1
|
Abdi G, Jain M, Patil N, Upadhyay B, Vyas N, Dwivedi M, Kaushal RS. 14-3-3 proteins-a moonlight protein complex with therapeutic potential in neurological disorder: in-depth review with Alzheimer's disease. Front Mol Biosci 2024; 11:1286536. [PMID: 38375509 PMCID: PMC10876095 DOI: 10.3389/fmolb.2024.1286536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/05/2024] [Indexed: 02/21/2024] Open
Abstract
Alzheimer's disease (AD) affects millions of people worldwide and is a gradually worsening neurodegenerative condition. The accumulation of abnormal proteins, such as tau and beta-amyloid, in the brain is a hallmark of AD pathology. 14-3-3 proteins have been implicated in AD pathology in several ways. One proposed mechanism is that 14-3-3 proteins interact with tau protein and modulate its phosphorylation, aggregation, and toxicity. Tau is a protein associated with microtubules, playing a role in maintaining the structural integrity of neuronal cytoskeleton. However, in the context of Alzheimer's disease (AD), an abnormal increase in its phosphorylation occurs. This leads to the aggregation of tau into neurofibrillary tangles, which is a distinctive feature of this condition. Studies have shown that 14-3-3 proteins can bind to phosphorylated tau and regulate its function and stability. In addition, 14-3-3 proteins have been shown to interact with beta-amyloid (Aβ), the primary component of amyloid plaques in AD. 14-3-3 proteins can regulate the clearance of Aβ through the lysosomal degradation pathway by interacting with the lysosomal membrane protein LAMP2A. Dysfunction of lysosomal degradation pathway is thought to contribute to the accumulation of Aβ in the brain and the progression of AD. Furthermore, 14-3-3 proteins have been found to be downregulated in the brains of AD patients, suggesting that their dysregulation may contribute to AD pathology. For example, decreased levels of 14-3-3 proteins in cerebrospinal fluid have been suggested as a biomarker for AD. Overall, these findings suggest that 14-3-3 proteins may play an important role in AD pathology and may represent a potential therapeutic target for the disease. However, further research is needed to fully understand the mechanisms underlying the involvement of 14-3-3 proteins in AD and to explore their potential as a therapeutic target.
Collapse
Affiliation(s)
- Gholamareza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Mukul Jain
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Nil Patil
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Bindiya Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Nigam Vyas
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Biophysics and Structural Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | - Radhey Shyam Kaushal
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Biophysics and Structural Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
2
|
Altuna M, Ruiz I, Zelaya MV, Mendioroz M. Role of Biomarkers for the Diagnosis of Prion Diseases: A Narrative Review. Medicina (B Aires) 2022; 58:medicina58040473. [PMID: 35454316 PMCID: PMC9030755 DOI: 10.3390/medicina58040473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Abstract
Prion diseases are progressive and irreversible neurodegenerative disorders with a low incidence (1.5–2 cases per million per year). Genetic (10–15%), acquired (anecdotal) and sporadic (85%) forms of the disease have been described. The clinical spectrum of prion diseases is very varied, although the most common symptoms are rapidly progressive dementia, cerebellar ataxia and myoclonus. Mean life expectancy from the onset of symptoms is 6 months. There are currently diagnostic criteria based on clinical phenotype, as well as neuroimaging biomarkers (magnetic resonance imaging), neurophysiological tests (electroencephalogram and polysomnogram), and cerebrospinal fluid biomarkers (14-3-3 protein and real-time quaking-induced conversion (RT-QuIC)). The sensitivity and specificity of some of these tests (electroencephalogram and 14-3-3 protein) is under debate and the applicability of other tests, such as RT-QuIC, is not universal. However, the usefulness of these biomarkers beyond the most frequent prion disease, sporadic Creutzfeldt–Jakob disease, remains unclear. Therefore, research is being carried out on new, more efficient cerebrospinal fluid biomarkers (total tau, ratio total tau/phosphorylated tau and neurofilament light chain) and potential blood biomarkers (neurofilament light chain, among others) to try to universalize access to early diagnosis in the case of prion diseases.
