1
|
Valenzuela-Fuenzalida JJ, Moyano-Valarezo L, Silva-Bravo V, Milos-Brandenberg D, Orellana-Donoso M, Nova-Baeza P, Suazo-Santibáñez A, Rodríguez-Luengo M, Oyanedel-Amaro G, Sanchis-Gimeno J, Gutiérrez Espinoza H. Association between the Anatomical Location of Glioblastoma and Its Evaluation with Clinical Considerations: A Systematic Review and Meta-Analysis. J Clin Med 2024; 13:3460. [PMID: 38929990 PMCID: PMC11204640 DOI: 10.3390/jcm13123460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Glioblastoma is a primary malignant brain tumor; it is aggressive with a high degree of malignancy and unfavorable prognosis and is the most common type of malignant brain tumor. Glioblastomas can be located in the brain, cerebellum, brainstem, and spinal cord, originating from glial cells, particularly astrocytes. Methods: The databases MEDLINE, Scopus, Web of Science, Google Scholar, and CINAHL were researched up to January 2024. Two authors independently performed the search, study selection, and data extraction. Methodological quality was evaluated with an assurance tool for anatomical studies (AQUA). The statistical mean, standard deviation, and difference of means calculated with the Student's t-test for presence between hemispheres and presence in the frontal and temporal lobes were analyzed. Results: A total of 123 studies met the established selection criteria, with a total of 6224 patients. In relation to the mean, GBM between hemispheres had a mean of 33.36 (SD 58.00) in the right hemisphere and a mean of 34.70 (SD 65.07) in the left hemisphere, due to the difference in averages between hemispheres. There were no statistically significant differences, p = 0.35. For the comparison between the presence of GBM in the frontal lobe and the temporal lobe, there was a mean in the frontal lobe of 23.23 (SD 40.03), while in the temporal lobe, the mean was 22.05 (SD 43.50), and for the difference in means between the frontal lobe and the temporal lobe, there was no statistically significant difference for the presence of GBM, p = 0.178. Conclusions: We believe that before a treatment, it will always be correct to know where the GBM is located and how it behaves clinically, in order to generate correct conservative or surgical treatment guidelines for each patient. We believe that more detailed studies are also needed to show why GBM is associated more with some regions than others, despite the brain structure being homologous to other regions in which GMB occurs less frequently, which is why knowing its predominant presence in brain regions is very important.
Collapse
Affiliation(s)
- Juan Jose Valenzuela-Fuenzalida
- Departamento de Ciencias Química y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago 8320000, Chile;
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | - Laura Moyano-Valarezo
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | - Vicente Silva-Bravo
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | - Daniel Milos-Brandenberg
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
- Escuela de Medicina, Facultad Ciencias de la Salud, Universidad del Alba, Santiago 8320000, Chile
| | - Mathias Orellana-Donoso
- Escuela de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile;
- Department of Morphological Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago 8420524, Chile
| | - Pablo Nova-Baeza
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | | | - Macarena Rodríguez-Luengo
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | - Gustavo Oyanedel-Amaro
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Juan Sanchis-Gimeno
- GIAVAL Research Group, Department of Anatomy and Human Embryology, Faculty of Medicine, University of Valencia, 46001 Valencia, Spain;
| | | |
Collapse
|
2
|
Nunez-Gonzalez L, van Garderen KA, Smits M, Jaspers J, Romero AM, Poot DHJ, Hernandez-Tamames JA. Pre-contrast MAGiC in treated gliomas: a pilot study of quantitative MRI. Sci Rep 2022; 12:21820. [PMID: 36528673 PMCID: PMC9759533 DOI: 10.1038/s41598-022-24276-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Quantitative MR imaging is becoming more feasible to be used in clinical work since new approaches have been proposed in order to substantially accelerate the acquisition and due to the possibility of synthetically deriving weighted images from the parametric maps. However, their applicability has to be thoroughly validated in order to be included in clinical practice. In this pilot study, we acquired Magnetic Resonance Image Compilation scans to obtain T1, T2 and PD maps in 14 glioma patients. Abnormal tissue was segmented based on conventional images and using a deep learning segmentation technique to define regions of interest (ROIs). The quantitative T1, T2 and PD values inside ROIs were analyzed using the mean, the standard deviation, the skewness and the kurtosis and compared to the quantitative T1, T2 and PD values found in normal white matter. We found significant differences in pre-contrast T1 and T2 values between abnormal tissue and healthy tissue, as well as between T1w-enhancing and non-enhancing regions. ROC analysis was used to evaluate the potential of quantitative T1 and T2 values for voxel-wise classification of abnormal/normal tissue (AUC = 0.95) and of T1w enhancement/non-enhancement (AUC = 0.85). A cross-validated ROC analysis found high sensitivity (73%) and specificity (73%) with AUCs up to 0.68 on the a priori distinction between abnormal tissue with and without T1w-enhancement. These results suggest that normal tissue, abnormal tissue, and tissue with T1w-enhancement are distinguishable by their pre-contrast quantitative values but further investigation is needed.
