1
|
Bolano-Díaz C, Verdú-Díaz J, Díaz-Manera J. MRI for the diagnosis of limb girdle muscular dystrophies. Curr Opin Neurol 2024; 37:536-548. [PMID: 39132784 DOI: 10.1097/wco.0000000000001305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
PURPOSE OF REVIEW In the last 30 years, there have many publications describing the pattern of muscle involvement of different neuromuscular diseases leading to an increase in the information available for diagnosis. A high degree of expertise is needed to remember all the patterns described. Some attempts to use artificial intelligence or analysing muscle MRIs have been developed. We review the main patterns of involvement in limb girdle muscular dystrophies (LGMDs) and summarize the strategies for using artificial intelligence tools in this field. RECENT FINDINGS The most frequent LGMDs have a widely described pattern of muscle involvement; however, for those rarer diseases, there is still not too much information available. patients. Most of the articles still include only pelvic and lower limbs muscles, which provide an incomplete picture of the diseases. AI tools have efficiently demonstrated to predict diagnosis of a limited number of disease with high accuracy. SUMMARY Muscle MRI continues being a useful tool supporting the diagnosis of patients with LGMD and other neuromuscular diseases. However, the huge variety of patterns described makes their use in clinics a complicated task. Artificial intelligence tools are helping in that regard and there are already some accessible machine learning algorithms that can be used by the global medical community.
Collapse
Affiliation(s)
- Carla Bolano-Díaz
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - José Verdú-Díaz
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jordi Díaz-Manera
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Neuromuscular Diseases Laboratory, Insitut de Recerca de l'Hospital de la Santa Creu i Sant Pau
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
2
|
Findlay AR. Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches. Dis Model Mech 2024; 17:dmm050720. [PMID: 39501809 PMCID: PMC11574355 DOI: 10.1242/dmm.050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Treatments for disabling and life-threatening hereditary muscle disorders are finally close to becoming a reality. Research has thus far focused primarily on recessive forms of muscle disease. The gene replacement strategies that are commonly employed for recessive, loss-of-function disorders are not readily translatable to most dominant myopathies owing to the presence of a normal chromosome in each nucleus, hindering the development of novel treatments for these dominant disorders. This is largely due to their complex, heterogeneous disease mechanisms that require unique therapeutic approaches. However, as viral and RNA interference-based therapies enter clinical use, key tools are now in place to develop treatments for dominantly inherited disorders of muscle. This article will review what is known about dominantly inherited disorders of muscle, specifically their genetic basis, how mutations lead to disease, and the pathomechanistic implications for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University Saint Louis, Neuromuscular Disease Center, 660 S. Euclid Ave., St Louis, MO 63110, USA
| |
Collapse
|
3
|
de Feraudy Y, Vandroux M, Romero NB, Schneider R, Saker S, Boland A, Deleuze JF, Biancalana V, Böhm J, Laporte J. Exome sequencing in undiagnosed congenital myopathy reveals new genes and refines genes-phenotypes correlations. Genome Med 2024; 16:87. [PMID: 38982518 PMCID: PMC11234750 DOI: 10.1186/s13073-024-01353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Congenital myopathies are severe genetic diseases with a strong impact on patient autonomy and often on survival. A large number of patients do not have a genetic diagnosis, precluding genetic counseling and appropriate clinical management. Our objective was to find novel pathogenic variants and genes associated with congenital myopathies and to decrease diagnostic odysseys and dead-end. METHODS To identify pathogenic variants and genes implicated in congenital myopathies, we established and conducted the MYOCAPTURE project from 2009 to 2018 to perform exome sequencing in a large cohort of 310 families partially excluded for the main known genes. RESULTS Pathogenic variants were identified in 156 families (50%), among which 123 families (40%) had a conclusive diagnosis. Only 44 (36%) of the resolved cases were linked to a known myopathy gene with the corresponding phenotype, while 55 (44%) were linked to pathogenic variants in a known myopathy gene with atypical signs, highlighting that most genetic diagnosis could not be anticipated based on clinical-histological assessments in this cohort. An important phenotypic and genetic heterogeneity was observed for the different genes and for the different congenital myopathy subtypes, respectively. In addition, we identified 14 new myopathy genes not previously associated with muscle diseases (20% of all diagnosed cases) that we previously reported in the literature, revealing novel pathomechanisms and potential therapeutic targets. CONCLUSIONS Overall, this approach illustrates the importance of massive parallel gene sequencing as a comprehensive tool for establishing a molecular diagnosis for families with congenital myopathies. It also emphasizes the contribution of clinical data, histological findings on muscle biopsies, and the availability of DNA samples from additional family members to the diagnostic success rate. This study facilitated and accelerated the genetic diagnosis of congenital myopathies, improved health care for several patients, and opened novel perspectives for either repurposing of existing molecules or the development of novel treatments.
