1
|
Gandolfi M, Sandri A, Mariotto S, Tamburin S, Paolicelli A, Fiorio M, Pedrotti G, Barone P, Pellecchia MT, Erro R, Cuoco S, Carotenuto I, Vinciguerra C, Botto A, Zenere L, Canu E, Sibilla E, Filippi M, Sarasso E, Agosta F, Tinazzi M. A window into the mind-brain-body interplay: Development of diagnostic, prognostic biomarkers, and rehabilitation strategies in functional motor disorders. PLoS One 2024; 19:e0309408. [PMID: 39325803 PMCID: PMC11426512 DOI: 10.1371/journal.pone.0309408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND AND AIMS Functional motor disorders (FMD) present a prevalent, yet misunderstood spectrum of neurological conditions characterized by abnormal movements (i.e., functional limb weakness, tremor, dystonia, gait impairments), leading to substantial disability and diminished quality of life. Despite their high prevalence, FMD often face delayed diagnosis and inadequate treatment, resulting in significant social and economic burdens. The old concept of psychological factors as the primary cause (conversion disorder) has been abandoned due to the need for more evidence about their causal role. According to a predictive coding account, the emerging idea is that symptoms and disability may depend on dysfunctions of a specific neural system integrating interoception, exteroception, and motor control. Consequently, symptoms are construed as perceptions of the body's state. Besides the main pathophysiological features (abnormal attentional focus, beliefs/expectations, and sense of agency), the lived experience of symptoms and their resulting disability may depend on an altered integration at the neural level of interoception, exteroception, and motor control. METHODS AND MATERIALS Our proposal aims to elucidate the pathophysiological mechanisms of FMD through a three-stage research approach. Initially, a large cohort study will collect behavioral, neurophysiological, and MRI biomarkers from patients with FMD and healthy controls, employing eXplainable Artificial Intelligence (XAI) to develop a diagnostic algorithm. Subsequently, validation will occur using patients with organic motor disorders. Finally, the algorithm's prognostic value will be explored post-rehabilitation in one subgroup of patients with FMD. RESULTS Data collection for the present study started in May 2023, and by May 2025, data collection will conclude. DISCUSSION Our approach seeks to enhance early diagnosis and prognostication, improve FMD management, and reduce associated disability and socio-economic costs by identifying disease-specific biomarkers. TRIAL REGISTRATION This trial was registered in clinicaltrials.gov (NCT06328790).
Collapse
Affiliation(s)
- Marialuisa Gandolfi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Angela Sandri
- Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Sara Mariotto
- Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Paolicelli
- Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Mirta Fiorio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giulia Pedrotti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | | | | | - Sofia Cuoco
- Neurological Clinic, AOU San Giovanni di Dio e Ruggi d'Aragona, Salerno, Italy
| | | | - Claudia Vinciguerra
- Neurological Clinic, AOU San Giovanni di Dio e Ruggi d'Aragona, Salerno, Italy
| | - Annibale Botto
- Department of Neuroradiology, AOU San Giovanni di Dio e Ruggi d'Aragona, Salerno, Italy
| | - Lucia Zenere
- Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Sibilla
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
2
|
Sarasso E, Gardoni A, Zenere L, Emedoli D, Balestrino R, Grassi A, Basaia S, Tripodi C, Canu E, Malcangi M, Pelosin E, Volontè MA, Corbetta D, Filippi M, Agosta F. Neural correlates of bradykinesia in Parkinson's disease: a kinematic and functional MRI study. NPJ Parkinsons Dis 2024; 10:167. [PMID: 39242570 PMCID: PMC11379907 DOI: 10.1038/s41531-024-00783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
Bradykinesia is defined as a "complex" of motor alterations including decreased movement amplitude and/or speed and tendency to reduce them with movement repetition (sequence effect). This study aimed at investigating the neural and kinematic correlates of bradykinesia during hand-tapping in people with Parkinson's disease (pwPD) relative to healthy controls. Twenty-five pwPD and 25 age- and sex-matched healthy controls underwent brain functional MRI (fMRI) during a hand-tapping task: subjects alternatively opened and closed their right hand as fully and quickly as possible. Hand-tapping kinematic parameters were objectively measured during the fMRI task using an optical fibre glove. During the fMRI task, pwPD showed reduced hand-tapping amplitude (hypokinesia) and a greater sequence effect. PwPD relative to healthy controls showed a reduced activity of fronto-parietal areas, middle cingulum/supplementary motor area (SMA), parahippocampus, pallidum/thalamus and motor cerebellar areas. Moreover, pwPD showed an increased activity of brain cognitive areas such as superior temporal gyrus, posterior cingulum, and cerebellum crus I. The decreased activity of cerebellum IV-V-VI, vermis IV-V, inferior frontal gyrus, and cingulum/SMA correlated with hypokinesia and with the sequence effect. Interestingly, a reduced activity of areas involved in motor planning and timing correlated both with hypokinesia and with the sequence effect in pwPD. This study has the major strength of collecting objective motor parameters and brain activity simultaneously, providing a unique opportunity to investigate the neural correlates of the "bradykinesia complex".
Collapse
Affiliation(s)
- Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Andrea Gardoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Lucia Zenere
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Emedoli
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Balestrino
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Grassi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Tripodi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Malcangi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Davide Corbetta
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
3
|
Kim E, Yun SJ, Oh BM, Seo HG. Changes of neural coupling between cognitive and motor networks associated with dual-task performance in Parkinson's disease. Neurol Sci 2024; 45:2651-2659. [PMID: 38153677 DOI: 10.1007/s10072-023-07255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/02/2023] [Indexed: 12/29/2023]
Abstract
BACKGOUND Although cognitive control is essential for efficient gait, the associations between cognitive and motor networks regarding gait in individuals with Parkinson's disease (PD) remain to be determined. Herein, we enrolled 28 PD and 28 controls to compare internetwork coupling among cognitive and motor networks and examine its relationship with single- and dual-task gait performance in PD. METHODS The dorsal attention network (DAN), left and right frontoparietal control networks (FPNs), sensorimotor network, and lateral motor network were identified using resting-state functional magnetic resonance imaging data. The time taken to complete a 10-m walk test during cognitive or physical dual-tasks in PD was calculated representing gait performance. RESULTS We observed that the internetwork couplings between the DAN and motor networks and between the motor networks decreased whereas those between the left FPN and DAN and motor networks increased in PD compared to controls using a permutation test. There was no significant correlation between the internetwork couplings and single- and dual-task gait performance in PD. Nevertheless, improved cognitive dual-task performance showed a positive correlation with the DAN and left FPN coupling and a negative correlation with the DAN and lateral motor network coupling in a good performance group. The opposite relationship was observed in the poor cognitive dual-task performance group. CONCLUSION Our findings suggest a neural mechanism of cognitive control on gait to compensate for reduced goal-directed attention in PD who maintain cognitive dual-task performance.
Collapse
Affiliation(s)
- Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Seo Jung Yun
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Institute On Aging, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
4
|
Potvin-Desrochers A, Martinez-Moreno A, Clouette J, Parent-L'Ecuyer F, Lajeunesse H, Paquette C. Upregulation of the parietal cortex improves freezing of gait in Parkinson's disease. J Neurol Sci 2023; 452:120770. [PMID: 37633012 DOI: 10.1016/j.jns.2023.120770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND The posterior parietal cortex (PPC) is a key brain area for visuospatial processing and locomotion. It has been repetitively shown to be involved in the neural correlates of freezing of gait (FOG), a common symptom of Parkinson's disease (PD). However, current neuroimaging modalities do not allow to precisely determine the role of the PPC during real FOG episodes. OBJECTIVES The purpose of this study was to modulate the PPC cortical excitability using repetitive transcranial magnetic stimulation (rTMS) to determine whether the PPC contributes to FOG or compensates for dysfunctional neural networks to reduce FOG. METHODS Fourteen participants with PD who experience freezing took part in a proof of principle study consisting of three experimental sessions targeting the PPC with inhibitory, excitatory, and sham rTMS. Objective FOG outcomes and cortical excitability measurements were acquired before and after each stimulation protocol. RESULTS Increasing PPC excitability resulted in significantly fewer freezing episodes and percent time frozen during a FOG-provoking task. This reduction in FOG most likely emerged from the trend in PPC inhibiting the lower leg motor cortex excitability. CONCLUSION Our results suggest that the recruitment of the PPC is linked to less FOG, providing support for the beneficial role of the PPC upregulation in preventing FOG. This could potentially be linked to a reduction of the cortical input burden on the basal ganglia prior to FOG. Excitatory rTMS interventions targeting the PPC may have the potential to reduce FOG.
