1
|
Zhang J, Zuo H, Fu Y, Cao Y, Li Q, Zhang Q, Zheng Y, Wang Y, Wu D, Chen W, Fang J. Intranasal delivery of phenytoin loaded layered double hydroxide nanoparticles improves therapeutic effect on epileptic seizures. J Nanobiotechnology 2024; 22:144. [PMID: 38566094 PMCID: PMC10985904 DOI: 10.1186/s12951-024-02405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Improving the efficiency of antiseizure medication entering the brain is the key to reducing its peripheral toxicity. A combination of intranasal administration and nanomedicine presents a practical approach for treating epileptic seizures via bypassing the blood-brain barrier. In this study, phenytoin (PHT) loaded layered double hydroxide nanoparticles (BSA-LDHs-PHT) were fabricated via a coprecipitation - hydrothermal method for epileptic seizure control. In this study, we expound on the preparation method and characterization of BSA-LDHs-PHT. In-vitro drug release experiment shows both rapid and continuous drug release from BSA-LDHs-PHT, which is crucial for acute seizure control and chronic epilepsy therapy. In-vivo biodistribution assays after intranasal administration indicate excellent brain targeting ability of BSA-LDHs. Compared to BSA-Cyanine5.5, BSA-LDHs-Cyanine5.5 were associated with a higher brain/peripheral ratio across all tested time points. Following intranasal delivery with small doses of BSA-LDHs-PHT, the latency of seizures in the pentylenetetrazole-induced mouse models was effectively improved. Collectively, the present study successfully designed and applied BSA-LDHs-PHT as a promising strategy for treating epileptic seizures with an enhanced therapeutic effect.
Collapse
Affiliation(s)
- Jingxin Zhang
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Huali Zuo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Yanlu Fu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Yina Cao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Qiwei Li
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Qi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.
| | - Jiajia Fang
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.
| |
Collapse
|
2
|
Design, Synthesis, and Pharmacology of New Triazole-Containing Quinolinones as CNS Active Agents. Molecules 2023; 28:molecules28041987. [PMID: 36838975 PMCID: PMC9965477 DOI: 10.3390/molecules28041987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy and major depressive disorder are the two of the most common central nervous system (CNS) diseases. Clinicians and patients call for new antidepressants, antiseizure medicines, and in particular drugs for depression and epilepsy comorbidities. In this work, a dozen new triazole-quinolinones were designed, synthesized, and investigated as CNS active agents. All compounds reduced the immobility time significantly during the forced swim test (FST) in mice at the dosage of 50 mg/kg. Compounds 3f-3j gave superior performance over fluoxetine in the FST with more reductions of the immobility time. Compound 3g also reduced immobility time significantly in a tail suspension test (TST) at the dosage of 50 mg/kg, though its anti-immobility activity was inferior to that of fluoxetine. An open field test was carried out and it eliminated the false-positive possibility of 3g in the FST and TST, which complementarily supported the antidepressant activity of 3g. We also found that almost all compounds except 3k exhibited antiseizure activity in the maximal electroshock seizure (MES) model at 100 or 300 mg/kg. Compounds 3c, 3f, and 3g displayed the ED50 of 63.4, 78.9, and 84.9 mg/kg, and TD50 of 264.1, 253.5, and 439.9 mg/kg, respectively. ELISA assays proved that the mechanism for the antiseizure and antidepressant activities of compound 3g was via affecting the concentration of GABA in mice brain. The molecular docking study showed a good interaction between 3g and the amino acid residue of the GABAA receptor. Excellent drug-like properties and pharmacokinetic properties of compound 3a-l were also predicted by Discovery Studio. These findings provided a new skeleton to develop agents for the treatment of epilepsy and depression comorbidities.