Collapse
Affiliation(s)
- Yvan de Feraudy
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France
- Department of Pediatric Neurology, CHU Strasbourg, Strasbourg, France
- Centre de Référence Neuromusculaire Nord-Est-Île de France, Strasbourg, France
| | - Marie Vandroux
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France
| | - Norma Beatriz Romero
- Myology Institute, Neuromuscular Morphology Unit, Sorbonne Université, INSERM, GHU Pitié-Salpêtrière, Paris, France
| | - Raphaël Schneider
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France
| | - Safaa Saker
- Genethon, DNA and Cell Bank, Evry, 91000, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, 91057, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, 91057, France
| | - Valérie Biancalana
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France
- Laboratoire de Diagnostic Génétique CHRU de Strasbourg, Strasbourg, 67091, France
| | - Johann Böhm
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France
| | - Jocelyn Laporte
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France.
| |
Collapse
|
4
|
Kong FS, Feng J, Yao JP, Lu Y, Guo T, Sun M, Ren CY, Jin YY, Ma Y, Chen JH. Dysregulated RNA editing of EIF2AK2 in polycystic ovary syndrome: clinical relevance and functional implications. BMC Med 2024; 22:229. [PMID: 38853264 PMCID: PMC11163819 DOI: 10.1186/s12916-024-03434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive ages. Our previous study has implicated a possible link between RNA editing and PCOS, yet the actual role of RNA editing, its association with clinical features, and the underlying mechanisms remain unclear. METHODS Ten RNA-Seq datasets containing 269 samples of multiple tissue types, including granulosa cells, T helper cells, placenta, oocyte, endometrial stromal cells, endometrium, and adipose tissues, were retrieved from public databases. Peripheral blood samples were collected from twelve PCOS and ten controls and subjected to RNA-Seq. Transcriptome-wide RNA-Seq data analysis was conducted to identify differential RNA editing (DRE) between PCOS and controls. The functional significance of DRE was evaluated by luciferase reporter assays and overexpression in human HEK293T cells. Dehydroepiandrosterone and lipopolysaccharide were used to stimulate human KGN granulosa cells to evaluate gene expression. RESULTS RNA editing dysregulations across multiple tissues were found to be associated with PCOS in public datasets. Peripheral blood transcriptome analysis revealed 798 DRE events associated with PCOS. Through weighted gene co-expression network analysis, our results revealed a set of hub DRE events in PCOS blood. A DRE event in the eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2:chr2:37,100,559) was associated with PCOS clinical features such as luteinizing hormone (LH) and the ratio of LH over follicle-stimulating hormone. Luciferase assays, overexpression, and knockout of RNA editing enzyme adenosine deaminase RNA specific (ADAR) showed that the ADAR-mediated editing cis-regulated EIF2AK2 expression. EIAF2AK2 showed a higher expression after dehydroepiandrosterone and lipopolysaccharide stimulation, triggering changes in the downstrean MAPK pathway. CONCLUSIONS Our study presented the first evidence of cross-tissue RNA editing dysregulation in PCOS and its clinical associations. The dysregulation of RNA editing mediated by ADAR and the disrupted target EIF2AK2 may contribute to PCOS development via the MPAK pathway, underlining such epigenetic mechanisms in the disease.
Collapse
Affiliation(s)
- Fan-Sheng Kong
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Junjie Feng
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jin-Ping Yao
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yinghua Lu
- Department of Reproductive Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Tao Guo
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Meng Sun
- Department of Reproductive Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yaping Ma
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China.
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China.
| |
Collapse
|
5
|
Fischer S, Lichtenthaeler C, Stepanenko A, Heyl F, Maticzka D, Kemmerer K, Klostermann M, Backofen R, Zarnack K, Weigand JE. Heterogenous nuclear ribonucleoprotein D-like controls endothelial cell functions. Biol Chem 2024; 405:229-239. [PMID: 37942876 DOI: 10.1515/hsz-2023-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
HnRNPs are ubiquitously expressed RNA-binding proteins, tightly controlling posttranscriptional gene regulation. Consequently, hnRNP networks are essential for cellular homeostasis and their dysregulation is associated with cancer and other diseases. However, the physiological function of hnRNPs in non-cancerous cell systems are poorly understood. We analyzed the importance of HNRNPDL in endothelial cell functions. Knockdown of HNRNPDL led to impaired proliferation, migration and sprouting of spheroids. Transcriptome analysis identified cyclin D1 (CCND1) and tropomyosin 4 (TPM4) as targets of HNRNPDL, reflecting the phenotypic changes after knockdown. Our findings underline the importance of HNRNPDL for the homeostasis of physiological processes in endothelial cells.
