1
|
Safonova TN, Zaitseva GV. [Cell technologies as a basis for the development of regenerative principles for the treatment of lacrimal gland diseases]. Vestn Oftalmol 2024; 140:158-165. [PMID: 38739146 DOI: 10.17116/oftalma2024140022158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The lacrimal gland (LG) is a tubuloacinar exocrine gland composed of acinar, ductal, and myoepithelial cells. Three-dimensional distribution of acinar lobules, ducts, and myoepithelial cells is necessary for the effective functioning of the organ. LG is the main organ of immune surveillance of the ocular surface system. The embryogenesis of the gland is regulated by the interaction of genetic mechanisms, internal epigenetic (enzyme systems, hormones) and exogenous factors. There is no doubt that there is a clear genetic program for the implementation of the complex process of embryonic development. The mechanisms regulating LG organogenesis initiate the work of a huge number of structural oncogenes, transcription and growth factors, etc. Studying the expression and selective activity of regulatory genes during organ development, their participation in the differentiation of different cell types is a current trend at the nexus of clinical genetics, molecular biology, embryology and immunocytochemistry. Due to its relatively simple structure and accessibility, human LG is a suitable object for potential application in regenerative medicine. Development of a universal protocol for obtaining functional differentiated secretory epithelium of LG capable of expressing tissue-specific markers is an urgent task. Determining the nature and origin of stem cells and progenitor cells will allow the isolation and multiplication of these cells in culture. After obtaining a functionally active culture of LG cells, it is possible to create a model of autoimmune diseases.
Collapse
Affiliation(s)
- T N Safonova
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - G V Zaitseva
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
2
|
Asal M, Koçak G, Sarı V, Reçber T, Nemutlu E, Utine CA, Güven S. Development of lacrimal gland organoids from iPSC derived multizonal ocular cells. Front Cell Dev Biol 2023; 10:1058846. [PMID: 36684423 PMCID: PMC9846036 DOI: 10.3389/fcell.2022.1058846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Lacrimal gland plays a vital role in maintaining the health and function of the ocular surface. Dysfunction of the gland leads to disruption of ocular surface homeostasis and can lead to severe outcomes. Approaches evolving through regenerative medicine have recently gained importance to restore the function of the gland. Using human induced pluripotent stem cells (iPSCs), we generated functional in vitro lacrimal gland organoids by adopting the multi zonal ocular differentiation approach. We differentiated human iPSCs and confirmed commitment to neuro ectodermal lineage. Then we identified emergence of mesenchymal and epithelial lacrimal gland progenitor cells by the third week of differentiation. Differentiated progenitors underwent branching morphogenesis in the following weeks, typical of lacrimal gland development. We were able to confirm the presence of lacrimal gland specific acinar, ductal, and myoepithelial cells and structures during weeks 4-7. Further on, we demonstrated the role of miR-205 in regulation of the lacrimal gland organoid development by monitoring miR-205 and FGF10 mRNA levels throughout the differentiation process. In addition, we assessed the functionality of the organoids using the β-Hexosaminidase assay, confirming the secretory function of lacrimal organoids. Finally, metabolomics analysis revealed a shift from amino acid metabolism to lipid metabolism in differentiated organoids. These functional, tear proteins secreting human lacrimal gland organoids harbor a great potential for the improvement of existing treatment options of lacrimal gland dysfunction and can serve as a platform to study human lacrimal gland development and morphogenesis.