Collapse
Affiliation(s)
- Miren Altuna
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau—Biomedical Research Institute Sant Pau—Universitat Autònoma de Barcelona, 08041 Barcelona, Spain;
- Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- CITA-Alzheimer Foundation, 20009 Donostia-San Sebastián, Spain
- Correspondence: ; Tel.: +34-935-56-59-86; Fax: +34-935-56-56-02
| | - Iñigo Ruiz
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau—Biomedical Research Institute Sant Pau—Universitat Autònoma de Barcelona, 08041 Barcelona, Spain;
| | - María Victoria Zelaya
- Department of Pathological Anatomy, Hospital Universitario de Navarra, 31008 Pamplona, Spain;
| | - Maite Mendioroz
- Department of Neurology, Hospital Universitario de Navarra, 31008 Pamplona, Spain;
- Neuroepigenetics Laboratory-Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute for Health Research), 31006 Pamplona, Spain
| |
Collapse
|
3
|
Hermann P, Haller P, Goebel S, Bunck T, Schmidt C, Wiltfang J, Zerr I. Total and Phosphorylated Cerebrospinal Fluid Tau in the Differential Diagnosis of Sporadic Creutzfeldt-Jakob Disease and Rapidly Progressive Alzheimer’s Disease. Viruses 2022; 14:v14020276. [PMID: 35215868 PMCID: PMC8874601 DOI: 10.3390/v14020276] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Background: CSF total-tau (t-tau) became a standard cerebrospinal fluid biomarker in Alzheimer’s disease (AD). In parallel, extremely elevated levels were observed in Creutzfeldt-Jakob disease (CJD). Therefore, tau is also considered as an alternative CJD biomarker, potentially complicating the interpretation of results. We investigated CSF t-tau and the t-tau/phosphorylated tau181 ratio in the differential diagnosis of sCJD and rapidly-progressive AD (rpAD). In addition, high t-tau concentrations and associated tau-ratios were explored in an unselected laboratory cohort. Methods: Retrospective analyses included n = 310 patients with CJD (n = 205), non-rpAD (n = 65), and rpAD (n = 40). The diagnostic accuracies of biomarkers were calculated and compared. Differential diagnoses were evaluated in patients from a neurochemistry laboratory with CSF t-tau >1250 pg/mL (n = 199 out of 7036). Results: CSF t-tau showed an AUC of 0.942 in the discrimination of sCJD from AD and 0.918 in the discrimination from rpAD. The tau ratio showed significantly higher AUCs (p < 0.001) of 0.992 versus non-rpAD and 0.990 versus rpAD. In the neurochemistry cohort, prion diseases accounted for only 25% of very high CSF t-tau values. High tau-ratios were observed in CJD, but also in non-neurodegenerative diseases. Conclusions: CSF t-tau is a reliable biomarker for sCJD, but false positive results may occur, especially in rpAD and acute encephalopathies. The t-tau/p-tau ratio may improve the diagnostic accuracy in centers where specific biomarkers are not available.
Collapse
Affiliation(s)
- Peter Hermann
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, 37075 Göttingen, Germany; (P.H.); (S.G.); (T.B.); (C.S.); (I.Z.)
- Correspondence: ; Tel.: +49-551-39-8955
| | - Philip Haller
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, 37075 Göttingen, Germany; (P.H.); (S.G.); (T.B.); (C.S.); (I.Z.)
| | - Stefan Goebel
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, 37075 Göttingen, Germany; (P.H.); (S.G.); (T.B.); (C.S.); (I.Z.)
| | - Timothy Bunck
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, 37075 Göttingen, Germany; (P.H.); (S.G.); (T.B.); (C.S.); (I.Z.)
| | - Christian Schmidt
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, 37075 Göttingen, Germany; (P.H.); (S.G.); (T.B.); (C.S.); (I.Z.)
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Inga Zerr
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, 37075 Göttingen, Germany; (P.H.); (S.G.); (T.B.); (C.S.); (I.Z.)
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
4
|
Fayolle M, Lehmann S, Delaby C. Comparison of cerebrospinal fluid tau, ptau(181), synuclein, and 14-3-3 for the detection of Creutzfeldt-Jakob disease in clinical practice. J Neural Transm (Vienna) 2022; 129:133-139. [PMID: 35041062 DOI: 10.1007/s00702-021-02443-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Creutzfeldt-Jakob disease (CJD) is the leading human prion disease and is a major public health concern, with the risk of secondary iatrogenic transmission. Screening for CJD is often based on the detection of 14-3-3 protein in cerebrospinal fluid (CSF) through western blot assay and, in a second step, on a more specific method such as RT-QuIC (Real-Time Quaking-Induced Conversion). Alternatives to the detection of 14-3-3 in CSF have recently been proposed, specifically CSF tau proteins, tau/p-tau(181) ratio, and alpha-synuclein. In the present work, we compare the diagnostic performance of these biomarkers with that of 14-3-3 protein in a cohort of suspected CJD patients. Our results indicate that tau detection is the most effective and suitable approach for routine disease detection in a clinical setting. Combination with other biomarkers does not improve overall performance, while the tau/p-tau(181) ratio remains useful for differentiating Alzheimer's from CJD. In the end, the performance of tau protein detection in CSF reached 78% sensitivity and 80% specificity for the detection of CJD. It is interesting to note that the use of an automated method with a high concentration range allows for rapid and accurate results, which is very useful in clinical practice and allows for confirmatory testing such as RT-QuIC without delay.