Collapse
Affiliation(s)
- Laura Nunez-Gonzalez
- grid.5645.2000000040459992XRadiology and Nuclear Medicine, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Karin A. van Garderen
- grid.5645.2000000040459992XRadiology and Nuclear Medicine, Erasmus MC - University Medical Center, Rotterdam, The Netherlands ,grid.508717.c0000 0004 0637 3764Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marion Smits
- grid.5645.2000000040459992XRadiology and Nuclear Medicine, Erasmus MC - University Medical Center, Rotterdam, The Netherlands ,grid.508717.c0000 0004 0637 3764Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jaap Jaspers
- grid.508717.c0000 0004 0637 3764Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Alejandra Méndez Romero
- grid.508717.c0000 0004 0637 3764Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Dirk H. J. Poot
- grid.5645.2000000040459992XRadiology and Nuclear Medicine, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Juan A. Hernandez-Tamames
- grid.5645.2000000040459992XRadiology and Nuclear Medicine, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Bontempi P, Rozzanigo U, Amelio D, Scartoni D, Amichetti M, Farace P. Quantitative Multicomponent T2 Relaxation Showed Greater Sensitivity Than Flair Imaging to Detect Subtle Alterations at the Periphery of Lower Grade Gliomas. Front Oncol 2021; 11:651137. [PMID: 33828992 PMCID: PMC8019971 DOI: 10.3389/fonc.2021.651137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/02/2021] [Indexed: 02/02/2023] Open
Abstract
Purpose To demonstrate that quantitative multicomponent T2 relaxation can be more sensitive than conventional FLAIR imaging for detecting cerebral tissue abnormalities. Methods Six patients affected by lower-grade non-enhancing gliomas underwent T2 relaxation and FLAIR imaging before a radiation treatment by proton therapy (PT) and were examined at follow-up. The T2 decay signal obtained by a thirty-two-echo sequence was decomposed into three main components, attributing to each component a different T2 range: water trapped in the lipid bilayer membrane of myelin, intra/extracellular water and cerebrospinal fluid. The T2 quantitative map of the intra/extracellular water was compared with FLAIR images. Results Before PT, in five patients a mismatch was observed between the intra/extracellular water T2 map and FLAIR images, with peri-tumoral areas of high T2 that typically extended outside the area of abnormal FLAIR hyper-intensity. Such mismatch regions evolved into two different types of patterns. The first type, observed in three patients, was a reduced extension of the abnormal regions on T2 map with respect to FLAIR images (T2 decrease pattern). The second type, observed in two patients, was the appearance of new areas of abnormal hyper-intensity on FLAIR images matching the anomalous T2 map extension (FLAIR increase pattern), that was considered as asymptomatic radiation induced damage. Conclusion Our preliminarily results suggest that quantitative T2 mapping of the intra/extracellular water component was more sensitive than conventional FLAIR imaging to subtle cerebral tissue abnormalities, deserving to be further investigated in future clinical studies.