Collapse
Affiliation(s)
- Sandra Fischer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| | - Chiara Lichtenthaeler
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| | - Anastasiya Stepanenko
- Buchmann Institute for Molecular Life Sciences and Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Florian Heyl
- Department of Bioinformatics, University of Freiburg, Georges-Köhler-Allee 106, D-79110 Freiburg, Germany
| | - Daniel Maticzka
- Department of Bioinformatics, University of Freiburg, Georges-Köhler-Allee 106, D-79110 Freiburg, Germany
| | - Katrin Kemmerer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| | - Melina Klostermann
- Buchmann Institute for Molecular Life Sciences and Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Rolf Backofen
- Department of Bioinformatics, University of Freiburg, Georges-Köhler-Allee 106, D-79110 Freiburg, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences and Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Julia E Weigand
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| |
Collapse
|
6
|
Skolka MP, Naddaf E. Exploring challenges in the management and treatment of inclusion body myositis. Curr Opin Rheumatol 2023; 35:404-413. [PMID: 37503813 PMCID: PMC10552844 DOI: 10.1097/bor.0000000000000958] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
PURPOSE OF REVIEW This review provides an overview of the management and treatment landscape of inclusion body myositis (IBM), while highlighting the current challenges and future directions. RECENT FINDINGS IBM is a slowly progressive myopathy that predominantly affects patients over the age of 40, leading to increased morbidity and mortality. Unfortunately, a definitive cure for IBM remains elusive. Various clinical trials targeting inflammatory and some of the noninflammatory pathways have failed. The search for effective disease-modifying treatments faces numerous hurdles including variability in presentation, diagnostic challenges, poor understanding of pathogenesis, scarcity of disease models, a lack of validated outcome measures, and challenges related to clinical trial design. Close monitoring of swallowing and respiratory function, adapting an exercise routine, and addressing mobility issues are the mainstay of management at this time. SUMMARY Addressing the obstacles encountered by patients with IBM and the medical community presents a multitude of challenges. Effectively surmounting these hurdles requires embracing cutting-edge research strategies aimed at enhancing the management and treatment of IBM, while elevating the quality of life for those affected.
Collapse
|
7
|
Bouchard C, Tremblay JP. Limb-Girdle Muscular Dystrophies Classification and Therapies. J Clin Med 2023; 12:4769. [PMID: 37510884 PMCID: PMC10381329 DOI: 10.3390/jcm12144769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Limb-girdle muscular dystrophies (LGMDs) are caused by mutations in multiple genes. This review article presents 39 genes associated with LGMDs. Some forms are inherited in a dominant fashion, while for others this occurs recessively. The classification of LGMDs has evolved through time. Lately, to be considered an LGMD, the mutation has to cause a predominant proximal muscle weakness and must be found in two or more unrelated families. This article also presents therapies for LGMDs, examining both available treatments and those in development. For now, only symptomatic treatments are available for patients. The goal is now to solve the problem at the root of LGMDs instead of treating each symptom individually. In the last decade, multiple other potential treatments were developed and studied, such as stem-cell transplantation, exon skipping, gene delivery, RNAi, and gene editing.
Collapse
Affiliation(s)
- Camille Bouchard
- Departement de Médecine Moléculaire, Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Quebec, Quebec, QC G1E 6W2, Canada
| | - Jacques P Tremblay
- Departement de Médecine Moléculaire, Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Quebec, Quebec, QC G1E 6W2, Canada
| |
Collapse
|
8
|
Alawneh I, Stosic A, Gonorazky H. Muscle MRI patterns for limb girdle muscle dystrophies: systematic review. J Neurol 2023:10.1007/s00415-023-11722-1. [PMID: 37129643 DOI: 10.1007/s00415-023-11722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Limb girdle muscle dystrophies (LGMDs) are a group of inherited neuromuscular disorders comprising more than 20 genes. There have been increasing efforts to characterize this group with Muscle MRI. However, due to the complexity and similarities, the interpretation of the MRI patterns is usually done by experts in the field. Here, we proposed a step-by-step image interpretation of Muscle MRI in LGDM by evaluating the variability of muscle pattern involvement reported in the literature. A systematic review with an open start date to November 2022 was conducted to describe all LGMDs' muscle MRI patterns. Eighty-eight studies were included in the final review. Data were found to describe muscle MRI patterns for 15 out of 17 LGMDs types. Although the diagnosis of LGMDs is challenging despite the advanced genetic testing and other diagnostic modalities, muscle MRI is shown to help in the diagnosis of LGMDs. To further increase the yield for muscle MRI in the neuromuscular field, larger cohorts of patients need to be conducted.