Collapse
Affiliation(s)
- Martin Fayolle
- Laboratoire de Biochimie Protéomique Clinique-PPC, Hôpital St Eloi, Univ Montpellier, CHU Montpellier, INM INSERM, IRMB 80 av A Fiche, 34295, Montpellier, France
| | - Sylvain Lehmann
- Laboratoire de Biochimie Protéomique Clinique-PPC, Hôpital St Eloi, Univ Montpellier, CHU Montpellier, INM INSERM, IRMB 80 av A Fiche, 34295, Montpellier, France.
| | - Constance Delaby
- Laboratoire de Biochimie Protéomique Clinique-PPC, Hôpital St Eloi, Univ Montpellier, CHU Montpellier, INM INSERM, IRMB 80 av A Fiche, 34295, Montpellier, France.,Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Hai X, Zhou J, Liu G. Construction of immune/Creutzfeldt-Jakob disease-related gene coexpression network to predict biomarkers. Eur J Neurol 2021; 29:47-58. [PMID: 34390074 DOI: 10.1111/ene.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Creutzfeldt-Jakob disease (CJD) is a transmissible spongiform encephalopathy characterized by rapid onset and high mortality. Despite considerable progress in the treatment and diagnosis of CJD, patient prognosis remains poor. Many studies have found that the immune response is associated with the pathophysiology of CJD. However, few studies have reported coexpression correlations between genes associated with CJD and the immune response. This study was undertaken to construct a network of coexpressed immune- and CJD-related genes that may reveal new biomarkers and therapeutic targets for CJD. METHODS Gene expression data from 11 CJD patients and 10 nonneurological controls were obtained from the Gene Expression Omnibus database. High-confidence protein-protein interaction (PPI) data were downloaded from the Human Protein Reference Database, and gene expression data of immune- and CJD-associated genes were downloaded from the AmiGo16 and DisGeNET databases, respectively. An immune/CJD-related expression network was constructed based on Pearson correlation coefficients and PPI networks, and a CJD-directed neighbour coexpression network was extracted, in which we compared the gene expression patterns and correlations between different groups. The samples were classified using CJD-specific modules, and differentially expressed genes (DEGs) between the CJD and nonneurological controls groups were identified within the CJD-specific modules. Further functional analysis was performed using Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis of genes in each CJD-specific module. RESULTS We constructed an immune/CJD-related coexpression gene network comprising 2007 nodes and 5268 edges, with immune-associated genes occupying important positions in the network. In the CJD-directed neighbour coexpression network, immune-associated genes exhibited the highest coexpression level with their interacting genes. Results from Pearson correlation analysis showed that most of the CJD-associated genes were positively correlated with immune-associated genes. Screening for CJD-specific modules identified MAPK1, CASP3, APP, MAPT, SNCA, and YWHAH, indicating a close connection between CJD and the immune response. Analyses of coexpression status and expression level of CJD-specific genes revealed a very high coexpression pattern for any two genes, with most genes being DEGs. Finally, KEGG enrichment analyses of all CJD-specific genes showed that the pathophysiology of CJD is closely related to infection and the immune response. CONCLUSIONS Our coexpression network analysis revealed a close connection between CJD- and immune-associated genes, and we identified six CJD-specific modules. Biological function analysis of CJD-specific module genes revealed that immune responses are associated with CJD pathophysiology and may provide novel diagnostic and therapeutic biomarkers for this disease.
Collapse
Affiliation(s)
- Xiaoou Hai
- Department of Pathogenic Biology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Jiaming Zhou
- Franklin and Marshall College, Lancaster, Pennsylvania, USA
| | - Guangyan Liu
- Department of Pathogenic Biology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| |
Collapse
|
6
|
Ascari LM, Rocha SC, Gonçalves PB, Vieira TCRG, Cordeiro Y. Challenges and Advances in Antemortem Diagnosis of Human Transmissible Spongiform Encephalopathies. Front Bioeng Biotechnol 2020; 8:585896. [PMID: 33195151 PMCID: PMC7606880 DOI: 10.3389/fbioe.2020.585896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, arise from the structural conversion of the monomeric, cellular prion protein (PrPC) into its multimeric scrapie form (PrPSc). These pathologies comprise a group of intractable, rapidly evolving neurodegenerative diseases. Currently, a definitive diagnosis of TSE relies on the detection of PrPSc and/or the identification of pathognomonic histological features in brain tissue samples, which are usually obtained postmortem or, in rare cases, by brain biopsy (antemortem). Over the past two decades, several paraclinical tests for antemortem diagnosis have been developed to preclude the need for brain samples. Some of these alternative methods have been validated and can provide a probable diagnosis when combined with clinical evaluation. Paraclinical tests include in vitro cell-free conversion techniques, such as the real-time quaking-induced conversion (RT-QuIC), as well as immunoassays, electroencephalography (EEG), and brain bioimaging methods, such as magnetic resonance imaging (MRI), whose importance has increased over the years. PrPSc is the main biomarker in TSEs, and the RT-QuIC assay stands out for its ability to detect PrPSc in cerebrospinal fluid (CSF), olfactory mucosa, and dermatome skin samples with high sensitivity and specificity. Other biochemical biomarkers are the proteins 14-3-3, tau, neuron-specific enolase (NSE), astroglial protein S100B, α-synuclein, and neurofilament light chain protein (NFL), but they are not specific for TSEs. This paper reviews the techniques employed for definite diagnosis, as well as the clinical and paraclinical methods for possible and probable diagnosis, both those in use currently and those no longer employed. We also discuss current criteria, challenges, and perspectives for TSE diagnosis. An early and accurate diagnosis may allow earlier implementation of strategies to delay or stop disease progression.
Collapse
Affiliation(s)
- Lucas M. Ascari
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephanie C. Rocha
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila B. Gonçalves
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|