Collapse
Affiliation(s)
- Pietro Bontempi
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Umberto Rozzanigo
- Radiology Department, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Dante Amelio
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Daniele Scartoni
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Maurizio Amichetti
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Paolo Farace
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| |
Collapse
|
4
|
de Almeida Martins J, Tax C, Szczepankiewicz F, Jones D, Westin CF, Topgaard D. Transferring principles of solid-state and Laplace NMR to the field of in vivo brain MRI. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:27-43. [PMID: 37904884 PMCID: PMC10500744 DOI: 10.5194/mr-1-27-2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/18/2020] [Indexed: 11/01/2023]
Abstract
Magnetic resonance imaging (MRI) is the primary method for noninvasive investigations of the human brain in health, disease, and development but yields data that are difficult to interpret whenever the millimeter-scale voxels contain multiple microscopic tissue environments with different chemical and structural properties. We propose a novel MRI framework to quantify the microscopic heterogeneity of the living human brain as spatially resolved five-dimensional relaxation-diffusion distributions by augmenting a conventional diffusion-weighted imaging sequence with signal encoding principles from multidimensional solid-state nuclear magnetic resonance (NMR) spectroscopy, relaxation-diffusion correlation methods from Laplace NMR of porous media, and Monte Carlo data inversion. The high dimensionality of the distribution space allows resolution of multiple microscopic environments within each heterogeneous voxel as well as their individual characterization with novel statistical measures that combine the chemical sensitivity of the relaxation rates with the link between microstructure and the anisotropic diffusivity of tissue water. The proposed framework is demonstrated on a healthy volunteer using both exhaustive and clinically viable acquisition protocols.
Collapse
Affiliation(s)
- João P. de Almeida Martins
- Division of Physical Chemistry, Department of Chemistry, Lund
University, Lund, Sweden
- Random Walk Imaging AB, Lund, Sweden
| | - Chantal M. W. Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff
University, Cardiff, UK
| | - Filip Szczepankiewicz
- Harvard Medical School, Boston, MA, USA
- Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff
University, Cardiff, UK
- Mary MacKillop Institute for Health Research, Australian Catholic
University, Melbourne, Australia
| | - Carl-Fredrik Westin
- Harvard Medical School, Boston, MA, USA
- Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel Topgaard
- Division of Physical Chemistry, Department of Chemistry, Lund
University, Lund, Sweden
- Random Walk Imaging AB, Lund, Sweden
| |
Collapse
|
5
|
Does MD, Olesen JL, Harkins KD, Serradas-Duarte T, Gochberg DF, Jespersen SN, Shemesh N. Evaluation of principal component analysis image denoising on multi-exponential MRI relaxometry. Magn Reson Med 2019; 81:3503-3514. [PMID: 30720206 PMCID: PMC6955240 DOI: 10.1002/mrm.27658] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/26/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Multi-exponential relaxometry is a powerful tool for characterizing tissue, but generally requires high image signal-to-noise ratio (SNR). This work evaluates the use of principal-component-analysis (PCA) denoising to mitigate these SNR demands and improve the precision of relaxometry measures. METHODS PCA denoising was evaluated using both simulated and experimental MRI data. Bi-exponential transverse relaxation signals were simulated for a wide range of acquisition and sample parameters, and experimental data were acquired from three excised and fixed mouse brains. In both cases, standard relaxometry analysis was performed on both original and denoised image data, and resulting estimated signal parameters were compared. RESULTS Denoising reduced the root-mean-square-error of parameters estimated from multi-exponential relaxometry by factors of ≈3×, for typical acquisition and sample parameters. Denoised images and subsequent parameter maps showed little or no signs of spatial artifact or loss of resolution. CONCLUSION Experimental studies and simulations demonstrate that PCA denoising of MRI relaxometry data is an effective method of improving parameter precision without sacrificing image resolution. This simple yet important processing step thus paves the way for broader applicability of multi-exponential MRI relaxometry.
Collapse
Affiliation(s)
- Mark D. Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, US
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, US
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jonas Lynge Olesen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Kevin D. Harkins
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, US
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, US
| | | | - Daniel F. Gochberg
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, US
| | - Sune N. Jespersen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|