Collapse
Affiliation(s)
- Issa Alawneh
- Department of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Ana Stosic
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Hernan Gonorazky
- Department of Neurology, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
9
|
Kassardjian C, Liewluck T. Systemic Complications of Muscular Dystrophies. CURRENT CLINICAL NEUROLOGY 2023:269-280. [DOI: 10.1007/978-3-031-44009-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Wei XJ, Sun H, Miao J, Qiu RQ, Jiang ZZ, Ma ZW, Sun W, Yu XF. Clinical-pathological features and muscle imaging findings in 36 Chinese patients with rimmed vacuolar myopathies: case series study and review of literature. Front Neurol 2023; 14:1152738. [PMID: 37188302 PMCID: PMC10175607 DOI: 10.3389/fneur.2023.1152738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Rimmed vacuolar myopathies (RVMs) are a group of genetically heterogeneous diseases that share histopathological characteristics on muscle biopsy, including the aberrant accumulation of autophagic vacuoles. However, the presence of non-coding sequences and structural mutations, some of which remain undetectable, confound the identification of pathogenic mutations responsible for RVMs. Therefore, we assessed the clinical profiles and muscle magnetic resonance imaging (MRI) changes in 36 Chinese patients with RVMs, emphasizing the role of muscle MRI in disease identification and differential diagnosis to propose a comprehensive literature-based imaging pattern to facilitate improved diagnostic workup. Methods All patients presented with rimmed vacuoles with varying degrees of muscular dystrophic changes and underwent a comprehensive evaluation using clinical, morphological, muscle MRI and molecular genetic analysis. We assessed muscle changes in the Chinese RVMs and provided an overview of the RVMs, focusing on the patterns of muscle involvement on MRI. Results A total of 36 patients, including 24 with confirmed distal myopathy and 12 with limb-girdle phenotype, had autophagic vacuoles with RVMs. Hierarchical clustering of patients according to the predominant effect of the distal or proximal lower limbs revealed that most patients with RVMs could be distinguished. GNE myopathy was the most prevalent form of RVMs observed in this study. Moreover, MRI helped identify the causative genes in some diseases (e.g., desminopathy and hereditary myopathy with early respiratory failure) and confirmed the pathogenicity of a novel mutation (e.g., adult-onset proximal rimmed vacuolar titinopathy) detected using next-generation sequencing. Discussion Collectively, our findings expand our knowledge of the genetic spectrum of RVMs in China and suggest that muscle imaging should be an integral part of assisting genetic testing and avoiding misdiagnosis in the diagnostic workup of RVM.
Collapse
|
11
|
Wang X, Liu H, Wang W, Sun Y, Zhang F, Guo L, Li J, Zhang W. Comparison of multifidus degeneration between scoliosis and lumbar disc herniation. BMC Musculoskelet Disord 2022; 23:891. [PMID: 36180878 PMCID: PMC9526284 DOI: 10.1186/s12891-022-05841-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Objective To assess and compare the pathological and radiological outcomes of multifidus degeneration in scoliosis and lumbar disc herniation patients. Methods We performed a retrospective review on 24 patients with scoliosis and 26 patients with lumbar disc herniation (LDH) in the Third Hospital of Hebei Medical University from January 2017 to March2021. The patients were divided into scoliosis group and LDH group according to the treatment. The MRI fatty infiltration rate (FIR) of multifidus and strength of back muscle were calculated to evaluate muscle condition. Multifidus biopsy samples were obtained during surgery in the affected side at L4 or L5 segment in LDH group and on the concavity side of apical vertebrae in scoliosis group. The biopsy fatty infiltration degree (FID) and FIR in two groups, the FIR of affected and unaffected side in LDH group, and the FIR of concavity and convexity side in scoliosis group were compared. The correlation between concavity-convexity FIR difference and cobb angle in scoliosis group, back muscle strength and FIR in LDH group, FID and FIR in both groups was calculated respectively. Results The FIR was higher in scoliosis group than in LDH group, higher in concavity side than convexity side in scoliosis group (both P < 0.05). The FID was higher in scoliosis group than in LDH group (P < 0.05). No significant difference was found between affected and unaffected side in LDH group (P > 0.05). There was a positive correlation between concavity-convexity FIR difference and cobb angle, FIR and FID (both P < 0.01). There was a negative correlation between back muscle strength and FIR (P < 0.01). The biopsy staining results showed that both two groups were found the existence of rimmed vacuoles, nuclear aggregation, and abnormal enzyme activity, indicating that the scoliosis and LDH may be associated with myogenic diseases. Conclusion The scoliosis patients showed more serious fatty infiltration than LDH patients and rare pathological findings were found in both diseases.