Collapse
Affiliation(s)
- Alexandra Potvin-Desrochers
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; McGill University, Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada
| | - Alejandra Martinez-Moreno
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada
| | - Julien Clouette
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada
| | - Frédérike Parent-L'Ecuyer
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada
| | - Henri Lajeunesse
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada
| | - Caroline Paquette
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; McGill University, Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada.
| |
Collapse
|
5
|
Gan C, Ji M, Sun H, Cao X, Shi J, Wang L, Zhang H, Yuan Y, Zhang K. Dynamic functional connectivity reveals hyper-connected pattern and abnormal variability in freezing of gait of Parkinson's disease. Neurobiol Dis 2023; 185:106265. [PMID: 37597816 DOI: 10.1016/j.nbd.2023.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Freezing of gait (FOG) is an intractable and paroxysmal gait disorder that seriously affects the quality of life of Parkinson's disease (PD) patients. Emerging studies have reported abnormal brain activity of distributed networks in FOG patients, whereas ignoring the intrinsic dynamic fluctuations of functional connectivity. The purpose of this study was to examine the dynamic functional network connectivity (dFNC) of PD-FOG. METHODS In total, 52 PD patients with FOG (PD-FOG), 73 without FOG (PD-NFOG) and 38 healthy controls (HCs) received resting state functional magnetic resonance imaging (rs-fMRI). Sliding window method, k-means clustering and graph theory analysis were employed to retrieve dynamic characteristics of PD-FOG. Partial correlation analysis was conducted to verify whether the dFNC was related to freezing gait severity. RESULTS Seven brain networks were identified and configured into seven states. Compared to PD-NFOG, significant spatial pattern was identified for state 2 in freezers, showing increased functional coupling between default mode network (DMN) and basal ganglia network (BG), as a concrete manifestation of increased precuneus-caudate coupling. The mean dwell time and fractional window of state 2 had a positive correlation with FOG severity. Furthermore, PD-FOG group exhibited lower variance in nodal efficiency of independent components (IC) 7 (left precuneus). CONCLUSIONS Our study suggested that aberrant coupling of precuneus-caudate and disrupted variability of precuneus efficiency might be associated to the neural mechanisms of FOG.
Collapse
Affiliation(s)
- Caiting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Min Ji
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huimin Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xingyue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiaxin Shi
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lina Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yongsheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
6
|
Gan Y, Xie H, Qin G, Wu D, Shan M, Hu T, Yin Z, An Q, Ma R, Wang S, Zhang Q, Zhu G, Zhang J. Association between Cognitive Impairment and Freezing of Gait in Patients with Parkinson's Disease. J Clin Med 2023; 12:jcm12082799. [PMID: 37109137 PMCID: PMC10145607 DOI: 10.3390/jcm12082799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Background: Freezing of gait (FOG) is a common disabling symptom in Parkinson's disease (PD). Cognitive impairment may contribute to FOG. Nevertheless, their correlations remain controversial. We aimed to investigate cognitive differences between PD patients with and without FOG (nFOG), explore correlations between FOG severity and cognitive performance and assess cognitive heterogeneity within the FOG patients. Methods: Seventy-four PD patients (41 FOG, 33 nFOG) and 32 healthy controls (HCs) were included. Comprehensive neuropsychological assessments testing cognitive domains of global cognition, executive function/attention, working memory, and visuospatial function were performed. Cognitive performance was compared between groups using independent t-test and ANCOVA adjusting for age, sex, education, disease duration and motor symptoms. The k-means cluster analysis was used to explore cognitive heterogeneity within the FOG group. Correlation between FOG severity and cognition were analyzed using partial correlations. Results: FOG patients showed significantly poorer performance in global cognition (MoCA, p < 0.001), frontal lobe function (FAB, p = 0.015), attention and working memory (SDMT, p < 0.001) and executive function (SIE, p = 0.038) than nFOG patients. The FOG group was divided into two clusters using the cluster analysis, of which cluster 1 exhibited worse cognition, and with older age, lower improvement rate, higher FOGQ3 score, and higher proportion of levodopa-unresponsive FOG than cluster 2. Further, in the FOG group, cognition was significantly correlated with FOG severity in MoCA (r = -0.382, p = 0.021), Stroop-C (r = 0.362, p = 0.030) and SIE (r = 0.369, p = 0.027). Conclusions: This study demonstrated that the cognitive impairments of FOG were mainly reflected by global cognition, frontal lobe function, executive function, attention and working memory. There may be heterogeneity in the cognitive impairment of FOG patients. Additionally, executive function was significantly correlated with FOG severity.
Collapse
Affiliation(s)
- Yifei Gan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Guofan Qin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Delong Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ming Shan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Tianqi Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| |
Collapse
|
7
|
Chung JW, Bower AE, Malik I, Martello JP, Knight CA, Jeka JJ, Burciu RG. Imaging the lower limb network in Parkinson's disease. Neuroimage Clin 2023; 38:103399. [PMID: 37058977 PMCID: PMC10131075 DOI: 10.1016/j.nicl.2023.103399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Despite the significant impact of lower limb symptoms on everyday life activities in Parkinson's disease (PD), knowledge of the neural correlates of lower limb deficits is limited. OBJECTIVE We ran an fMRI study to investigate the neural correlates of lower limb movements in individuals with and without PD. METHODS Participants included 24 PD and 21 older adults who were scanned while performing a precisely controlled isometric force generation task by dorsiflexing their ankle. A novel MRI-compatible ankle dorsiflexion device that limits head motion during motor tasks was used. The PD were tested on their more affected side, whereas the side in controls was randomized. Importantly, PD were tested in the off-state, following overnight withdrawal from antiparkinsonian medication. RESULTS The foot task revealed extensive functional brain changes in PD compared to controls, with reduced fMRI signal during ankle dorsiflexion within the contralateral putamen and M1 foot area, and ipsilateral cerebellum. The activity of M1 foot area was negatively correlated with the severity of foot symptoms based on the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS-III). CONCLUSION Overall, current findings provide new evidence of brain changes underlying motor symptoms in PD. Our results suggest that pathophysiology of lower limb symptoms in PD appears to involve both the cortico-basal ganglia and cortico-cerebellar motor circuits.
Collapse
Affiliation(s)
- Jae Woo Chung
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Abigail E Bower
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Ibrahim Malik
- Center for Biomedical & Brain Imaging, University of Delaware, Newark, DE, United States
| | - Justin P Martello
- Department of Neurosciences, Christiana Care Health System, Newark, DE, United States
| | - Christopher A Knight
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States; Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE, United States
| | - John J Jeka
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States; Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE, United States
| | - Roxana G Burciu
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States; Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE, United States.
| |
Collapse
|
8
|
Monaghan AS, Gordon E, Graham L, Hughes E, Peterson DS, Morris R. Cognition and freezing of gait in Parkinson's disease: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 147:105068. [PMID: 36738813 DOI: 10.1016/j.neubiorev.2023.105068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Freezing of gait (FOG) is a common and disabling symptom in people with Parkinson's Disease (PwPD). Although cognition is thought to be worse in PwPD who freeze, a comprehensive analysis of this relationship will inform future research and clinical care. This systematic review and meta-analysis compared cognition between PwPD who do and do not exhibit FOG across a range of cognitive domains and assessed the impact of disease severity and medication status on this relationship. 145 papers (n = 9010 participants) were included in the analysis, with 144 and 138 articles meeting the criteria to assess moderating effects of disease severity and medication status, respectively. PwPD who freeze exhibited worse cognition than PwPD without FOG across global cognition, executive function/attention, language, memory, and visuospatial domains. Greater disease severity and "ON" levodopa medication status moderated the FOG status-cognition relationship in global cognitive performance but not in other cognitive domains. This meta-analysis confirmed that cognition is worse in PwPD with FOG and highlights the importance of disease severity and medication status in this relationship.
