pulse width settings which are now possible with technological advances. We also discuss current evidence for the use of novel programming techniques including directional and adaptive stimulation, and highlight areas for future research.
Collapse
Affiliation(s)
- Viswas Dayal
- Correspondence to: Dr. Viswas Dayal, Sobell Department of Motor Neuroscience, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Box 146, Queen Square, London, WC1N 3BG, UK. Tel.: +44 0203 4488736; Fax: +44 0203 4488642; E-mail:
| | | | | |
Collapse
|
45
|
Eitan R, Fontaine D, Benoît M, Giordana C, Darmon N, Israel Z, Linesky E, Arkadir D, Ben-Naim S, Iserlles M, Bergman H, Hulse N, Abdelghani M, McGuffin P, Farmer A, DeLea P, Ashkan K, Lerer B. One year double blind study of high vs low frequency subcallosal cingulate stimulation for depression. J Psychiatr Res 2018; 96:124-134. [PMID: 29032294 DOI: 10.1016/j.jpsychires.2017.09.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/12/2017] [Accepted: 09/29/2017] [Indexed: 12/30/2022]
Abstract
Subcallosal Brodmann's Area 25 (Cg25) Deep Brain Stimulation (DBS) is a new promising therapy for treatment resistant major depressive disorder (TR-MDD). While different DBS stimulating parameters may have an impact on the efficacy and safety of the therapy, there is no data to support a protocol for optimal stimulation parameters for depression. Here we present a prospective multi-center double-blind randomized crossed-over 13-month study that evaluated the effects of High (130 Hz) vs Low (20 Hz) frequency Cg25 stimulation for nine patients with TR-MDD. Four out of nine patients achieved response criteria (≥40% reduction of symptom score) compared to mean baseline values at the end of the study. The mean percent change of MADRS score showed a similar improvement in the high and low frequency stimulation groups after 6 months of stimulation (-15.4 ± 21.1 and -14.7 ± 21.1 respectively). The mean effect at the end of the second period (6 months after cross-over) was higher than the first period (first 6 months of stimulation) in all patients (-23.4 ± 19.9 (n = 6 periods) and -13.0 ± 22 (n = 9 periods) respectively). At the end of the second period, the mean percent change of the MADRS scores improved more in the high than low frequency groups (-31.3 ± 19.3 (n = 4 patients) and -7.7 ± 10.9 (n = 2 patients) respectively). Given the small numbers, detailed statistical analysis is challenging. Nonetheless the results of this study suggest that long term high frequency stimulation might confer the best results. Larger scale, randomized double blind trials are needed in order to evaluate the most effective stimulation parameters.
Collapse
Affiliation(s)
- Renana Eitan
- Department of Medical Neurobiology (Physiology), Institute of Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel; The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Functional Neuroimaging Laboratory, Brigham and Women's Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Denys Fontaine
- Department of Neurosurgery, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Michel Benoît
- Department of Psychiatry, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Caroline Giordana
- Department of Neurology, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Nelly Darmon
- Department of Neurosurgery, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Zvi Israel
- The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; The Center for Functional and Restorative Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eduard Linesky
- The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - David Arkadir
- The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shiri Ben-Naim
- The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Peres Academic Center, Rehovot, Israel
| | - Moshe Iserlles
- The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute of Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel
| | - Natasha Hulse
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Mohamed Abdelghani
- Affective Disorders Service, South London & Maudsley NHS Foundation Trust, London, UK; MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Peter McGuffin
- Affective Disorders Service, South London & Maudsley NHS Foundation Trust, London, UK; MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Anne Farmer
- Affective Disorders Service, South London & Maudsley NHS Foundation Trust, London, UK; MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Peichel DeLea
- Clinical Research, St. Jude Medical, Inc., Minneapolis, MN, USA
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; Department of Clinical Neurosciences, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Bernard Lerer
- The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
46
|