Collapse
Affiliation(s)
- Xianzheng Wang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 050000, Shijiazhuang, China
| | - Huanan Liu
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 050000, Shijiazhuang, China
| | - Weijian Wang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 050000, Shijiazhuang, China
| | - Yapeng Sun
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 050000, Shijiazhuang, China
| | - Fei Zhang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 050000, Shijiazhuang, China
| | - Lei Guo
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 050000, Shijiazhuang, China
| | - Jiaqi Li
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 050000, Shijiazhuang, China.
| | - Wei Zhang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 050000, Shijiazhuang, China.
| |
Collapse
|
12
|
Kim HJ, Mohassel P, Donkervoort S, Guo L, O'Donovan K, Coughlin M, Lornage X, Foulds N, Hammans SR, Foley AR, Fare CM, Ford AF, Ogasawara M, Sato A, Iida A, Munot P, Ambegaonkar G, Phadke R, O'Donovan DG, Buchert R, Grimmel M, Töpf A, Zaharieva IT, Brady L, Hu Y, Lloyd TE, Klein A, Steinlin M, Kuster A, Mercier S, Marcorelles P, Péréon Y, Fleurence E, Manzur A, Ennis S, Upstill-Goddard R, Bello L, Bertolin C, Pegoraro E, Salviati L, French CE, Shatillo A, Raymond FL, Haack TB, Quijano-Roy S, Böhm J, Nelson I, Stojkovic T, Evangelista T, Straub V, Romero NB, Laporte J, Muntoni F, Nishino I, Tarnopolsky MA, Shorter J, Bönnemann CG, Taylor JP. Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy. Nat Commun 2022; 13:2306. [PMID: 35484142 PMCID: PMC9050844 DOI: 10.1038/s41467-022-30015-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/25/2022] [Indexed: 01/05/2023] Open
Abstract
Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Here, we present ten independent families with a severe, progressive muscular dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-causing frameshift mutations abolish the native stop codon and extend the reading frame, creating novel transcripts that escape nonsense-mediated decay and are translated to produce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence. In contrast to previously reported disease-causing missense variants in HNRNPA2B1, these frameshift variants do not increase the propensity of hnRNPA2 protein to fibrillize. Rather, the frameshift variants have reduced affinity for the nuclear import receptor karyopherin β2, resulting in cytoplasmic accumulation of hnRNPA2 protein in cells and in animal models that recapitulate the human pathology. Thus, we expand the phenotypes associated with HNRNPA2B1 to include an early-onset form of OPMD caused by frameshift variants that alter its nucleocytoplasmic transport dynamics.