Collapse
|
3
|
Cardoso-Vera JD, Gómez-Oliván LM, Islas-Flores H, García-Medina S, Orozco-Hernández JM, Heredia-García G, Elizalde-Velázquez GA, Galar-Martínez M, SanJuan-Reyes N. Acute exposure to environmentally relevant concentrations of phenytoin damages early development and induces oxidative stress in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109265. [PMID: 34990834 DOI: 10.1016/j.cbpc.2021.109265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022]
Abstract
Phenytoin (PHE) is an antiepileptic drug that has been widely used in clinical practice for about 80 years. It is mainly used in the treatment of tonic-clonic and partial seizures. The widespread consumption of this drug around the world has led to PHE being introduced into water bodies through municipal, hospital, and industrial effluent discharges. Since the toxic effects of this drug on aquatic species has been scarcely explored, the aim of this work was to investigate the influence of low (25-400 ngL-1) and high (500-1500 ngL-1) environmentally relevant concentrations of PHE on the development and oxidative status of zebrafish (Danio rerio) embryos. The toxicity of PHE was evaluated from 12 to 96 h after fertilization in D. rerio at concentrations between 25 and 1500 ngL-1. In both the control group and the 0.05% DMSO system, no malformations were observed, all embryos developed normally after 96 h. The severity and frequency of malformations increased with increasing PHE concentration compared to embryos in the control group. Malformations observed included developmental delay, hypopigmentation, miscellaneous (more than one malformation in the same embryo), modified chorda structure, tail malformation, and yolk deformation. Concerning the biomarkers of oxidative stress, an increase in the degree of lipid peroxidation, protein carbonylation, and hydroperoxide content was observed (p < 0.05) concerning the control. In addition, a significant increase (p < 0.05) in antioxidant enzymes (SOD, CAT, and GPx) was observed at low exposure concentrations (25-400 ngL-1), with a decrease in enzyme activity at high concentrations (500-1500 ngL-1). Our IBR analysis demonstrated that oxidative damage biomarkers got more influence at 500ngL-1 of PHE. The results demonstrated that PHE may affect the embryonic development of zebrafish and that oxidative stress may be involved in the generation of this embryotoxic process.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP 07700, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gerardo Heredia-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP 07700, Mexico
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
4
|
Lou S, Cui S. Drug treatment of epilepsy: From serendipitous discovery to evolutionary mechanisms. Curr Med Chem 2021; 29:3366-3391. [PMID: 34514980 DOI: 10.2174/0929867328666210910124727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022]
Abstract
Epilepsy is a chronic brain disorder caused by abnormal firing of neurons. Up to now, using antiepileptic drugs is the main method of epilepsy treatment. The development of antiepileptic drugs lasted for centuries. In general, most agents entering clinical practice act on the balance mechanisms of brain "excitability-inhibition". More specifically, they target voltage-gated ion channels, GABAergic transmission and glutamatergic transmission. In recent years, some novel drugs representing new mechanisms of action have been discovered. Although there are about 30 available drugs in the market, it is still in urgent need of discovering more effective and safer drugs. The development of new antiepileptic drugs is into a new era: from serendipitous discovery to evolutionary mechanism-based design. This article presents an overview of drug treatment of epilepsy, including a series of traditional and novel drugs.