Cakmak YO, Apaydin H, Kiziltan G, Gündüz A, Ozsoy B, Olcer S, Urey H, Cakmak OO, Ozdemir YG, Ertan S. Rapid Alleviation of Parkinson's Disease Symptoms via Electrostimulation of Intrinsic Auricular Muscle Zones. Front Hum Neurosci 2017; 11:338. [PMID: 28701941 PMCID: PMC5487461 DOI: 10.3389/fnhum.2017.00338] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Background: Deep brain stimulation of the subthalamic nucleus (STN-DBS) and the pedunculopontine nucleus (PPN) significantly improve cardinal motor symptoms and postural instability and gait difficulty, respectively, in Parkinson's disease (PD). Objective and Hypothesis: Intrinsic auricular muscle zones (IAMZs) allow the potential to simultaneously stimulate the C2 spinal nerve, the trigeminal nerve, the facial nerve, and sympathetic and parasympathetic nerves in addition to providing muscle feedback and control areas including the STN, the PPN and mesencephalic locomotor regions. Our aim was to observe the clinical responses to IAMZ stimulation in PD patients. Method: Unilateral stimulation of an IAMZ, which includes muscle fibers for proprioception, the facial nerve, and C2, trigeminal and autonomic nerve fibers, at 130 Hz was performed in a placebo- and sham-controlled, double-blinded, within design, two-armed study of 24 PD patients. Results: The results of the first arm (10 patients) of the present study demonstrated a substantial improvement in Unified Parkinson's Disease Ratings Scale (UPDRS) motor scores due to 10 min of IAMZ electrostimulation (p = 0.0003, power: 0.99) compared to the placebo control (p = 0.130). A moderate to large clinical difference in the improvement in UPDRS motor scores was observed in the IAMZ electrostimulation group. The results of the second arm (14 patients) demonstrated significant improvements with dry needling (p = 0.011) and electrostimulation of the IAMZ (p < 0.001) but not with sham electrostimulation (p = 0.748). In addition, there was a significantly greater improvement in UPDRS motor scores in the IAMZ electrostimulation group compared to the IAMZ dry needling group (p < 0.001) and the sham electrostimulation (p < 0.001) groups. The improvement in UPDRS motor scores of the IAMZ electrostimulation group (ΔUPDRS = 5.29) reached moderate to high clinical significance, which was not the case for the dry needling group (ΔUPDRS = 1.54). In addition, both arms of the study demonstrated bilateral improvements in motor symptoms in response to unilateral IAMZ electrostimulation. Conclusion: The present study is the first demonstration of a potential role of IAMZ electrical stimulation in improving the clinical motor symptoms of PD patients in the short term.
Collapse
Affiliation(s)
- Yusuf O Cakmak
- Department of Anatomy, School of Medical Sciences, Otago UniversityDunedin, New Zealand
| | - Hülya Apaydin
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul UniversityIstanbul, Turkey
| | - Güneş Kiziltan
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul UniversityIstanbul, Turkey
| | - Ayşegül Gündüz
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul UniversityIstanbul, Turkey
| | - Burak Ozsoy
- Global Dynamic Systems (GDS) ARGE, Teknopark IstanbulIstanbul, Turkey
| | - Selim Olcer
- Department of Electrical Engineering, College of Engineering, Koç UniversityIstanbul, Turkey
| | - Hakan Urey
- Department of Electrical Engineering, College of Engineering, Koç UniversityIstanbul, Turkey
| | - Ozgur O Cakmak
- Department of Neurology, School of Medicine, Koç UniversityIstanbul, Turkey
| | - Yasemin G Ozdemir
- Department of Neurology, School of Medicine, Koç UniversityIstanbul, Turkey
| | - Sibel Ertan
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul UniversityIstanbul, Turkey
| |
Collapse
|
47
|
Effect of low versus high frequency stimulation on freezing of gait and other axial symptoms in Parkinson patients with bilateral STN DBS: a mini-review. Transl Neurodegener 2017; 6:13. [PMID: 28529730 PMCID: PMC5437495 DOI: 10.1186/s40035-017-0083-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
Some studies have shown that low frequency stimulation (LFS, most commonly 60 Hz), compared to high frequency stimulation (HFS, most commonly 130 Hz), has beneficial effects, short-term or even long-term, on improving freezing of gait (FOG) and other axial symptoms, including speech and swallowing function, in Parkinson disease (PD) patients with bilateral subthalamic nucleus deep brain stimulation (STN DBS). However, other studies failed to confirm this. It seems not clear what determines the difference in response to LFS. Differences in study design, such as presence or absence of FOG, exact LFS used (60 Hz versus 80 Hz), study size, open label versus randomized double blind assessment, retrospective versus prospective evaluation, medication On or Off state, total electric energy delivered maintained or not with the change in frequency, and the location of active contacts could all potentially affect the results. This mini-review goes over the literature with the aforementioned factors in mind, focusing on the effect of LFS versus HFS on FOG and other axial symptoms in PD with bilateral STN DBS, in an effort to extract the essential data to guide our clinical management of axial symptoms and explore the potential underlying mechanisms as well. Overall, LFS of 60 Hz seems to be consistently effective in patients with FOG at the usual HFS in regards to improving FOG, speech, swallowing function and other axial symptoms, though LFS could reduce tremor control in some patients. Whether LFS simply addresses the axial symptoms in the context of HFS or has other beneficial effects requires further studies, along with the mechanism.