Collapse
Affiliation(s)
- Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Payam Mohassel
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Sandra Donkervoort
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Lin Guo
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kevin O'Donovan
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Maura Coughlin
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Xaviere Lornage
- Département Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U1258, Centre National de la Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch, France
| | - Nicola Foulds
- Wessex Clinical Genetics Services, Princess Anne Hospital, Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, England
| | - Simon R Hammans
- Wessex Neurological Centre, University Hospital Southampton, Southampton, UK
| | - A Reghan Foley
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Charlotte M Fare
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Alice F Ford
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Masashi Ogasawara
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
- Medical Genome Center, NCNP, Kodaira, Tokyo, Japan
| | - Aki Sato
- Department of Neurology, Niigata City General Hospital, Niigata, Japan
| | | | - Pinki Munot
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Gautam Ambegaonkar
- Department of Paediatric Neurology, Cambridge University Hospital NHS Trust, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
| | - Rahul Phadke
- Division of Neuropathology, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery London, UK and Division of Neuropathology, UCL Institute of Neurology, Dubowitz Neuromuscular Centre, London, UK
| | - Dominic G O'Donovan
- Department of Histopathology Box 235, Level 5 John Bonnett Clinical Laboratories Addenbrooke's Hospital, Cambridge, UK
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Irina T Zaharieva
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Lauren Brady
- Division of Neuromuscular & Neurometabolic Disorders, Department of Pediatrics, McMaster University, Hamilton Health Sciences Centre, Hamilton, ON, Canada
| | - Ying Hu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrea Klein
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Pediatric Neurology, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Maja Steinlin
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alice Kuster
- Department of Neurometabolism, University Hospital of Nantes, Nantes, France
| | - Sandra Mercier
- CHU Nantes, Service de génétique médicale, Centre de Référence des Maladies Neuromusculaires AOC, 44000, Nantes, France
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Pascale Marcorelles
- Service d'anatomopathologie, CHU Brest and EA 4685 LIEN, Université de Bretagne Occidentale, Brest, France
| | - Yann Péréon
- CHU de Nantes, Centre de Référence des Maladies Neuromusculaires, Filnemus, Euro-NMD, Hôtel-Dieu, Nantes, France
| | - Emmanuelle Fleurence
- Etablissement de Santé pour Enfants et Adolescents de la région Nantaise, Nantes, France
| | - Adnan Manzur
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Sarah Ennis
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rosanna Upstill-Goddard
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Bello
- Department of Neurosciences, DNS, University of Padova, Padova, Italy
| | - Cinzia Bertolin
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, IRP Città della Speranza, Padova, Italy
| | - Elena Pegoraro
- Department of Neurosciences, DNS, University of Padova, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, CIR-Myo Myology Center, University of Padova, IRP Città della Speranza, Padova, Italy
| | | | - Andriy Shatillo
- Institute of Neurology, Psychiatry and Narcology of NAMS of Ukraine, Kharkiv, Ukraine
| | - F Lucy Raymond
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, UK
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Susana Quijano-Roy
- Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches, France
| | - Johann Böhm
- Département Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U1258, Centre National de la Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch, France
| | - Isabelle Nelson
- Sorbonne Université, INSERM, Centre of Research in Myology, UMRS974, Paris, France
| | - Tanya Stojkovic
- APHP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Teresinha Evangelista
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Norma B Romero
- APHP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jocelyn Laporte
- Département Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U1258, Centre National de la Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch, France
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
- Medical Genome Center, NCNP, Kodaira, Tokyo, Japan
| | - Mark A Tarnopolsky
- Division of Neuromuscular & Neurometabolic Disorders, Department of Pediatrics, McMaster University, Hamilton Health Sciences Centre, Hamilton, ON, Canada
| | - James Shorter
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States.
- Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
13
|
Batlle C, Ventura S. Prion-like domain disease-causing mutations and misregulation of alternative splicing relevance in limb-girdle muscular dystrophy (LGMD) 1G. Neural Regen Res 2020; 15:2239-2240. [PMID: 32594036 PMCID: PMC7749493 DOI: 10.4103/1673-5374.284988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Cristina Batlle
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
14
|
Vicente LM, Martí P, Azorín I, Olivé M, Muelas N, Vilchez JJ. HNRNPDL-related limb girdle muscular dystrophy in a Spanish family with scapulo-peroneal phenotype, the first family in Europe. J Neurol Sci 2020; 414:116875. [PMID: 32407983 DOI: 10.1016/j.jns.2020.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Affiliation(s)
- L M Vicente
- Neuromuscular Reference Centre ERN EURO-NMD and Research Group on NMD and Ataxias, IIS La Fe and CIBERER, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 106, floor 5, tower C, 46026, Valencia, Spain.
| | - P Martí
- Neuromuscular Reference Centre ERN EURO-NMD and Research Group on NMD and Ataxias, IIS La Fe and CIBERER, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 106, floor 5, tower C, 46026, Valencia, Spain
| | - I Azorín
- Neuromuscular Reference Centre ERN EURO-NMD and Research Group on NMD and Ataxias, IIS La Fe and CIBERER, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 106, floor 5, tower C, 46026, Valencia, Spain
| | - M Olivé
- IDIBELL, Hospital Universitari de Bellvitge, Carrer de la Feixa Llarga, s/n, 08907 L'Hospitalet de Llobregat. Barcelona, Spain.
| | - N Muelas
- Neuromuscular Reference Centre ERN EURO-NMD and Research Group on NMD and Ataxias, IIS La Fe and CIBERER, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 106, floor 5, tower C, 46026, Valencia, Spain
| | - J J Vilchez
- Neuromuscular Reference Centre ERN EURO-NMD and Research Group on NMD and Ataxias, IIS La Fe and CIBERER, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 106, floor 5, tower C, 46026, Valencia, Spain.