Collapse
Affiliation(s)
- A S Monaghan
- College of Health Solutions, Arizona State University, 5th St., Phoenix, AZ 85282, USA
| | - E Gordon
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - L Graham
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - E Hughes
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - D S Peterson
- College of Health Solutions, Arizona State University, 5th St., Phoenix, AZ 85282, USA; Phoenix VA Health Care Center, 650 E Indian School Rd, Phoenix, AZ, USA.
| | - R Morris
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Gardoni A, Sarasso E, Agosta F, Filippi M, Corbetta D. Rehabilitative interventions for impaired handwriting in people with Parkinson's disease: a scoping review. Neurol Sci 2023:10.1007/s10072-023-06752-6. [PMID: 36964814 DOI: 10.1007/s10072-023-06752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/12/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND People with Parkinson's disease (PD) often complain about handwriting difficulties. Currently, there is no consensus on the rehabilitative treatment and outcome measures for handwriting rehabilitation in PD. OBJECTIVES This study aims to investigate evidence on handwriting rehabilitation in people with PD, examining characteristics of interventions and outcomes. METHODS A scoping review was conducted according to Arksey and O'Malley's framework and PRISMA-ScR List. We searched electronic databases of PubMed, Physiotherapy Evidence Database, Cochrane Central Register of Controlled Trials, and Embase since inception to January 2023. We included interventional studies assessing the effects of structured rehabilitation programs for impaired handwriting in people with PD. Two reviewers independently selected studies, extracted data, and assessed the risk of bias using the Cochrane Collaboration's tool for assessing Risk of Bias version 2 or the Risk Of Bias In Non-randomized Studies. We performed a narrative analysis on training characteristics and assessed outcomes. RESULTS We included eight studies. The risk of bias was generally high. Either handwriting-specific or handwriting-non-specific trainings were proposed, and most studies provided a home-based training. Handwriting-specific training improved writing amplitude while handwriting-non-specific trainings, such as resistance and stretching/relaxation programs, resulted in increased writing speed. CONCLUSIONS The current knowledge is based on few and heterogeneous studies with high risk of bias. Handwriting-specific training might show potential benefits on handwriting in people with PD. Further high-quality randomized controlled trials are needed to reveal the effect of handwriting training in people with PD on standardized outcome measures. Handwriting-specific training could be combined to resistance training and stretching, which seemed to influence writing performance.
Collapse
Affiliation(s)
- Andrea Gardoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Corbetta
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
10
|
Cerebellar alterations in Parkinson's disease with postural instability and gait disorders. J Neurol 2023; 270:1735-1744. [PMID: 36534200 DOI: 10.1007/s00415-022-11531-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Few studies interrogated the involvement of cerebellum in modulating gait in Parkinson's disease (PD) patients with postural instability and gait disorders (PD-PIGD). This study aimed at assessing cerebellar atrophy and activity alterations during functional MRI (fMRI) gait-simulating motor- and dual-tasks in PD-PIGD. METHODS Twenty-one PD-PIGD and 23 healthy controls underwent clinical assessment, structural MRI, and fMRI including a motor-task (foot anti-phase movements) and a dual-task (foot anti-phase movements while counting backwards by threes). Grey matter cerebellar volumes were assessed using SUIT atlas. FMRI activations were extracted from each cerebellar lobule, and we correlated cerebellar and basal ganglia activity. RESULTS PD-PIGD patients had reduced volumes of cerebellar motor and non-motor areas relative to controls. During fMRI motor-task, patients showed greater activation of cognitive cerebellar areas (VI and Crus I-II) vs controls. During fMRI dual-task, PD-PIGD patients showed increased activity of cognitive areas (Crus II) and reduced activity of motor areas (I-IV). Cerebellar structural alterations correlated with increased fMRI activity of cerebellar cognitive areas and with lower executive-attentive performance. The increased activity of Crus I during the motor-task correlated with a better motor performance in PD-PIGD. Moreover, the increased activity of cerebellum correlated with a reduced activity of putamen. CONCLUSIONS In PD-PIGD, the increased activity of non-motor cerebellar areas during gait-simulating tasks may be a consequence of grey matter atrophy or an attempt to compensate the functional failure of cerebellar motor areas and basal ganglia. Cerebellar MRI metrics are useful to characterize brain correlates of motor and dual-task abilities in PD-PIGD patients.
Collapse
|
11
|
Sarasso E, Filippi M, Agosta F. Clinical and MRI features of gait and balance disorders in neurodegenerative diseases. J Neurol 2023; 270:1798-1807. [PMID: 36577818 DOI: 10.1007/s00415-022-11544-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Gait and balance disorders are common signs in several neurodegenerative diseases such as Parkinson's disease, atypical parkinsonism, idiopathic normal pressure hydrocephalus, cerebrovascular disease, dementing disorders and multiple sclerosis. According to each condition, patients present with different gait and balance alterations depending on the structural and functional brain changes through the disease course. In this review, we will summarize the main clinical characteristics of gait and balance disorders in the major neurodegenerative conditions, providing an overview of the significant structural and functional MRI brain alterations underlying these deficits. We also will discuss the role of neurorehabilitation strategies in promoting brain plasticity and gait/balance improvements in these patients.
Collapse
Affiliation(s)
- Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
12
|
Albano L, Agosta F, Basaia S, Cividini C, Stojkovic T, Sarasso E, Stankovic I, Tomic A, Markovic V, Canu E, Stefanova E, Mortini P, Kostic VS, Filippi M. Altered Functional Connectivity of the Subthalamic Nucleus in Parkinson's Disease: Focus on Candidates for Deep Brain Stimulation. JOURNAL OF PARKINSON'S DISEASE 2023; 13:797-809. [PMID: 37270810 PMCID: PMC10473091 DOI: 10.3233/jpd-230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The hypothesis that the effectiveness of deep brain stimulation (DBS) in Parkinson's disease (PD) would be related to connectivity dysfunctions between the site of stimulation and other brain regions is growing. OBJECTIVE To investigate how the subthalamic nucleus (STN), the most frequently used DBS target for PD, is functionally linked to other brain regions in PD patients according to DBS eligibility. METHODS Clinical data and resting-state functional MRI were acquired from 60 PD patients and 60 age- and sex-matched healthy subjects within an ongoing longitudinal project. PD patients were divided into 19 patients eligible for DBS and 41 non-candidates. Bilateral STN were selected as regions of interest and a seed-based functional MRI connectivity analysis was performed. RESULTS A decreased functional connectivity between STN and sensorimotor cortex in both PD patient groups compared to controls was found. Whereas an increased functional connectivity between STN and thalamus was found in PD patient groups relative to controls. Candidates for DBS showed a decreased functional connectivity between bilateral STN and bilateral sensorimotor areas relative to non-candidates. In patients eligible for DBS, a weaker STN functional connectivity with left supramarginal and angular gyri was related with a more severe rigidity and bradykinesia whereas a higher connectivity between STN and cerebellum/pons was related to poorer tremor score. CONCLUSION Our results suggest that functional connectivity of STN varies among PD patients eligible or not for DBS. Future studies would confirm whether DBS modulates and restores functional connectivity between STN and sensorimotor areas in treated patients.