Collapse
Affiliation(s)
- Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou. China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou. China
| |
Collapse
|
5
|
Solubility profile of phenytoin in the mixture of 1-propanol and water at different temperatures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
6
|
|
7
|
Koltai T. Targeting the pH Paradigm at the Bedside: A Practical Approach. Int J Mol Sci 2020; 21:E9221. [PMID: 33287221 PMCID: PMC7730959 DOI: 10.3390/ijms21239221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
The inversion of the pH gradient in malignant tumors, known as the pH paradigm, is increasingly becoming accepted by the scientific community as a hallmark of cancer. Accumulated evidence shows that this is not simply a metabolic consequence of a dysregulated behavior, but rather an essential process in the physiopathology of accelerated proliferation and invasion. From the over-simplification of increased lactate production as the cause of the paradigm, as initially proposed, basic science researchers have arrived at highly complex and far-reaching knowledge, that substantially modified that initial belief. These new developments show that the paradigm entails a different regulation of membrane transporters, electrolyte exchangers, cellular and membrane enzymes, water trafficking, specialized membrane structures, transcription factors, and metabolic changes that go far beyond fermentative glycolysis. This complex world of dysregulations is still shuttered behind the walls of experimental laboratories and has not yet reached bedside medicine. However, there are many known pharmaceuticals and nutraceuticals that are capable of targeting the pH paradigm. Most of these products are well known, have low toxicity, and are also inexpensive. They need to be repurposed, and this would entail shorter clinical studies and enormous cost savings if we compare them with the time and expense required for the development of a new molecule. Will targeting the pH paradigm solve the "cancer problem"? Absolutely not. However, reversing the pH inversion would strongly enhance standard treatments, rendering them more efficient, and in some cases permitting lower doses of toxic drugs. This article's goal is to describe how to reverse the pH gradient inversion with existing drugs and nutraceuticals that can easily be used in bedside medicine, without adding toxicity to established treatments. It also aims at increasing awareness among practicing physicians that targeting the pH paradigm would be able to improve the results of standard therapies. Some clinical cases will be presented as well, showing how the pH gradient inversion can be treated at the bedside in a simple manner with repurposed drugs.
Collapse
Affiliation(s)
- Tomas Koltai
- Centro de Diagnostico y Tratamiento de la Obra Social del Personal de la Alimentacion, Talar de Pacheco, Buenos Aires 1617, Argentina
| |
Collapse
|
8
|
Patocka J, Wu Q, Nepovimova E, Kuca K. Phenytoin - An anti-seizure drug: Overview of its chemistry, pharmacology and toxicology. Food Chem Toxicol 2020; 142:111393. [PMID: 32376339 DOI: 10.1016/j.fct.2020.111393] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022]
Abstract
Phenytoin is a long-standing, anti-seizure drug widely used in clinical practice. It has also been evaluated in the context of many other illnesses in addition to its original epilepsy indication. The narrow therapeutic index of phenytoin and its ubiquitous daily use pose a high risk of poisoning. This review article focuses on the chemistry, pharmacokinetics, and toxicology of phenytoin, with a special focus on its mutagenicity, carcinogenicity, and teratogenicity. The side effects on human health associated with phenytoin use are thoroughly described. In particular, DRESS syndrome and cerebellar atrophy are addressed. This review will help in further understanding the benefits phenytoin use in the treatment of epilepsy.
Collapse
Affiliation(s)
- Jiri Patocka
- Faculty of Health and Social Studies, Department of Radiology and Toxicology, University of South Bohemia Ceske Budejovice, Ceske Budejovice, Czech Republic; Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Qinghua Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
9
|
Vatannavaz L, Sabounchei SJ, Sedghi A, Karamian R, Farida SHM, Rahmani N. New nickel, palladium and platinum complexes of hydantoin derivative: Synthesis, characterization, theoretical study and biological activity. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Lazarini-Lopes W, Do Val-da Silva RA, da Silva-Júnior RMP, Leite JP, Garcia-Cairasco N. The anticonvulsant effects of cannabidiol in experimental models of epileptic seizures: From behavior and mechanisms to clinical insights. Neurosci Biobehav Rev 2020; 111:166-182. [PMID: 31954723 DOI: 10.1016/j.neubiorev.2020.01.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/21/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is a neurological disorder characterized by the presence of seizures and neuropsychiatric comorbidities. Despite the number of antiepileptic drugs, one-third of patients did not have their seizures under control, leading to pharmacoresistance epilepsy. Cannabis sativa has been used since ancient times in Medicine for the treatment of many diseases, including convulsive seizures. In this context, Cannabidiol (CBD), a non-psychoactive phytocannabinoid present in Cannabis, has been a promising compound for treating epilepsies due to its anticonvulsant properties in animal models and humans, especially in pharmacoresistant patients. In this review, we summarize evidence of the CBD anticonvulsant activities present in a great diversity of animal models. Special attention was given to behavioral CBD effects and its translation to human epilepsies. CBD anticonvulsant effects are associated with a great variety of mechanisms of action such as endocannabinoid and calcium signaling. CBD has shown effectiveness in the clinical scenario for epilepsies, but its effects on epilepsy-related comorbidities are scarce even in basic research. More detailed and complex behavioral evaluation about CBD effects on seizures and epilepsy-related comorbidities are required.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.
| | - Raquel A Do Val-da Silva
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil.
| | - Rui M P da Silva-Júnior
- Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.
| | - João P Leite
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil.
