1
|
Rudenskaya GE, Kuchina AS, Kadnikova VA, Ryzhkova OP. [A case of spastic paraplegia with SPG4 and SPG3 associated mutations]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:171-176. [PMID: 37315258 DOI: 10.17116/jnevro2023123051171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A rare case of autosomal dominant spastic paraplegia in a 36-year-old female with two reported earlier mutations of most common spastic paraplegia forms: SPG4 (mutation p.Cys28Leufs*20 in SPAST gene) and SPG3 (mutation p.Val405Met in ATL1 gene) is presented. The mutations detected by massively parallel sequencing (MPS) panel were inherited from affected mother and clinically unaffected father, respectively. The proband, her 61-year-old mother and deceased grandfather had 'uncomplicated' paraplegia with onset in 4th decade. The 67-year-old father had no even minimal subclinical signs of the disease and no affected relatives, detection of his low-penetrating ATL1 mutation was unexpected. MPS methods are the most informative for identifying a patient and/or family members with a combined hereditary neurological pathology, especially a combination of similar forms of heterogeneous groups, such as spastic paraplegia.
Collapse
Affiliation(s)
- G E Rudenskaya
- Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - A S Kuchina
- Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - V A Kadnikova
- Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - O P Ryzhkova
- Bochkov Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
2
|
Rossi S, Rubegni A, Riso V, Barghigiani M, Bassi MT, Battini R, Bertini E, Cereda C, Cioffi E, Criscuolo C, Dal Fabbro B, Dato C, D'Angelo MG, Di Muzio A, Diamanti L, Dotti MT, Filla A, Gioiosa V, Liguori R, Martinuzzi A, Massa R, Mignarri A, Moroni R, Musumeci O, Nicita F, Orologio I, Orsi L, Pegoraro E, Petrucci A, Plumari M, Ricca I, Rizzo G, Romano S, Rumore R, Sampaolo S, Scarlato M, Seri M, Stefan C, Straccia G, Tessa A, Travaglini L, Trovato R, Ulgheri L, Vazza G, Orlacchio A, Silvestri G, Santorelli FM, Melone MAB, Casali C. Clinical-Genetic Features Influencing Disability in Spastic Paraplegia Type 4. Neurol Genet 2022; 8:e664. [PMID: 35372684 PMCID: PMC8969300 DOI: 10.1212/nxg.0000000000000664] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022]
Abstract
Background and ObjectivesHereditary spastic paraplegias (HSPs) are a group of inherited rare neurologic disorders characterized by length-dependent degeneration of the corticospinal tracts and dorsal columns, whose prominent clinical feature is represented by spastic gait. Spastic paraplegia type 4 (SPG4, SPAST-HSP) is the most common form. We present both clinical and molecular findings of a large cohort of patients, with the aim of (1) defining the clinical spectrum of SPAST-HSP in Italy; (2) describing their molecular features; and (3) assessing genotype-phenotype correlations to identify features associated with worse disability.MethodsA cross-sectional retrospective study with molecular and clinical data collected in an anonymized database was performed.ResultsA total of 723 Italian patients with SPAST-HSP (58% men) from 316 families, with a median age at onset of 35 years, were included. Penetrance was 97.8%, with men showing higher Spastic Paraplegia Rating Scale (SPRS) scores (19.67 ± 12.58 vs 16.15 ± 12.61, p = 0.009). In 26.6% of patients with SPAST-HSP, we observed a complicated phenotype, mainly including intellectual disability (8%), polyneuropathy (6.7%), and cognitive decline (6.5%). Late-onset cases seemed to progress more rapidly, and patients with a longer disease course displayed a more severe neurologic disability, with higher SPATAX (3.61 ± 1.46 vs 2.71 ± 1.20, p < 0.001) and SPRS scores (22.63 ± 11.81 vs 12.40 ± 8.83, p < 0.001). Overall, 186 different variants in the SPAST gene were recorded, of which 48 were novel. Patients with SPAST-HSP harboring missense variants displayed intellectual disability (14.5% vs 4.4%, p < 0.001) more frequently, whereas patients with truncating variants presented more commonly cognitive decline (9.7% vs 2.6%, p = 0.001), cerebral atrophy (11.2% vs 3.4%, p = 0.003), lower limb spasticity (61.5% vs 44.5%), urinary symptoms (50.0% vs 31.3%, p < 0.001), and sensorimotor polyneuropathy (11.1% vs 1.1%, p < 0.001). Increasing disease duration (DD) and abnormal motor evoked potentials (MEPs) were also associated with increased likelihood of worse disability (SPATAX score>3).DiscussionThe SPAST-HSP phenotypic spectrum in Italian patients confirms a predominantly pure form of HSP with mild-to-moderate disability in 75% of cases, and slight prevalence of men, who appeared more severely affected. Early-onset cases with intellectual disability were more frequent among patients carrying missense SPAST variants, whereas patients with truncating variants showed a more complicated disease. Both longer DD and altered MEPs are associated with worse disability.