Collapse
Affiliation(s)
- Luigi Albano
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
- Neurosurgery and Gamma Knife Radiosurgery Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Camilla Cividini
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Tanja Stojkovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Iva Stankovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Tomic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladana Markovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elka Stefanova
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Pietro Mortini
- Neurosurgery and Gamma Knife Radiosurgery Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Vladimir S. Kostic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Neurorehabilitation Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Neurophysiology Service, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
13
|
Feng H, Jiang Y, Lin J, Qin W, Jin L, Shen X. Cortical activation and functional connectivity during locomotion tasks in Parkinson's disease with freezing of gait. Front Aging Neurosci 2023; 15:1068943. [PMID: 36967824 PMCID: PMC10032375 DOI: 10.3389/fnagi.2023.1068943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Freezing of gait (FoG) is a severely disabling symptom in Parkinson's disease (PD). The cortical mechanisms underlying FoG during locomotion tasks have rarely been investigated. Objectives We aimed to compare the cerebral haemodynamic response during FoG-prone locomotion tasks in patients with PD and FoG (PD-FoG), patients with PD but without FoG (PD-nFoG), and healthy controls (HCs). Methods Twelve PD-FoG patients, 10 PD-nFoG patients, and 12 HCs were included in the study. Locomotion tasks included normal stepping, normal turning and fast turning ranked as three difficulty levels based on kinematic requirements and probability of provoking FoG. During each task, we used functional near-infrared spectroscopy to capture concentration changes of oxygenated haemoglobin (ΔHBO2) and deoxygenated haemoglobin (ΔHHB) that reflected cortical activation, and recorded task performance time. The cortical regions of interest (ROIs) were prefrontal cortex (PFC), supplementary motor area (SMA), premotor cortex (PMC), and sensorimotor cortex (SMC). Intra-cortical functional connectivity during each task was estimated based on correlation of ΔHBO2 between ROIs. Two-way multivariate ANOVA with task performance time as a covariate was conducted to investigate task and group effects on cerebral haemodynamic responses of ROIs. Z statistics of z-scored connectivity between ROIs were used to determine task and group effects on functional connectivity. Results PD-FoG patients spent a nearly significant longer time completing locomotion tasks than PD-nFoG patients. Compared with PD-nFoG patients, they showed weaker activation (less ΔHBO2) in the PFC and PMC. Compared with HCs, they had comparable ΔHBO2 in all ROIs but more negative ΔHHB in the SMC, whereas PD-nFoG showed SMA and PMC hyperactivity but more negative ΔHHB in the SMC. With increased task difficulty, ΔHBO2 increased in each ROI except in the PFC. Regarding functional connectivity during normal stepping, PD-FoG patients showed positive and strong PFC-PMC connectivity, in contrast to the negative PFC-PMC connectivity observed in HCs. They also had greater PFC-SMC connectivity than the other groups. However, they exhibited decreased SMA-SMC connectivity when task difficulty increased and had lower SMA-PMC connectivity than HCs during fast turning. Conclusion Insufficient compensatory cortical activation and depletion of functional connectivity during complex locomotion in PD-FoG patients could be potential mechanisms underlying FoG. Clinical trial registration Chinese clinical trial registry (URL: http://www.chictr.org.cn, registration number: ChiCTR2100042813).
Collapse
Affiliation(s)
- HongSheng Feng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - YanNa Jiang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - JinPeng Lin
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - WenTing Qin
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - LingJing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xia Shen
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Rehabilitation Medicine Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Xia Shen,
| |
Collapse
|
14
|
MRI biomarkers of freezing of gait development in Parkinson’s disease. NPJ Parkinsons Dis 2022; 8:158. [DOI: 10.1038/s41531-022-00426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractThis study investigated longitudinal clinical, structural and functional brain alterations in Parkinson’s disease patients with freezing of gait (PD-FoG) and in those developing (PD-FoG-converters) and not developing FoG (PD-non-converters) over two years. Moreover, this study explored if any clinical and/or MRI metric predicts FoG development. Thirty PD-FoG, 11 PD-FoG-converters and 11 PD-non-converters were followed for two years. Thirty healthy controls were included at baseline. Participants underwent clinical and MRI visits. Cortical thickness, basal ganglia volumes and functional network graph metrics were evaluated at baseline and over time. In PD groups, correlations between baseline MRI and clinical worsening were tested. A ROC curve analysis investigated if baseline clinical and MRI measures, selected using a stepwise model procedure, could differentiate PD-FoG-converters from PD-non-converters. At baseline, PD-FoG patients had widespread cortical/subcortical atrophy, while PD-FoG-converters and non-converters showed atrophy in sensorimotor areas and basal ganglia relative to controls. Over time, PD-non-converters accumulated cortical thinning of left temporal pole and pallidum without significant clinical changes. PD-FoG-converters showed worsening of disease severity, executive functions, and mood together with an accumulation of occipital atrophy, similarly to PD-FoG. At baseline, PD-FoG-converters relative to controls and PD-FoG showed higher global and parietal clustering coefficient and global local efficiency. Over time, PD-FoG-converters showed reduced parietal clustering coefficient and sensorimotor local efficiency, PD-non-converters showed increased sensorimotor path length, while PD-FoG patients showed stable graph metrics. Stepwise prediction model including dyskinesia, postural instability and gait disorders scores and parietal clustering coefficient was the best predictor of FoG conversion. Combining clinical and MRI data, ROC curves provided the highest classification power to predict the conversion (AUC = 0.95, 95%CI: 0.86–1). Structural MRI is a useful tool to monitor PD progression, while functional MRI together with clinical features may be helpful to identify FoG conversion early.
Collapse
|
15
|
Gan L, Yan R, Su D, Liu Z, Miao G, Wang Z, Wang X, Ma H, Bai Y, Zhou J, Feng T. Alterations of structure and functional connectivity of visual brain network in patients with freezing of gait in Parkinson’s disease. Front Aging Neurosci 2022; 14:978976. [PMID: 36158540 PMCID: PMC9490224 DOI: 10.3389/fnagi.2022.978976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Freezing of gait (FOG) is a disabling gait disorder common in advanced stage of Parkinson’s disease (PD). The gait performance of PD-FOG patients is closely linked with visual processing. Here, we aimed to investigate the structural and functional change of visual network in PD-FOG patients. Seventy-eight PD patients (25 with FOG, 53 without FOG) and 29 healthy controls (HCs) were included. All the participants underwent structural 3D T1-weighted magnetic resonance imaging (MRI) and resting state functional MRI scan. Our results demonstrated a significant decrease of right superior occipital gyrus gray matter density in PD-FOG relative to non-FOG (NFOG) patients and healthy controls (PD-FOG vs. PD-NFOG: 0.33 ± 0.04 vs. 0.37 ± 0.05, p = 0.005; PD-FOG vs. HC: 0.37 ± 0.05 vs. 0.39 ± 0.06, p = 0.002). Functional MRI revealed a significant decrease of connectivity between right superior occipital gyrus and right paracentral lobule in PD-FOG compared to PD-NFOG (p = 0.045). In addition, the connectivity strength was positively correlated with gray matter density of right superior occipital gyrus (r = 0.471, p = 0.027) and negatively associated with freezing of gait questionnaire (FOGQ) score (r = -0.562, p = 0.004). Our study suggests that the structural and functional impairment of visual-motor network might underlie the neural mechanism of FOG in PD.
Collapse
Affiliation(s)
- Lu Gan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Lu Gan,
| | - Rui Yan
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dongning Su
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhu Liu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Guozhen Miao
- Maranatha High School, Pasadena, CA, United States
| | - Zhan Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xuemei Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Huizi Ma
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson’s Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Tao Feng,
| |
Collapse
|
16
|
Basaia S, Agosta F, Francia A, Cividini C, Balestrino R, Stojkovic T, Stankovic I, Markovic V, Sarasso E, Gardoni A, De Micco R, Albano L, Stefanova E, Kostic VS, Filippi M. Cerebro-cerebellar motor networks in clinical subtypes of Parkinson's disease. NPJ Parkinsons Dis 2022; 8:113. [PMID: 36068246 PMCID: PMC9448730 DOI: 10.1038/s41531-022-00377-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Parkinson's disease (PD) patients can be classified in tremor-dominant (TD) and postural-instability-and-gait-disorder (PIGD) motor subtypes. PIGD represents a more aggressive form of the disease that TD patients have a potentiality of converting into. This study investigated functional alterations within the cerebro-cerebellar system in PD-TD and PD-PIGD patients using stepwise functional connectivity (SFC) analysis and identified neuroimaging features that predict TD to PIGD conversion. Thirty-two PD-TD, 26 PD-PIGD patients and 60 healthy controls performed clinical/cognitive evaluations and resting-state functional MRI (fMRI). Four-year clinical follow-up data were available for 28 PD-TD patients, who were classified in 10 converters (cTD-PD) and 18 non-converters (ncTD-PD) to PIGD. The cerebellar seed-region was identified using a fMRI motor task. SFC analysis, characterizing regions that connect brain areas to the cerebellar seed at different levels of link-step distances, evaluated similar and divergent alterations in PD-TD and PD-PIGD. The discriminatory power of clinical data and/or SFC in distinguishing cPD-TD from ncPD-TD patients was assessed using ROC curve analysis. Compared to PD-TD, PD-PIGD patients showed decreased SFC in temporal lobe and occipital lobes and increased SFC in cerebellar cortex and ponto-medullary junction. Considering the subtype-conversion analysis, cPD-TD patients were characterized by increased SFC in temporal and occipital lobes and in cerebellum and ponto-medullary junction relative to ncPD-TD group. Combining clinical and SFC data, ROC curves provided the highest classification power to identify conversion to PIGD. These findings provide novel insights into the pathophysiology underlying different PD motor phenotypes and a potential tool for early characterization of PD-TD patients at risk of conversion to PIGD.