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
11
|
N Rosalez M, Estevez-Fregoso E, Alatorre A, Abad-García A, A Soriano-Ursúa M. 2-Aminoethyldiphenyl Borinate: A Multitarget Compound with Potential as a Drug Precursor. Curr Mol Pharmacol 2020; 13:57-75. [PMID: 31654521 DOI: 10.2174/1874467212666191025145429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Boron is considered a trace element that induces various effects in systems of the human body. However, each boron-containing compound exerts different effects. OBJECTIVE To review the effects of 2-Aminoethyldiphenyl borinate (2-APB), an organoboron compound, on the human body, but also, its effects in animal models of human disease. METHODS In this review, the information to showcase the expansion of these reported effects through interactions with several ion channels and other receptors has been reported. These effects are relevant in the biomedical and chemical fields due to the application of the reported data in developing therapeutic tools to modulate the functions of the immune, cardiovascular, gastrointestinal and nervous systems. RESULTS Accordingly, 2-APB acts as a modulator of adaptive and innate immunity, including the production of cytokines and the migration of leukocytes. Additionally, reports show that 2-APB exerts effects on neurons, smooth muscle cells and cardiomyocytes, and it provides a cytoprotective effect by the modulation and attenuation of reactive oxygen species. CONCLUSION The molecular pharmacology of 2-APB supports both its potential to act as a drug and the desirable inclusion of its moieties in new drug development. Research evaluating its efficacy in treating pain and specific maladies, such as immune, cardiovascular, gastrointestinal and neurodegenerative disorders, is scarce but interesting.
Collapse
Affiliation(s)
- Melvin N Rosalez
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Elizabeth Estevez-Fregoso
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Alberto Alatorre
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Antonio Abad-García
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Marvin A Soriano-Ursúa
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| |
Collapse
|
12
|
Membrane Stabilizer Medications in the Treatment of Chronic Neuropathic Pain: a Comprehensive Review. Curr Pain Headache Rep 2019; 23:37. [DOI: 10.1007/s11916-019-0774-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Kopsky DJ, Keppel Hesselink JM. Single-Blind Placebo-Controlled Response Test with Phenytoin 10% Cream in Neuropathic Pain Patients. Pharmaceuticals (Basel) 2018; 11:ph11040122. [PMID: 30424471 PMCID: PMC6316219 DOI: 10.3390/ph11040122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/12/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Phenytoin cream applied topically has been explored in neuropathic pain conditions. In several case series, phenytoin 5% and 10% cream could reduce pain in a clinically relevant way with a fast onset of action within 30 min, and with positive effects on sleep. Objective: To evaluate a single-blind placebo-controlled response test (SIBRET) for use in clinical practice. Materials and Methods: Patients with localized neuropathic pain, having an equal pain intensity in at least 2 areas (e.g., both feet), and a pain intensity of at least 4 on the 11-point numerical rating scale (NRS), were selected to perform the SIBRET. In one area, placebo cream consisting of the base cream was applied, and on the other area, phenytoin 10% cream was applied with separate hands to avoid contamination. Responders were defined as patients who experienced within 30 min at least 2-points difference as scored on the NRS, between the phenytoin 10% and the placebo cream applied areas, in favor of the former. Responders were subsequently prescribed phenytoin 10% cream. Results: Of the 21 patients, 15 patients (71.45%) were classified as responders. The mean pain reduction after 30 min as measured with the NRS in the phenytoin 10% cream area was 3.3 (SD: 1.3) and in the placebo cream area 1.2 (SD: 1.1). The difference of the mean percentage pain reduction between phenytoin 10% cream and placebo cream was 33.2% (SD: 17.6, p < 0.001). Using a 50% reduction on the NRS as a full response criterion, we could identify 57.1% of responders on phenytoin 10% cream and only 9.5% responders on placebo cream. Conclusions: The SIBRET helps patients and clinicians to quickly identify the appropriate treatment and can thus be seen as an important contributor to the domain of personalized medicine in pain. These results can also be regarded as a proof of principle for the analgesic activity of 10% phenytoin cream.
