1
|
Wang J, Lai Q, Han J, Qin P, Wu H. Neuroimaging biomarkers for the diagnosis and prognosis of patients with disorders of consciousness. Brain Res 2024; 1843:149133. [PMID: 39084451 DOI: 10.1016/j.brainres.2024.149133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The progress in neuroimaging and electrophysiological techniques has shown substantial promise in improving the clinical assessment of disorders of consciousness (DOC). Through the examination of both stimulus-induced and spontaneous brain activity, numerous comprehensive investigations have explored variations in brain activity patterns among patients with DOC, yielding valuable insights for clinical diagnosis and prognostic purposes. Nonetheless, reaching a consensus on precise neuroimaging biomarkers for patients with DOC remains a challenge. Therefore, in this review, we begin by summarizing the empirical evidence related to neuroimaging biomarkers for DOC using various paradigms, including active, passive, and resting-state approaches, by employing task-based fMRI, resting-state fMRI (rs-fMRI), electroencephalography (EEG), and positron emission tomography (PET) techniques. Subsequently, we conducted a review of studies examining the neural correlates of consciousness in patients with DOC, with the findings holding potential value for the clinical application of DOC. Notably, previous research indicates that neuroimaging techniques have the potential to unveil covert awareness that conventional behavioral assessments might overlook. Furthermore, when integrated with various task paradigms or analytical approaches, this combination has the potential to significantly enhance the accuracy of both diagnosis and prognosis in DOC patients. Nonetheless, the stability of these neural biomarkers still needs additional validation, and future directions may entail integrating diagnostic and prognostic methods with big data and deep learning approaches.
Collapse
Affiliation(s)
- Jiaying Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Qiantu Lai
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Pazhou Lab, Guangzhou 510330, China.
| | - Hang Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
2
|
Șerban CA, Barborică A, Roceanu AM, Mîndruță IR, Ciurea J, Stancu M, Pâslaru AC, Zăgrean AM, Zăgrean L, Moldovan M. Towards an electroencephalographic measure of awareness based on the reactivity of oscillatory macrostates to hearing a subject's own name. Eur J Neurosci 2024; 59:771-785. [PMID: 37675619 DOI: 10.1111/ejn.16138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
We proposed that the brain's electrical activity is composed of a sequence of alternating states with repeating topographic spectral distributions on scalp electroencephalogram (EEG), referred to as oscillatory macrostates. The macrostate showing the largest decrease in the probability of occurrence, measured as a percentage (reactivity), during sensory stimulation was labelled as the default EEG macrostate (DEM). This study aimed to assess the influence of awareness on DEM reactivity (DER). We included 11 middle cerebral artery ischaemic stroke patients with impaired awareness having a median Glasgow Coma Scale (GCS) of 6/15 and a group of 11 matched healthy controls. EEG recordings were carried out during auditory 1 min stimulation epochs repeating either the subject's own name (SON) or the SON in reverse (rSON). The DEM was identified across three SON epochs alternating with three rSON epochs. Compared with the patients, the DEM of controls contained more posterior theta activity reflecting source dipoles that could be mapped in the posterior cingulate cortex. The DER was measured from the 1 min quiet baseline preceding each stimulation epoch. The difference in mean DER between the SON and rSON epochs was measured by the salient EEG reactivity (SER) theoretically ranging from -100% to 100%. The SER was 12.4 ± 2.7% (Mean ± standard error of the mean) in controls and only 1.3 ± 1.9% in the patient group (P < 0.01). The patient SER decreased with the Glasgow Coma Scale. Our data suggest that awareness increases DER to SON as measured by SER.