Collapse
Affiliation(s)
- Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Francia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Cividini
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Roberta Balestrino
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Tanja Stojkovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Iva Stankovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladana Markovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Movement Analysis, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Gardoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Movement Analysis, San Raffaele Scientific Institute, Milan, Italy
| | - Rosita De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Luigi Albano
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elka Stefanova
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir S Kostic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
17
|
Freezing of gait: overview on etiology, treatment, and future directions. Neurol Sci 2022; 43:1627-1639. [DOI: 10.1007/s10072-021-05796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
|
18
|
Bardakan MM, Fink GR, Zapparoli L, Bottini G, Paulesu E, Weiss PH. Imaging the neural underpinnings of freezing of gait in Parkinson’s disease. NEUROIMAGE: CLINICAL 2022; 35:103123. [PMID: 35917720 PMCID: PMC9421505 DOI: 10.1016/j.nicl.2022.103123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2022] [Accepted: 07/20/2022] [Indexed: 11/04/2022] Open
Abstract
Review of recent (after 2012) imaging studies on Parkinsonian freezing of gait. Virtual reality studies report functional decoupling of cortico-striatal circuits. Motor imagery studies reveal increased recruitment of parieto-occipital regions. fNIRS studies converge on reporting higher activity within prefrontal regions. Imaging findings support pathophysiological models of freezing of gait.
Freezing of gait (FoG) is a paroxysmal and sporadic gait impairment that severely affects PD patients’ quality of life. This review summarizes current neuroimaging investigations that characterize the neural underpinnings of FoG in PD. The review presents and discusses the latest advances across multiple methodological domains that shed light on structural correlates, connectivity changes, and activation patterns associated with the different pathophysiological models of FoG in PD. Resting-state fMRI studies mainly report cortico-striatal decoupling and disruptions in connectivity along the dorsal stream of visuomotor processing, thus supporting the ‘interference’ and the ‘perceptual dysfunction’ models of FoG. Task-based MRI studies employing virtual reality and motor imagery paradigms reveal a disruption in functional connectivity between cortical and subcortical regions and an increased recruitment of parieto-occipital regions, thus corroborating the ‘interference’ and ‘perceptual dysfunction’ models of FoG. The main findings of fNIRS studies of actual gait primarily reveal increased recruitment of frontal areas during gait, supporting the ‘executive dysfunction’ model of FoG. Finally, we discuss how identifying the neural substrates of FoG may open new avenues to develop efficient treatment strategies.
Collapse
|
19
|
Scamarcia PG, Agosta F, Spinelli EG, Basaia S, Stojković T, Stankovic I, Sarasso E, Canu E, Markovic V, Petrović I, Stefanova E, Pagani E, Kostic VS, Filippi M. Longitudinal White Matter Damage Evolution in Parkinson's Disease. Mov Disord 2021; 37:315-324. [PMID: 34806799 DOI: 10.1002/mds.28864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND White matter hyperintensities (WMHs) have a role in cognitive impairment in normal brain aging, while the effect on Parkinson's disease (PD) progression is still controversial. OBJECTIVE To investigate the longitudinal evolution of micro- and macrostructural damage of cerebral white matter (WM) and its relationship with the clinical picture in PD. METHODS A total of 154 PD patients underwent clinical, cognitive, and magnetic resonance imaging (MRI) assessment once a year for up to 4 years. Sixty healthy controls underwent the same protocol at baseline. WMHs were identified and total WMH volume was measured. WMHs were also used as exclusion masks to define normal-appearing white matter (NAWM). Using tract-based spatial statistics, diffusion tensor (DT) MRI metrics of whole-brain WM and NAWM were obtained. Linear mixed-effects models defined the longitudinal evolution and association between variables. WM alterations were tested as risk factors of disease progression using linear regression and Cox proportional hazards models. RESULTS At baseline, PD patients showed alterations of all DT MRI measures compared to controls. Longitudinally, DT MRI measures did not vary significantly and no association with clinical variables was found. WMH volume changed over time and was associated with impairment in global cognition, executive functions, and language. Baseline WMH volume was a moderate risk factor for progression to mild cognitive impairment. CONCLUSIONS Our study suggests an association between WMHs and cognitive deterioration in PD, whereas WM microstructural damage is a negligible contributor to clinical deterioration. WMHs assessed by MRI can provide an important tool for monitoring the development of cognitive impairment in PD patients. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Pietro Giuseppe Scamarcia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tanja Stojković
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Iva Stankovic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vladana Markovic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Igor Petrović
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Elka Stefanova
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vladimir S Kostic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
20
|
Sarasso E, Gardoni A, Tettamanti A, Agosta F, Filippi M, Corbetta D. Virtual reality balance training to improve balance and mobility in Parkinson's disease: a systematic review and meta-analysis. J Neurol 2021; 269:1873-1888. [PMID: 34713324 DOI: 10.1007/s00415-021-10857-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND In the last few years, virtual reality (VR) has been increasingly used to strengthen the effect of balance training (BT) in Parkinson's disease (PD). OBJECTIVE We performed a systematic review and meta-analysis of randomized controlled trials (RCTs) to compare the effects of VR-BT relative to BT alone for improving balance and mobility PD subjects with balance/mobility difficulties. METHODS Four electronic databases were searched: two reviewers independently selected RCTs, extracted data, and applied the Cochrane risk-of-bias tool for randomized trials (version 2) and the GRADE framework for assessing the certainty of evidence. Primary outcomes were balanced (Berg Balance Scale-BBS), mobility (Timed Up and Go-TUG) and walking speed. Secondary outcomes were falls, walking distance and stability, spatial gait parameters, balance confidence, sensory integration ability, motor signs and quality of life. RESULTS We included 22 studies (901 patients). Meta-analysis on fourteen trials (430 patients) showed a mean difference (MD) of 2.09 points (95% confidence interval [CI] 0.86-3.33) on BBS favoring VR-BT compared to BT (low certainty evidence). Subgroup analyses showed higher balance improvement in most affected subjects (moderate certainty evidence) and using VR rehabilitation-specific systems vs. VR non-specific systems. Eight trials (236 patients) assessing mobility showed a MD of 1.55 s (95% CI 0.04-3.06) on TUG favoring VR-BT (very low certainty evidence). No differences were observed in walking speed. Estimated effects were not maintained for any outcome at follow-up. CONCLUSIONS This review suggests that VR-BT is more effective than BT to improve balance in PD subjects immediately after training, particularly in individuals with higher postural instability at baseline.