Collapse
|
48
|
Khojandi A, Shylo O, Mannini L, Kopell BH, Ramdhani RA. Stratifying Parkinson's Patients With STN-DBS Into High-Frequency or 60 Hz-Frequency Modulation Using a Computational Model. Neuromodulation 2017; 20:450-455. [PMID: 28480524 DOI: 10.1111/ner.12607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/05/2017] [Accepted: 03/14/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE High frequency stimulation (HFS) of the subthalamic nucleus (STN) is a well-established therapy for Parkinson's disease (PD), particularly the cardinal motor symptoms and levodopa induced motor complications. Recent studies have suggested the possible role of 60 Hz stimulation in STN-deep brain stimulation (DBS) for patients with gait disorder. The objective of this study was to develop a computational model, which stratifies patients a priori based on symptomatology into different frequency settings (i.e., high frequency or 60 Hz). METHODS We retrospectively analyzed preoperative MDS-Unified Parkinson's Disease Rating Scale III scores (32 indicators) collected from 20 PD patients implanted with STN-DBS at Mount Sinai Medical Center on either 60 Hz stimulation (ten patients) or HFS (130-185 Hz) (ten patients) for an average of 12 months. Predictive models using the Random Forest classification algorithm were built to associate patient/disease characteristics at surgery to the stimulation frequency. These models were evaluated objectively using leave-one-out cross-validation approach. RESULTS The computational models produced, stratified patients into 60 Hz or HFS (130-185 Hz) with 95% accuracy. The best models relied on two or three predictors out of the 32 analyzed for classification. Across all predictors, gait and rest tremor of the right hand were consistently the most important. CONCLUSIONS Computational models were developed using preoperative clinical indicators in PD patients treated with STN-DBS. These models were able to accurately stratify PD patients into 60 Hz stimulation or HFS (130-185 Hz) groups a priori, offering a unique potential to enhance the utilization of this therapy based on clinical subtypes.
Collapse
Affiliation(s)
- Anahita Khojandi
- Department of Industrial & Systems Engineering, University of Tennessee, Knoxville, TN, USA
| | - Oleg Shylo
- Department of Industrial & Systems Engineering, University of Tennessee, Knoxville, TN, USA
| | - Lucia Mannini
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian H Kopell
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ritesh A Ramdhani
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
49
|
Baizabal-Carvallo JF, Alonso-Juarez M. Alternating deep brain stimulation frequencies in Parkinson's disease. J Neurol Sci 2016; 371:32-33. [PMID: 27871442 DOI: 10.1016/j.jns.2016.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/10/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022]
Affiliation(s)
- José Fidel Baizabal-Carvallo
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| | | |
Collapse
|
50
|
Establishing a Standard of Care for Deep Brain Stimulation Centers in Canada. Can J Neurol Sci 2016; 44:132-138. [PMID: 27873569 DOI: 10.1017/cjn.2016.409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractDuring the “DBS Canada Day” symposium held in Toronto July 4-5, 2014, the scientific committee invited experts to share their knowledge regarding deep brain stimulation (DBS) management of movement disorders in three domains: (1) the programming algorithms, (2) the necessary team to run a neurosurgery program, and (3) the appropriate scales to better define in a more comprehensive fashion the effect of the brain surgery. Each presentation was followed by an open discussion, and this article reports on the conclusions of this meeting on these three questions. Concerning programming, the role of the pulse width and the switching off of the stimulation at night for thalamic stimulation for the control of tremor have been discussed. The algorithms proposed in the literature for programming in Parkinson’s disease (PD) need validation. In dystonia, the use of monopolar vs bipolar parameters, the use of low vs high frequencies and the use of smaller versus larger pulse widths all need to be examined properly. Concerning the necessary team to run a neurosurgical program, recommendations will follow the suggestions for standardized outcome measures. Regarding the outcome measures for DBS in PD, investigations need to focus on the non-motor aspects of PD. Identifying which nonmotor symptoms respond to DBS would allow a better screening before and satisfaction postoperatively. There is an important need for more data to determine the optimal programming protocol and the standard measures that should be performed routinely by all centers.
Collapse
|