Collapse
Affiliation(s)
- Cosmin-Andrei Șerban
- Physics Department, University of Bucharest, Bucharest, Romania
- Termobit Prod SRL, Bucharest, Romania
- FHC Inc, Bowdoin, Maine, USA
| | - Andrei Barborică
- Physics Department, University of Bucharest, Bucharest, Romania
- Termobit Prod SRL, Bucharest, Romania
- FHC Inc, Bowdoin, Maine, USA
| | | | | | - Jan Ciurea
- Department of Neurosurgery, Bagdasar-Arseni Emergency Hospital, Bucharest, Romania
| | - Mihai Stancu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Division of Neurobiology, Faculty of Biology, Ludwig Maximilian University, Munich, Germany
| | - Alexandru C Pâslaru
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Zăgrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Leon Zăgrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Moldovan
- Termobit Prod SRL, Bucharest, Romania
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Clinical Neurophysiology and Neurology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
3
|
Brown A, Pinto D, Burgart K, Zvilichovsky Y, Zion-Golumbic E. Neurophysiological Evidence for Semantic Processing of Irrelevant Speech and Own-Name Detection in a Virtual Café. J Neurosci 2023; 43:5045-5056. [PMID: 37336758 PMCID: PMC10324990 DOI: 10.1523/jneurosci.1731-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/21/2023] Open
Abstract
The well-known "cocktail party effect" refers to incidental detection of salient words, such as one's own-name, in supposedly unattended speech. However, empirical investigation of the prevalence of this phenomenon and the underlying mechanisms has been limited to extremely artificial contexts and has yielded conflicting results. We introduce a novel empirical approach for revisiting this effect under highly ecological conditions, by immersing participants in a multisensory Virtual Café and using realistic stimuli and tasks. Participants (32 female, 18 male) listened to conversational speech from a character at their table, while a barista in the back of the café called out food orders. Unbeknownst to them, the barista sometimes called orders containing either their own-name or words that created semantic violations. We assessed the neurophysiological response-profile to these two probes in the task-irrelevant barista stream by measuring participants' brain activity (EEG), galvanic skin response and overt gaze-shifts.SIGNIFICANCE STATEMENT We found distinct neural and physiological responses to participants' own-name and semantic violations, indicating their incidental semantic processing despite being task-irrelevant. Interestingly, these responses were covert in nature and gaze-patterns were not associated with word-detection responses. This study emphasizes the nonexclusive nature of attention in multimodal ecological environments and demonstrates the brain's capacity to extract linguistic information from additional sources outside the primary focus of attention.
Collapse
Affiliation(s)
- Adi Brown
- Gonda Center for Multidisciplinary Brain Research, Bar-Ilan University, Ramat Gan, Israel, 5290002
| | - Danna Pinto
- Gonda Center for Multidisciplinary Brain Research, Bar-Ilan University, Ramat Gan, Israel, 5290002
| | - Ksenia Burgart
- Gonda Center for Multidisciplinary Brain Research, Bar-Ilan University, Ramat Gan, Israel, 5290002
| | - Yair Zvilichovsky
- Gonda Center for Multidisciplinary Brain Research, Bar-Ilan University, Ramat Gan, Israel, 5290002
| | - Elana Zion-Golumbic
- Gonda Center for Multidisciplinary Brain Research, Bar-Ilan University, Ramat Gan, Israel, 5290002
| |
Collapse
|
4
|
Pinto D, Kaufman M, Brown A, Zion Golumbic E. An ecological investigation of the capacity to follow simultaneous speech and preferential detection of ones’ own name. Cereb Cortex 2022; 33:5361-5374. [PMID: 36331339 DOI: 10.1093/cercor/bhac424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Many situations require focusing attention on one speaker, while monitoring the environment for potentially important information. Some have proposed that dividing attention among 2 speakers involves behavioral trade-offs, due to limited cognitive resources. However the severity of these trade-offs, particularly under ecologically-valid circumstances, is not well understood. We investigated the capacity to process simultaneous speech using a dual-task paradigm simulating task-demands and stimuli encountered in real-life. Participants listened to conversational narratives (Narrative Stream) and monitored a stream of announcements (Barista Stream), to detect when their order was called. We measured participants’ performance, neural activity, and skin conductance as they engaged in this dual-task. Participants achieved extremely high dual-task accuracy, with no apparent behavioral trade-offs. Moreover, robust neural and physiological responses were observed for target-stimuli in the Barista Stream, alongside significant neural speech-tracking of the Narrative Stream. These results suggest that humans have substantial capacity to process simultaneous speech and do not suffer from insufficient processing resources, at least for this highly ecological task-combination and level of perceptual load. Results also confirmed the ecological validity of the advantage for detecting ones’ own name at the behavioral, neural, and physiological level, highlighting the contribution of personal relevance when processing simultaneous speech.