Collapse
Affiliation(s)
- Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.,Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Gardoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.,Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Tettamanti
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy. .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy. .,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy. .,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| | - Davide Corbetta
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
21
|
Huang HC, Chen CM, Lu MK, Liu BL, Li CI, Chen JC, Wang GJ, Lin HC, Duann JR, Tsai CH. Gait-Related Brain Activation During Motor Imagery of Complex and Simple Ambulation in Parkinson's Disease With Freezing of Gait. Front Aging Neurosci 2021; 13:731332. [PMID: 34630069 PMCID: PMC8492994 DOI: 10.3389/fnagi.2021.731332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Freezing of gait (FOG) in Parkinson's disease (PD) is a devastating clinical phenomenon that has a detrimental impact on patients. It tends to be triggered more often during turning (complex) than during forwarding straight (simple) walking. The neural mechanism underlying this phenomenon remains unclear and requires further elucidation. Objective: To investigate the differences in cerebral functional magnetic resonance imaging responses between PD patients with and without FOG during explicitly video-guided motor imagery (MI) of various complex (normal, freezing) and simple (normal, freezing) walking conditions. Methods: We recruited 34 PD patients, namely, 20 with FOG and 14 without FOG, and 15 normal controls. Participants underwent video-guided MI of turning and straight walking, with and without freezing, while their brain blood oxygen level-dependent (BOLD) activities were measured. Gait analysis was performed. Results: While comparing FOG turning with FOG straight walking, freezers showed higher activation of the superior occipital gyrus, left precentral gyrus, and right postcentral gyrus compared with non-freezers. Normal controls also manifest similar findings compared with non-freezers, except no difference was noted in occipital gyrus activity between the two groups. Freezers also displayed a higher effect size in the locomotor regions than non-freezers during imagery of normal turning. Conclusions: Our findings suggest that freezers require a higher drive of cortical and locomotion regions to overcome the overinhibition of the pathways in freezers than in non-freezers. Compared with simple walking, increased dorsal visual pathway and deep locomotion region activities might play pivotal roles in tackling FOG in freezers during complex walking.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Division of Parkinson's Disease and Movement Disorders, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chun-Ming Chen
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan.,Neuroscience and Brain Disease Center, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Kuei Lu
- Division of Parkinson's Disease and Movement Disorders, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Neuroscience and Brain Disease Center, College of Medicine, China Medical University, Taichung, Taiwan
| | - Bey-Ling Liu
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Ing Li
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jui-Cheng Chen
- Division of Parkinson's Disease and Movement Disorders, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Neuroscience and Brain Disease Center, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Neurology, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Guei-Jane Wang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Hsiu-Chen Lin
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | - Jeng-Ren Duann
- Institute of Education, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Institute for Neural Computation, University of California, San Diego, La Jolla, CA, United States
| | - Chon-Haw Tsai
- Division of Parkinson's Disease and Movement Disorders, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Neuroscience and Brain Disease Center, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
22
|
Sarasso E, Gardoni A, Piramide N, Volontè MA, Canu E, Tettamanti A, Filippi M, Agosta F. Dual-task clinical and functional MRI correlates in Parkinson's disease with postural instability and gait disorders. Parkinsonism Relat Disord 2021; 91:88-95. [PMID: 34547654 DOI: 10.1016/j.parkreldis.2021.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Dual-task is a challenge for Parkinson's disease patients with postural instability and gait disorders (PD-PIGD). OBJECTIVE This study investigated clinical, cognitive and functional brain correlates of dual-task deficits in PD-PIGD patients using quantitative gait analysis, neuropsychological evaluations and functional MRI (fMRI). METHODS Twenty-three PD-PIGD patients performed a clinical assessment of gait/balance abilities. Single and dual-task Timed-Up-and-Go tests were monitored using an optoelectronic system to study turning velocity. Patients underwent executive-attentive function evaluation and two fMRI tasks: motor-task (foot anti-phase movements), and dual-task (foot anti-phase movements while counting backwards by threes starting from 100). Twenty-three healthy subjects underwent neuropsychological and fMRI assessments. RESULTS Dual-task in PD-PIGD patients resulted in worse gait performance, particularly during turning. Performing the dual-task relative to the motor-fMRI task, healthy subjects showed widespread increased recruitment of sensorimotor, cognitive and cerebellar areas and reduced activity of inferior frontal and supramarginal gyri, while PD-PIGD patients showed increased recruitment of inferior frontal gyrus and supplementary motor area and reduced activity of primary motor, supramarginal and caudate areas. Dual-task gait alterations in patients correlated with balance and executive deficits and with altered dual-task fMRI brain activity of frontal areas. CONCLUSIONS This study suggested the correlation between dual-task gait difficulties, postural instability and executive dysfunction in PD-PIGD patients. FMRI results suggest that an optimized recruitment of motor and cognitive networks is associated with a better dual-task performance in PD-PIGD. Future studies should evaluate the effect of specific gait/balance and dual-task trainings to improve gait parameters and optimize brain functional activity during dual-tasks.
Collapse
Affiliation(s)
- Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Gardoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Noemi Piramide
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | | | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Tettamanti
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
23
|
Yu Q, Li Q, Fang W, Wang Y, Zhu Y, Wang J, Shen Y, Han Y, Zou D, Cheng O. Disorganized resting-state functional connectivity between the dorsal attention network and intrinsic networks in Parkinson's disease with freezing of gait. Eur J Neurosci 2021; 54:6633-6645. [PMID: 34479401 DOI: 10.1111/ejn.15439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 11/30/2022]
Abstract
Freezing of gait (FOG) is a common and complex manifestation of Parkinson's disease (PD) and is associated with impairment of attention. The purpose of this study was to evaluate the functional network connectivity (FNc) changes between the dorsal attention network (DAN) and the other seven intrinsic networks relevant to attention, visual-spatial, executive and motor functions in PD with or without FOG. Forty-three idiopathic PD patients (21 with FOG [FOG+] versus 22 without FOG [FOG-]) and 18 healthy controls (HC) were recruited in this study. The data-driven independent component analysis (ICA) method was used to extract and analyze the above-mentioned resting-state networks (RSNs). Compared with FOG-, FOG+ displayed decreased positive connectivity between the DAN and medial visual network (mVN) and sensory-motor network (SMN) and increased negative connectivity between the DAN and default mode network (DMN). The within-network connectivity in the SMN and visual networks were decreased, whereas the connectivity within DMN was increased significantly in FOG+. Correlation analysis showed that the clock drawing test (CDT) scores were positively correlated with the functional connectivity of mVN (r = 0.573, p = 0.008) and lateral visual network (lVN) (r = 0.510, p = 0.022), the Timed Up and Go Test (TUG) duration were negatively correlated with the connectivity of SMN (r = -0.629, p = 0.003), and the Frontal Assessment Battery (FAB) scores were negatively correlated with the connectivity of DMN in FOG+. Functional connectivity was changed in multiple intra-networks in patients with FOG. Inordinate inter-network connectivity between the DAN and other intrinsic networks may partly contribute to the mechanism of freezing.
Collapse
Affiliation(s)
- Qian Yu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qun Li
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Weidong Fang
- Department of Radiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuchan Wang
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yingcheng Zhu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Wang
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yalian Shen
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yu Han
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dezhi Zou
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Oumei Cheng
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Sarasso E, Agosta F, Piramide N, Gardoni A, Canu E, Leocadi M, Castelnovo V, Basaia S, Tettamanti A, Volontè MA, Filippi M. Action Observation and Motor Imagery Improve Dual Task in Parkinson's Disease: A Clinical/fMRI Study. Mov Disord 2021; 36:2569-2582. [PMID: 34286884 DOI: 10.1002/mds.28717] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Action observation training and motor imagery may improve motor learning in Parkinson's disease (PD). OBJECTIVES The objectives of this study were to assess mobility and balance (performing motor and dual tasks) and brain functional reorganization following 6 weeks of action observation training and motor imagery associated with dual-task gait/balance exercises in PD patients with postural instability and gait disorders relative to dual-task training alone. METHODS Twenty-five PD-postural instability and gait disorder patients were randomized into 2 groups: the DUAL-TASK+AOT-MI group performed a 6-week gait/balance training consisting of action observation training-motor imagery combined with practicing the observed-imagined exercises; the DUAL-TASK group performed the same exercises combined with watching landscape videos. Exercises were increasingly difficult to include the dual task. At baseline and at 6 weeks, patients underwent: mobility, gait, and balance evaluations (also repeated 2 months after training), cognitive assessment, and functional MRI, including motor and dual tasks. RESULTS Dual-task gait/balance training enhanced mobility, during both single- and dual-task conditions, and executive functions in PD-postural instability and gait disorders, with a long-lasting effect at 14 weeks. When exercises were preceded by action observation training-motor imagery, PD-postural instability and gait disorders showed greater improvement of balance and gait velocity both with and without the dual task, particularly during the turning phase. After training, the DUAL-TASK+AOT-MI group showed reduced recruitment of frontal areas and increased activity of cerebellum during functional-MRI motor and dual task, correlating with balance/turning velocity and executive improvements, respectively. The DUAL-TASK group showed reduced activity of supplementary motor area and increased recruitment of temporo-parietal areas during the dual task and decreased cerebellar activity during the motor task correlating with faster turning velocity. Functional MRI results were not corrected for multiple comparisons and should be interpreted carefully. CONCLUSIONS Adding action observation training-motor imagery to dual-task gait/balance training promotes specific functional reorganization of brain areas involved in motor control and executive-attentive abilities and more long-lasting effects on dual-task mobility and balance in PD-postural instability and gait disorders. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Noemi Piramide
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Gardoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Leocadi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Tettamanti
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
25
|
Potvin-Desrochers A, Paquette C. Potential Non-invasive Brain Stimulation Targets to Alleviate Freezing of Gait in Parkinson's Disease. Neuroscience 2021; 468:366-376. [PMID: 34102265 DOI: 10.1016/j.neuroscience.2021.05.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 11/15/2022]
Abstract
Freezing of gait (FOG) is a common motor symptom in Parkinson's disease (PD). Although FOG reduces quality of life, affects mobility and increases the risk of falls, there are little to no effective treatments to alleviate FOG. Non-invasive brain stimulation (NIBS) has recently yielded attention as a potential treatment to reduce FOG symptoms however, stimulation parameters and protocols remain inconsistent and require further research. Specifically, targets for stimulation require careful review. Thus, with current neuroimaging and neuro-electrophysiological evidence, we consider potential cortical targets thought to be involved in the pathophysiology of FOG according to the Interference model, and within reach of NIBS. We note that the primary motor cortex, the supplementary motor area and the dorsolateral prefrontal cortex have already drawn attention as NIBS targets for FOG, but based on neuroimaging evidence the premotor cortex, the medial prefrontal cortex, the cerebellum, and more particularly, the posterior parietal cortex should be considered as potential regions for stimulation. We also discuss different methodological considerations, such as stimulation type, medication state, and hemisphere to target, and future perspectives for NIBS protocols in FOG.