Collapse
|
3
|
Hannah-Shmouni F, Al-Shahoumi R, Brady LI, Wu L, Frei J, Tarnopolsky MA. Dual molecular diagnoses in a neurometabolic specialty clinic. Am J Med Genet A 2020; 185:766-773. [PMID: 33369152 DOI: 10.1002/ajmg.a.62034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/05/2020] [Accepted: 12/06/2020] [Indexed: 11/08/2022]
Abstract
Reports of patients with concomitant diagnoses of two inherited genetic disorders, sometimes referred to as "double trouble," have appeared intermittently in the medical literature. We report eight additional cases with dual diagnoses of two genetic conditions. All cases had a phenotype atypical for their primary diagnosis, leading to the search for a second genetic diagnosis. These cases highlight the importance of the history, physical examination and continued work-up if the phenotype of the patient falls drastically outside what has been reported with their primary diagnosis. Some of the diagnoses of the patients presented here (e.g., Myotonic Dystrophy Type 1, fascioscapulohumeral muscular dystrophy) would not have been identified by genetic testing done on a next generation sequencing backbone (e.g., panel or exome sequencing). When the clinical picture is atypical or more severe than expected the possibility of a dual diagnosis (double trouble) should be considered. Identification of a second genetic condition can impact management and genetic counseling.
Collapse
Affiliation(s)
- Fady Hannah-Shmouni
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Rashid Al-Shahoumi
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Lauren I Brady
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Lily Wu
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Julia Frei
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Rudenskaya GE, Kadnikova VA, Ryzhkova OP. [Common forms of hereditary spastic paraplegias]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:94-104. [PMID: 30874534 DOI: 10.17116/jnevro201911902194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A group of hereditary spastic paraplegias includes about 80 spastic paraplegia genes (SPG): forms with identified (almost 70) or only mapped (about 10) genes. Methods of next generation sequencing (NGS), along with new SPG discovering, modify knowledge about earlier delineated SPG. Clinical and genetic characteristics of common autosomal dominant (SPG4, SPG3, SPG31) and autosomal recessive (SPG11, SPG7, SPG15) forms are presented.
Collapse
Affiliation(s)
| | - V A Kadnikova
- Research Centre for Medical Genetics, Moscow, Russia
| | - O P Ryzhkova
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
5
|
Rudenskaya GE, Kadnikova VA, Sidorova OP, Beetz C, Illarioshkin SN, Dadaly EL, Proskokova TN, Ryzhkova OP. Hereditary spastic paraplegia type 4 (SPG4) in Russian patients. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:11-20. [DOI: 10.17116/jnevro201911911111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Rudenskaya GE, Bulakh MV, Milovidova TB, Shchagina OA. [Coincidence of hereditary motor and sensory neuropathy type 1A and limb girdle muscular dystrophy type 2A]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:72-76. [PMID: 30585608 DOI: 10.17116/jnevro201811811172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A rare case of two neuromuscular disorders in a 29-year-old female is presented: autosomal dominant hereditary motor and sensory neuropathy type 1A (HMSN1A) due to PMP22 duplication and autosomal recessive limb girdle muscular dystrophy type 2A (LGMD2A) produced by CAPN3 common mutation c.550delA and novel c.575C>G (p.Thr192Ser).Walking difficulties appeared in 27 years, the patient had signs of both disorders, more of LGMD, but was not disabled. HMSN1A was inherited from her father whose disease was not recognized earlier.
Collapse
Affiliation(s)
- G E Rudenskaya
- FSBI Research Centre for Medical Genetics, Moskvorechie 1, 115522 Moscow, Russia
| | - M V Bulakh
- FSBI Research Centre for Medical Genetics, Moskvorechie 1, 115522 Moscow, Russia
| | - T B Milovidova
- FSBI Research Centre for Medical Genetics, Moskvorechie 1, 115522 Moscow, Russia
| | - O A Shchagina
- FSBI Research Centre for Medical Genetics, Moskvorechie 1, 115522 Moscow, Russia
| |
Collapse
|
7
|
Schuelke M, Øien NC, Oldfors A. Myopathology in the times of modern genetics. Neuropathol Appl Neurobiol 2017; 43:44-61. [DOI: 10.1111/nan.12374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/03/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022]
Affiliation(s)
- M. Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center; Charité-Universitätsmedizin; Berlin Germany
| | - N. C. Øien
- Department of Neuropediatrics and NeuroCure Clinical Research Center; Charité-Universitätsmedizin; Berlin Germany
- Max-Delbrück-Center for Molecular Medicine; Berlin Germany
| | - A. Oldfors
- Department of Pathology and Genetics; Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|