Collapse
Affiliation(s)
- Danna Pinto
- The Gonda Multidisciplinary Center for Brain Research, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Maya Kaufman
- The Gonda Multidisciplinary Center for Brain Research, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Adi Brown
- The Gonda Multidisciplinary Center for Brain Research, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Elana Zion Golumbic
- The Gonda Multidisciplinary Center for Brain Research, Bar Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
5
|
Tan X, Sun Y, Gao J. Investigating Structure-Function Connectivity in a Patient With Locked-In Syndrome by 7 T Magnetic Resonance Imaging: A Case Report. Neurologist 2022; 27:367-372. [PMID: 35238835 DOI: 10.1097/nrl.0000000000000424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Functional neuroimaging studies have been conducted to investigate cognitive and behavioral dysfunctions in locked-in syndrome (LIS). This study, we used a multimodal neuroimaging approach to investigate functional and structural connectivity in a LIS patient. CASE REPORT A 39-year-old patient who was in a total locked-in state was admitted in our department. The Coma Recovery Scale-Revised score, event-related potential, and ultra-high-field 7 T magnetic resonance imaging (MRI) were used to investigate this patient. White matter connectometry and seed-based resting-state functional connectivity analysis were used to compare the patient with an age-matched, sex-matched healthy control. Diffusion MRI findings indicated that fibers in the brainstem significantly decreased, especially in the cross region of pons, whereas the fibers above the brainstem in the deep brain increased particularly in the posterior cingulate cortex (PCC), the left parietal lobe, and parts of the corpus callosum. Meanwhile, using the PCC as the seed region, the functional connectivity between PCC and left parietal and occipital lobes, right occipital and temporal lobes increased, respectively, especially in the area of left inferior parietal gyrus and the postcentral gyrus, which were in accordance with the most increased fiber density areas observed in diffusion MRI. CONCLUSIONS These results provide tentative evidences to reveal the important role of PCC and corpus callosum in the LIS patient. These findings may be informative to the study of patients with LIS.
Collapse
Affiliation(s)
- Xufei Tan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College
| | - Yuan Sun
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College
| | - Jian Gao
- Hangzhou Mingzhou Naokang Rehabilitation Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Aubinet C, Schnakers C, Majerus S. Language Assessment in Patients with Disorders of Consciousness. Semin Neurol 2022; 42:273-282. [PMID: 36100226 DOI: 10.1055/s-0042-1755561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The assessment of residual language abilities in patients with disorders of consciousness (DoC) after severe brain injury is particularly challenging due to their limited behavioral repertoire. Moreover, associated language impairment such as receptive aphasia may lead to an underestimation of actual consciousness levels. In this review, we examine past research on the assessment of residual language processing in DoC patients, and we discuss currently available tools for identifying language-specific abilities and their prognostic value. We first highlight the need for validated and sensitive bedside behavioral assessment tools for residual language abilities in DoC patients. As regards neuroimaging and electrophysiological methods, the tasks involving higher level linguistic commands appear to be the most informative about level of consciousness and have the best prognostic value. Neuroimaging methods should be combined with the most appropriate behavioral tools in multimodal assessment protocols to assess receptive language abilities in DoC patients in the most complete and sensitive manner.
Collapse
Affiliation(s)
- Charlène Aubinet
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium.,Centre du Cerveau, University Hospital of Liège, Liège, Belgium.,Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Caroline Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, California
| | - Steve Majerus
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| |
Collapse
|
7
|
Aubinet C, Chatelle C, Gosseries O, Carrière M, Laureys S, Majerus S. Residual implicit and explicit language abilities in patients with disorders of consciousness: A systematic review. Neurosci Biobehav Rev 2021; 132:391-409. [PMID: 34864003 DOI: 10.1016/j.neubiorev.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/13/2021] [Accepted: 12/01/2021] [Indexed: 01/14/2023]
Abstract
Language assessment in post-comatose patients is difficult due to their limited behavioral repertoire; yet associated language deficits might lead to an underestimation of consciousness levels in unresponsive wakefulness syndrome (UWS) or minimally conscious state (MCS; -/+) diagnoses. We present a systematic review of studies from 2002 assessing residual language abilities with neuroimaging, electrophysiological or behavioral measures in patients with severe brain injury. Eighty-five articles including a total of 2278 patients were assessed for quality. The median percentages of patients showing residual implicit language abilities (i.e., cortical responses to specific words/sentences) were 33 % for UWS, 50 % for MCS- and 78 % for MCS + patients, whereas explicit language abilities (i.e., command-following using brain-computer interfaces) were reported in 20 % of UWS, 33 % of MCS- and 50 % of MCS + patients. Cortical responses to verbal stimuli increased along with consciousness levels and the progressive recovery of consciousness after a coma was paralleled by the reappearance of both implicit and explicit language processing. This review highlights the importance of language assessment in patients with disorders of consciousness.