Collapse
Affiliation(s)
- Alexandra Potvin-Desrochers
- Department of Kinesiology and Physical Education, Currie Gymnasium, 475 Pine Avenue West, McGill University, Montréal, Québec H2W 1S4, Canada; Integrated Program in Neuroscience, Montreal Neurological Institute, 3801 University Street, McGill University, Montréal, Québec H3A 2B4, Canada; Centre for Interdisciplinary Research in Rehabilitation (Jewish Rehabilitation Hospital Research Site and CISSS Laval), 3205 Place Alton-Goldbloom, Laval, Québec H7V 1R2, Canada
| | - Caroline Paquette
- Department of Kinesiology and Physical Education, Currie Gymnasium, 475 Pine Avenue West, McGill University, Montréal, Québec H2W 1S4, Canada; Integrated Program in Neuroscience, Montreal Neurological Institute, 3801 University Street, McGill University, Montréal, Québec H3A 2B4, Canada; Centre for Interdisciplinary Research in Rehabilitation (Jewish Rehabilitation Hospital Research Site and CISSS Laval), 3205 Place Alton-Goldbloom, Laval, Québec H7V 1R2, Canada.
| |
Collapse
|
26
|
Taximaimaiti R, Wang XP. Comparing the Clinical and Neuropsychological Characteristics of Parkinson's Disease With and Without Freezing of Gait. Front Neurosci 2021; 15:660340. [PMID: 33986641 PMCID: PMC8110824 DOI: 10.3389/fnins.2021.660340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Freezing of gait (FOG) is one of the most common walking problems in Parkinson’s disease (PD). Impaired cognitive function is believed to play an important role in developing and aggravating FOG in PD. But some evidence suggests that motor function discrepancy may affect testing results. Therefore, we think it is necessary for PD-FOG(+) and PD-FOG(−) patients to complete neuropsychological tests under similar motor conditions. Methods This study recruited 44 idiopathic PD patients [PD-FOG(+) n = 22, PD-FOG(−) n = 22] and 20 age-matched healthy controls (HC). PD-FOG(+) and PD-FOG(−) patients were matched for age, year of education, and Hoehn and Yahr score (H&Y). All participants underwent a comprehensive battery of neuropsychological assessment, and demographical and clinical information was also collected. Results PD patients showed poorer cognitive function, higher risks of depression and anxiety, and more neuropsychiatric symptoms compared with HC. When controlling for age, years of education, and H&Y, there were no statistical differences in cognitive function between PD-FOG(+) and PD-FOG(−) patients. But PD-FOG(+) patients had worse motor and non-motor symptoms than PD-FOG(−) patients. PD patients whose motor symptoms initiated with rigidity and initiated unilaterally were more likely to experience FOG. Conclusion Traditional neuropsychological testing may not be sensitive enough to detect cognitive impairment in PD. Motor symptoms initiated with rigidity and initiated unilaterally might be an important predictor of FOG.
Collapse
Affiliation(s)
- Reyisha Taximaimaiti
- Department of Neurology, Shanghai TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Wang
- Department of Neurology, Shanghai TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Sarasso E, Agosta F, Piramide N, Canu E, Volontè MA, Filippi M. Brain activity of the emotional circuit in Parkinson's disease patients with freezing of gait. Neuroimage Clin 2021; 30:102649. [PMID: 33838547 PMCID: PMC8045031 DOI: 10.1016/j.nicl.2021.102649] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Emotional processes might influence freezing of gait (FoG) in Parkinson's disease (PD) patients. We assessed brain functional MRI (fMRI) activity during a "FoG-observation-task" in PD-FoG patients relative to healthy controls. METHODS Twenty-four PD-FoG patients and 18 age- and sex-matched healthy controls performed clinical and neuropsychological evaluations, and fMRI experiments including: i) "FoG-observation-task" consisting of watching a patient experiencing FoG during a walking task (usually evoking FoG); ii) "gait-observation-task" consisting of watching a healthy subject performing similar walking tasks without experiencing FoG. RESULTS During both tasks, PD-FoG patients showed reduced activity of the fronto-parietal mirror neuron system (MNS) relative to controls. In the "FoG-observation-task" relative to the "gait-observation-task", PD-FoG patients revealed an increased recruitment of the anterior medial prefrontal cortex and a reduced recruitment of the dorsomedial prefrontal cortex and hippocampus relative to controls. Healthy controls in the "FoG-observation-task" relative to the "gait-observation-task" showed increased recruitment of cognitive empathy areas and decreased activity of the fronto-parietal MNS. CONCLUSION Our results suggest that when PD-FoG patients observe a subject experiencing FoG, there is an increased activity of brain areas involved in self-reflection emotional processes and a reduced activity of areas related to motor programming, executive functions and cognitive empathy. These findings support previous evidence on the critical role of the emotional circuit in the mechanisms underlying FoG.
Collapse
Affiliation(s)
- Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Laboratory of Movement Analysis, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Noemi Piramide
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehablitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
28
|
Song W, Raza HK, Lu L, Zhang Z, Zu J, Zhang W, Dong L, Xu C, Gong X, Lv B, Cui G. Functional MRI in Parkinson's disease with freezing of gait: a systematic review of the literature. Neurol Sci 2021; 42:1759-1771. [PMID: 33713258 DOI: 10.1007/s10072-021-05121-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Freezing of gait (FOG), a common and disabling symptom of Parkinson's disease (PD), is characterized by an episodic inability to generate effective stepping. Functional MRI (fMRI) has been used to evaluate abnormal brain connectivity patterns at rest and brain activation patterns during specific tasks in patients with PD-FOG. This review has examined the existing functional neuroimaging literature in PD-FOG, including those with treatment. Summarizing these articles provides an opportunity for a better understanding of the underlying pathophysiology in PD-FOG. METHODS According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we performed a literature review of studies using fMRI to investigate the underlying pathophysiological mechanisms of PD-FOG. RESULTS We initially identified 201 documents. After excluding the duplicates, reviews, and other irrelevant articles, 39 articles were finally identified, including 18 task-based fMRI studies and 21 resting-state fMRI studies. CONCLUSIONS Studies using fMRI techniques to evaluate PD-FOG have found dysfunctional connectivity in widespread cortical and subcortical regions. Standardized imaging protocols and detailed subtypes of PD-FOG are furthered required to elucidate current findings.