| |
Collapse
|
15
|
Mair D, Biskup S, Kress W, Abicht A, Brück W, Zechel S, Knop KC, Koenig FB, Tey S, Nikolin S, Eggermann K, Kurth I, Ferbert A, Weis J. Differential diagnosis of vacuolar myopathies in the NGS era. Brain Pathol 2020; 30:877-896. [PMID: 32419263 PMCID: PMC8017999 DOI: 10.1111/bpa.12864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/10/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Altered autophagy accompanied by abnormal autophagic (rimmed) vacuoles detectable by light and electron microscopy is a common denominator of many familial and sporadic non-inflammatory muscle diseases. Even in the era of next generation sequencing (NGS), late-onset vacuolar myopathies remain a diagnostic challenge. We identified 32 adult vacuolar myopathy patients from 30 unrelated families, studied their clinical, histopathological and ultrastructural characteristics and performed genetic testing in index patients and relatives using Sanger sequencing and NGS including whole exome sequencing (WES). We established a molecular genetic diagnosis in 17 patients. Pathogenic mutations were found in genes typically linked to vacuolar myopathy (GNE, LDB3/ZASP, MYOT, DES and GAA), but also in genes not regularly associated with severely altered autophagy (FKRP, DYSF, CAV3, COL6A2, GYG1 and TRIM32) and in the digenic facioscapulohumeral muscular dystrophy 2. Characteristic histopathological features including distinct patterns of myofibrillar disarray and evidence of exocytosis proved to be helpful to distinguish causes of vacuolar myopathies. Biopsy validated the pathogenicity of the novel mutations p.(Phe55*) and p.(Arg216*) in GYG1 and of the p.(Leu156Pro) TRIM32 mutation combined with compound heterozygous deletion of exon 2 of TRIM32 and expanded the phenotype of Ala93Thr-caveolinopathy and of limb-girdle muscular dystrophy 2i caused by FKRP mutation. In 15 patients no causal variants were detected by Sanger sequencing and NGS panel analysis. In 12 of these cases, WES was performed, but did not yield any definite mutation or likely candidate gene. In one of these patients with a family history of muscle weakness, the vacuolar myopathy was eventually linked to chloroquine therapy. Our study illustrates the wide phenotypic and genotypic heterogeneity of vacuolar myopathies and validates the role of histopathology in assessing the pathogenicity of novel mutations detected by NGS. In a sizable portion of vacuolar myopathy cases, it remains to be shown whether the cause is hereditary or degenerative.
Collapse
Affiliation(s)
- Dorothea Mair
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany.,Department of Neurology, Kassel School of Medicine, Klinikum Kassel, Kassel, Germany.,University of Southampton, Southampton, UK
| | - Saskia Biskup
- Centre for Genomics and Transcriptomics CeGaT, Tübingen, Germany
| | - Wolfram Kress
- Institute of Human Genetics, University Würzburg, Würzburg, Germany
| | | | - Wolfgang Brück
- Institute of Neuropathology, Göttingen University, Göttingen, Germany
| | - Sabrina Zechel
- Institute of Neuropathology, Göttingen University, Göttingen, Germany
| | | | | | - Shelisa Tey
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Stefan Nikolin
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Katja Eggermann
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Andreas Ferbert
- Department of Neurology, Kassel School of Medicine, Klinikum Kassel, Kassel, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
16
|
Malfatti E, Cassandrini D, Rubegni A, Sartorelli FM, Villanova M. Respiratory muscle involvement in HNRNPDL LGMD D3 muscular dystrophy: an extensive clinical description of the first Italian patient. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:98-100. [PMID: 32904822 PMCID: PMC7460734 DOI: 10.36185/2532-1900-013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 11/25/2022]
Abstract
Limb girdle muscular dystrophy is a genetically inherited condition that primarily affects skeletal muscle leading to progressive, predominantly proximal muscle weakness at presentation. Autosomal dominant LGMD represent 10% of all LGMDs. HNRNPDL-related muscular dystrophy, LGMD1G/LGMD D3 (MIM#609115), is an extremely rare autosomal dominant adult onset myopathy described in a handful of families. Here we fully characterized the muscular and respiratory involvement of a 58 years old Italian woman presenting the previously reported pathogenic variant c.1132G > C p.(Asp378Asn) in the HNRNPDL gene.