Collapse
Affiliation(s)
- David J Kopsky
- Institute for Neuropathic Pain, Vespuccistraat 64-III, 1056 SN Amsterdam, The Netherlands.
| | | |
Collapse
|
14
|
Lin WH, He M, Fan YN, Baines RA. An RNAi-mediated screen identifies novel targets for next-generation antiepileptic drugs based on increased expression of the homeostatic regulator pumilio. J Neurogenet 2018; 32:106-117. [PMID: 29718742 PMCID: PMC5989157 DOI: 10.1080/01677063.2018.1465570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite availability of a diverse range of anti-epileptic drugs (AEDs), only about two-thirds of epilepsy patients respond well to drug treatment. Thus, novel targets are required to catalyse the design of next-generation AEDs. Manipulation of neuron firing-rate homoeostasis, through enhancing Pumilio (Pum) activity, has been shown to be potently anticonvulsant in Drosophila. In this study, we performed a genome-wide RNAi screen in S2R + cells, using a luciferase-based dPum activity reporter and identified 1166 genes involved in dPum regulation. Of these genes, we focused on 699 genes that, on knock-down, potentiate dPum activity/expression. Of this subgroup, 101 genes are activity-dependent based on comparison with genes previously identified as activity-dependent by RNA-sequencing. Functional cluster analysis shows these genes are enriched in pathways involved in DNA damage, regulation of cell cycle and proteasomal protein catabolism. To test for anticonvulsant activity, we utilised an RNA-interference approach in vivo. RNAi-mediated knockdown showed that 57/101 genes (61%) are sufficient to significantly reduce seizure duration in the characterized seizure mutant, parabss. We further show that chemical inhibitors of protein products of some of the genes targeted are similarly anticonvulsant. Finally, to establish whether the anticonvulsant activity of identified compounds results from increased dpum transcription, we performed a luciferase-based assay to monitor dpum promoter activity. Third instar larvae exposed to sodium fluoride, gemcitabine, metformin, bestatin, WP1066 or valproic acid all showed increased dpum promoter activity. Thus, this study validates Pum as a favourable target for AED design and, moreover, identifies a number of lead compounds capable of increasing the expression of this homeostatic regulator.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Manchester Academic Health Science Centre , Manchester , UK
| | - Miaomiao He
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Manchester Academic Health Science Centre , Manchester , UK
| | - Yuen Ngan Fan
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Manchester Academic Health Science Centre , Manchester , UK
| | - Richard A Baines
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Manchester Academic Health Science Centre , Manchester , UK
| |
Collapse
|
15
|
Bhusainahalli VM, Rescifina A, Cardullo N, Spatafora C, Tringali C. Bio-activated intramolecular anti-aza-Michael addition: stereoselective synthesis of hydantoin derivatives. NEW J CHEM 2018. [DOI: 10.1039/c8nj02909a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unprecedented green, stereoselective, and enzymatic synthesis of biologically remarkable hydantoin derivatives through an intramolecular anti-aza-Michael addition.
Collapse
Affiliation(s)
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco
- Università di Catania
- I-95125 Catania
- Italy
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche
- Università di Catania
- I-95125 Catania
- Italy
| | - Carmela Spatafora
- Dipartimento di Scienze Chimiche
- Università di Catania
- I-95125 Catania
- Italy
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche
- Università di Catania
- I-95125 Catania
- Italy
| |
Collapse
|