Collapse
Affiliation(s)
- Charlène Aubinet
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium.
| | - Camille Chatelle
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium; Fund for Scientific Research, FNRS, Belgium
| | - Manon Carrière
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium; Fund for Scientific Research, FNRS, Belgium
| | - Steve Majerus
- Fund for Scientific Research, FNRS, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Belgium.
| |
Collapse
|
8
|
Complementary roles of neural synchrony and complexity for indexing consciousness and chances of surviving in acute coma. Neuroimage 2021; 245:118638. [PMID: 34624502 DOI: 10.1016/j.neuroimage.2021.118638] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
An open challenge in consciousness research is understanding how neural functions are altered by pathological loss of consciousness. To maintain consciousness, the brain needs synchronized communication of information across brain regions, and sufficient complexity in neural activity. Coordination of brain activity, typically indexed through measures of neural synchrony, has been shown to decrease when consciousness is lost and to reflect the clinical state of patients with disorders of consciousness. Moreover, when consciousness is lost, neural activity loses complexity, while the levels of neural noise, indexed by the slope of the electroencephalography (EEG) spectral exponent decrease. Although these properties have been well investigated in resting state activity, it remains unknown whether the sensory processing network, which has been shown to be preserved in coma, suffers from a loss of synchronization or information content. Here, we focused on acute coma and hypothesized that neural synchrony in response to auditory stimuli would reflect coma severity, while complexity, or neural noise, would reflect the presence or loss of consciousness. Results showed that neural synchrony of EEG signals was stronger for survivors than non-survivors and predictive of patients' outcome, but indistinguishable between survivors and healthy controls. Measures of neural complexity and neural noise were not informative of patients' outcome and had high or low values for patients compared to controls. Our results suggest different roles for neural synchrony and complexity in acute coma. Synchrony represents a precondition for consciousness, while complexity needs an equilibrium between high or low values to support conscious cognition.
Collapse
|
9
|
Linking bodily, environmental and mental states in the self—A three-level model based on a meta-analysis. Neurosci Biobehav Rev 2020; 115:77-95. [DOI: 10.1016/j.neubiorev.2020.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 04/06/2020] [Accepted: 05/08/2020] [Indexed: 02/01/2023]
|
10
|
Brain responses to auditory oddball task in children with benign childhood epilepsy with centrotemporal spikes: Quantitative analysis and correlation with neuropsychological assessment scores. Epilepsy Behav 2018; 80:272-279. [PMID: 29398625 DOI: 10.1016/j.yebeh.2018.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/06/2018] [Accepted: 01/12/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Variable degrees of cognitive dysfunction have been reported in children with benign childhood epilepsy with centrotemporal spikes (BCECTS). Our aim was to perform quantitative analyses of the brain responses to cognitive tasks using event-related desynchronization (ERD) and event-related synchronization (ERS) and correlating the results with the scores of neuropsychological tests in patients with BCECTS. METHODS This case control study included 30 patients with BCECTS and 20 controls. Clinical assessment, neuropsychological tests, the Positive wave at 300 msec (P300) parameters recording, and quantitative electroencephalography (EEG) analysis were carried out for both groups. Alpha power ERD and ERS were measured in six different brain regions during an auditory oddball paradigm. RESULTS Children with epilepsy showed a statistically significant poorer performance in verbal intelligence quotient (IQ), performance IQ, and total scale IQ and lower number of correct responses. Moreover, both groups showed diffuse alpha power attenuation in response to the target tones. After summation of the alpha power ERD over all brain regions to get the net diffuse ERD, the patients' group showed a statistically significant smaller net alpha ERD compared with that of the control group (P=0.001). No significant correlations between the alpha ERD percentage, recorded P300 parameters, and neuropsychological tests scores were found. CONCLUSIONS Children with BCECTS have subtle cognitive dysfunction proved by significantly lower scores of verbal IQ and performance IQ subtests. The significantly smaller net diffuse alpha power ERD detected in children with epilepsy may be an electrophysiological indicator of disruptive brain activation in relation to cognitive attentional tasks; however, its correlation with neuropsychological tests was insignificant.
Collapse
|