Collapse
Affiliation(s)
- Edoardo Malfatti
- Neurology Department, Centre de Référence Maladies Neuromusculaires Nord-Est-Ile-de-France, CHU Raymond-Poincaré, Garches, France; U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR des sciences de la santé Simone Veil, Université Versailles-Saint-Quentin-en-Yvelines, France,Correspondence Edoardo Malfatti Service de Neurologie, Centre de Référence de Maladies Neuromusculaires Nord/Est/Ile-de-France, U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles-Saint-Quentin-en-Yvelines, Pôle neuro-locomoteur, Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, 92380 Garches. Tel.: +33 147107900. Fax: +33 171144993. E-mail:
| | - Denise Cassandrini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Anna Rubegni
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Filippo M. Sartorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | | |
Collapse
|
17
|
Finsterer J, Stöllberger C, Keller H, Laccone F. Variants in HNRNPDL and SETX Not Necessarily Indicate Familial Amyotrophic Lateral Sclerosis or Limb Girdle Muscular Dystrophy 1G in Acute Muscular Respiratory Failure. J Neurosci Rural Pract 2020; 11:353-354. [PMID: 32367994 PMCID: PMC7195953 DOI: 10.1055/s-0040-1709375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genetic work-up is useful for the identification of a primary myopathy. However, even sophisticated genetic methods may fail to detect the underlying cause of myopathy as in the following case. The patient is a 52-year-old female with a history of epilepsy, arterial hypertension, atrial flutter requiring cardioversion, ablation, and anticoagulation, coronary heart disease, hyperlipidemia, and hyper-CKemia. At age 52 years, she was referred for heart failure due to ischemic cardiomyopathy requiring appropriate medication and implantation of an ICD. During hospitalization she developed acute muscular respiratory failure requiring mechanical ventilation. Genetic panels for myopathy, neuropathy, and cardiomyopathy revealed variants of unknown significance in the
HNRNPDL
and
SETX
genes respectively. Clinical presentation and muscle biopsy, however, suggested metabolic myopathy. Acute muscular respiratory failure may require traditional diagnostic work-up for primary myopathy and long-term invasive and non-invasive ventilation. Panel investigations not necessarily lead to a conclusive diagnosis. The multisystem nature of the condition rather suggests a metabolic defect than LGMD-1G or fALS as genetic findings suggested.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria
| | - Claudia Stöllberger
- 2nd Medical Department with Cardiology and Intensive Care Medicine, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - Hans Keller
- 2nd Medical Department with Cardiology and Intensive Care Medicine, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Batlle C, Yang P, Coughlin M, Messing J, Pesarrodona M, Szulc E, Salvatella X, Kim HJ, Taylor JP, Ventura S. hnRNPDL Phase Separation Is Regulated by Alternative Splicing and Disease-Causing Mutations Accelerate Its Aggregation. Cell Rep 2020; 30:1117-1128.e5. [PMID: 31995753 PMCID: PMC6996132 DOI: 10.1016/j.celrep.2019.12.080] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/12/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Prion-like proteins form multivalent assemblies and phase separate into membraneless organelles. Heterogeneous ribonucleoprotein D-like (hnRNPDL) is a RNA-processing prion-like protein with three alternative splicing (AS) isoforms, which lack none, one, or both of its two disordered domains. It has been suggested that AS might regulate the assembly properties of RNA-processing proteins by controlling the incorporation of multivalent disordered regions in the isoforms. This, in turn, would modulate their activity in the downstream splicing program. Here, we demonstrate that AS controls the phase separation of hnRNPDL, as well as the size and dynamics of its nuclear complexes, its nucleus-cytoplasm shuttling, and amyloidogenicity. Mutation of the highly conserved D378 in the disordered C-terminal prion-like domain of hnRNPDL causes limb-girdle muscular dystrophy 1G. We show that D378H/N disease mutations impact hnRNPDL assembly properties, accelerating aggregation and dramatically reducing the protein solubility in the muscle of Drosophila, suggesting a genetic loss-of-function mechanism for this muscular disorder.
Collapse
Affiliation(s)
- Cristina Batlle
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra 08193, Spain
| | - Peiguo Yang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maura Coughlin
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - James Messing
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, Chevy Chase, MD 201815, USA
| | - Mireia Pesarrodona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Elzbieta Szulc
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028 Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, Chevy Chase, MD 201815, USA.
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra 08193, Spain.
| |
Collapse
|
19
|
MYO-MRI diagnostic protocols in genetic myopathies. Neuromuscul Disord 2019; 29:827-841. [DOI: 10.1016/j.nmd.2019.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022]
|