Collapse
Affiliation(s)
- Wenjing Song
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Hafiz Khuram Raza
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Li Lu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Zuohui Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Liguo Dong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Xiangyao Gong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Bingchen Lv
- Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China.
| |
Collapse
|
29
|
Silva‐Batista C, Ragothaman A, Mancini M, Carlson‐Kuhta P, Harker G, Jung SH, Nutt JG, Fair DA, Horak FB, Miranda‐Domínguez O. Cortical thickness as predictor of response to exercise in people with Parkinson's disease. Hum Brain Mapp 2021; 42:139-153. [PMID: 33035370 PMCID: PMC7721225 DOI: 10.1002/hbm.25211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
We previously showed that dual-task cost (DTC) on gait speed in people with Parkinson's disease (PD) improved after 6 weeks of the Agility Boot Camp with Cognitive Challenge (ABC-C) exercise program. Since deficits in dual-task gait speed are associated with freezing of gait and gray matter atrophy, here we performed preplanned secondary analyses to answer two questions: (a) Do people with PD who are freezers present similar improvements compared to nonfreezers in DTC on gait speed with ABC-C? (b) Can cortical thickness at baseline predict responsiveness to the ABC-C? The DTC from 39 freezers and 43 nonfreezers who completed 6 weeks of ABC-C were analyzed. A subset of 51 participants (21 freezers and 30 nonfreezers) with high quality imaging data were used to characterize relationships between baseline cortical thickness and delta (Δ) DTC on gait speed following ABC-C. Freezers showed larger ΔDTC on gait speed than nonfreezers with ABC-C program (p < .05). Cortical thickness in visual and fronto-parietal areas predicted ΔDTC on gait speed in freezers, whereas sensorimotor-lateral thickness predicted ΔDTC on gait speed in nonfreezers (p < .05). When matched for motor severity, visual cortical thickness was a common predictor of response to exercise in all individuals, presenting the largest effect size. In conclusion, freezers improved gait automaticity even more than nonfreezers from cognitively challenging exercise. DTC on gait speed improvement was associated with larger baseline cortical thickness from different brain areas, depending on freezing status, but visual cortex thickness showed the most robust relationship with exercise-induced improvements in DTC.
Collapse
Affiliation(s)
- Carla Silva‐Batista
- Exercise Neuroscience Research GroupUniversity of São PauloSPBrazil
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | | | - Martina Mancini
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | | | - Graham Harker
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | - Se Hee Jung
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
- Department of Rehabilitation MedicineSeoul National University Boramae Medical CenterSeoulRepublic of Korea
| | - John G. Nutt
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | - Damien A Fair
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | - Fay B. Horak
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
- Veterans Affairs Portland Health Care System (VAPORHCS)PortlandOregonUSA
| | | |
Collapse
|
30
|
Fearon C, Butler JS, Waechter SM, Killane I, Kelly SP, Reilly RB, Lynch T. Neurophysiological correlates of dual tasking in people with Parkinson's disease and freezing of gait. Exp Brain Res 2020; 239:175-187. [PMID: 33135132 DOI: 10.1007/s00221-020-05968-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/21/2020] [Indexed: 11/24/2022]
Abstract
Freezing of gait in people with Parkinson's disease (PwP) is associated with executive dysfunction and motor preparation deficits. We have recently shown that electrophysiological markers of motor preparation, rather than decision-making, differentiate PwP with freezing of gait (FOG +) and without (FOG -) while sitting. To examine the effect of locomotion on these results, we measured behavioural and electrophysiological responses in PwP with and without FOG during a target response time task while sitting (single-task) and stepping-in-place (dual-task). Behavioural and electroencephalographic data were acquired from 18 PwP (eight FOG +) and seven young controls performing the task while sitting and stepping-in-place. FOG + had slower response times while stepping compared with sitting. However, response times were significantly faster while stepping compared with sitting for controls. Electrophysiological responses showed no difference in decision-making potentials (centroparietal positivity) between groups or conditions but there were differences in neurophysiological markers of response inhibition (N2) and motor preparation (lateralized readiness potential, LRP) in FOG + while performing a dual-task. This suggests that the addition of a second complex motor task (stepping-in-place) impacts automatic allocation of resources in FOG +, resulting in delayed response times. The impact of locomotion on the generation of the N2 and LRP potentials, particularly in freezers, indirectly implies that these functions compete with locomotion for resources. In the setting of multiple complex tasks or cognitive impairment, severe motor dysfunction may result, leading to freezing of gait.
Collapse
Affiliation(s)
- Conor Fearon
- Trinity Centre for Bioengineering, The School of Medicine and the School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland.
- School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland.
- Dublin Neurological Institute at the Mater Misericordiae University Hospital, 57 Eccles Street, Dublin 7, Ireland.
| | - John S Butler
- Trinity Centre for Bioengineering, The School of Medicine and the School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland.
- School of Mathematical Sciences, Technological University Dublin, Kevin Street, Dublin, Ireland.
- School of Medicine, Trinity College, The University of Dublin, Dublin 2, Ireland.
| | - Saskia M Waechter
- Trinity Centre for Bioengineering, The School of Medicine and the School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland
- School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland
| | - Isabelle Killane
- Trinity Centre for Bioengineering, The School of Medicine and the School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland
- School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland
- School of Mechanical and Design Engineering, Technological University Dublin, Bolton Street, Dublin, Ireland
| | - Simon P Kelly
- School of Electrical and Electronic Engineering, University College Dublin, Dublin 4, Ireland
| | - Richard B Reilly
- Trinity Centre for Bioengineering, The School of Medicine and the School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland
- School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland
- School of Medicine, Trinity College, The University of Dublin, Dublin 2, Ireland
| | - Timothy Lynch
- Dublin Neurological Institute at the Mater Misericordiae University Hospital, 57 Eccles Street, Dublin 7, Ireland
| |
Collapse
|
31
|
Dagan M, Herman T, Bernad-Elazari H, Gazit E, Maidan I, Giladi N, Mirelman A, Manor B, Hausdorff JM. Dopaminergic therapy and prefrontal activation during walking in individuals with Parkinson's disease: does the levodopa overdose hypothesis extend to gait? J Neurol 2020; 268:658-668. [PMID: 32902733 DOI: 10.1007/s00415-020-10089-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022]
Abstract
The "levodopa-overdose hypothesis" posits that dopaminergic replacement therapy (1) increases performance on tasks that depend on the nigrostriatal-pathway (e.g., motor-control circuits), yet (2) decreases performance on tasks that depend upon the mesocorticolimbic-pathway (e.g., prefrontal cortex, PFC). Previous work in Parkinson's disease (PD) investigated this model while focusing on cognitive function. Here, we evaluated whether this model applies to gait in patients with PD and freezing of gait (FOG). Forty participants were examined in both the OFF anti-Parkinsonian medication state (hypo-dopaminergic) and ON state (hyper-dopaminergic) while walking with and without the concurrent performance of a serial subtraction task. Wireless functional near-infrared spectroscopy measured PFC activation during walking. Consistent with the "overdose-hypothesis", performance on the subtraction task decreased (p = 0.027) after dopamine intake. Moreover, the effect of walking condition on PFC activation depended on the dopaminergic state (i.e., interaction effect p = 0.001). Gait significantly improved after levodopa administration (p < 0.001). Nonetheless, PFC activation was higher (p = 0.013) in this state than in the OFF state during usual-walking. This increase in PFC activation in the ON state suggests that dopamine treatment interfered with PFC functioning. Otherwise, PFC activation, putatively a reflection of cognitive compensation, should have decreased. Moreover, in contrast to the OFF state, in the ON state, PFC activation failed to increase (p = 0.313) during dual-tasking, perhaps due to a "ceiling effect". These findings extend the "levodopa-overdose hypothesis" and suggest that it also applies to gait in PD patients. While dopaminergic therapy improves certain aspects of motor performance, optimal treatment should consider the "double-edged sword" of levodopa.
Collapse
Affiliation(s)
- Moria Dagan
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Talia Herman
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hagar Bernad-Elazari
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eran Gazit
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Inbal Maidan
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Brad Manor
- Harvard Medical School, Boston, MA, USA.,Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, USA
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. .,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Department of Orthopedic Surgery, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|