Collapse
Affiliation(s)
- Melis Asal
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Gamze Koçak
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Vedat Sarı
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Canan Aslı Utine
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Department of Ophthalmology, Dokuz Eylül University Hospital, Dokuz Eylül University, Izmir, Turkey
| | - Sinan Güven
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey,*Correspondence: Sinan Güven,
| |
Collapse
|
3
|
Singh VK, Sharma P, Vaksh UKS, Chandra R. Current approaches for the regeneration and reconstruction of ocular surface in dry eye. Front Med (Lausanne) 2022; 9:885780. [PMID: 36213677 PMCID: PMC9544815 DOI: 10.3389/fmed.2022.885780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Significant research revealed the preocular tear film composition and regulations that remain vital for maintaining Ocular surface functional integrity. Inflammation triggered by many factors is the hallmark of Ocular surface disorders or dry eyes syndrome (DES). The tear deficiencies may lead to ocular surface desiccation, corneal ulceration and/or perforation, higher rates of infectious disease, and the risk of severe visual impairment and blindness. Clinical management remains largely supportive, palliative, and frequent, lifelong use of different lubricating agents. However, few advancements such as punctal plugs, non-steroidal anti-inflammatory drugs, and salivary gland autografts are of limited use. Cell-based therapies, tissue engineering, and regenerative medicine, have recently evolved as long-term cures for many diseases, including ophthalmic diseases. The present article focuses on the different regenerative medicine and reconstruction/bioengineered lacrimal gland formation strategies reported so far, along with their limiting factors and feasibility as an effective cure in future.
Collapse
Affiliation(s)
- Vimal Kishor Singh
- Department of Biomedical Engineering, Amity School of Engineering and Technology, Amity University, Noida, Uttar Pradesh, India
- *Correspondence: Vimal Kishor Singh ; ;
| | - Pallavi Sharma
- Tissue Engineering and Regenerative Medicine Research Lab, Department of Biomedical Engineering, Amity School of Engineering and Technology, Amity University, Noida, Uttar Pradesh, India
| | - Uttkarsh Kumar Sharma Vaksh
- Tissue Engineering and Regenerative Medicine Research Lab, Department of Biomedical Engineering, Amity School of Engineering and Technology, Amity University, Gurgaon, Haryana, India
| | - Ramesh Chandra
- Institute of Nanomedical Sciences, University of Delhi, Delhi, India
| |
Collapse
|
4
|
Kasal K, Güven S, Utine CA. Current methodology and cell sources for lacrimal gland tissue engineering. Exp Eye Res 2022; 221:109138. [DOI: 10.1016/j.exer.2022.109138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
|
5
|
Garg A, Zhang X. Lacrimal gland development: From signaling interactions to regenerative medicine. Dev Dyn 2017; 246:970-980. [PMID: 28710815 DOI: 10.1002/dvdy.24551] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/13/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022] Open
Abstract
The lacrimal gland plays a pivotal role in keeping the ocular surface lubricated, and protecting it from environmental exposure and insult. Dysfunction of the lacrimal gland results in deficiency of the aqueous component of the tear film, which can cause dryness of the ocular surface, also known as the aqueous-deficient dry eye disease. Left untreated, this disease can lead to significant morbidity, including frequent eye infections, corneal ulcerations, and vision loss. Current therapies do not treat the underlying deficiency of the lacrimal gland, but merely provide symptomatic relief. To develop more sustainable and physiological therapies, such as in vivo lacrimal gland regeneration or bioengineered lacrimal gland implants, a thorough understanding of lacrimal gland development at the molecular level is of paramount importance. Based on the structural and functional similarities between rodent and human eye development, extensive studies have been undertaken to investigate the signaling and transcriptional mechanisms of lacrimal gland development using mouse as a model system. In this review, we describe the current understanding of the extrinsic signaling interactions and the intrinsic transcriptional network governing lacrimal gland morphogenesis, as well as recent advances in the field of regenerative medicine aimed at treating dry eye disease. Developmental Dynamics 246:970-980, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ankur Garg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, New York
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, New York
| |
Collapse
|
6
|
Massie I, Spaniol K, Geerling G, Schrader S. Cryopreservation and hypothermic storage of lacrimal gland: towards enabling delivery of regenerative medicine therapies for treatment of dry eye syndrome. J Tissue Eng Regen Med 2016; 11:3373-3384. [DOI: 10.1002/term.2251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/08/2016] [Accepted: 07/03/2016] [Indexed: 12/13/2022]
Affiliation(s)
- I. Massie
- Labor für Experimentelle Ophthalmologie; Universitätsklinikum Düsseldorf, Life Science Center; Düsseldorf Germany
| | - K. Spaniol
- Augenklinik, Universitätsklinikum Düsseldorf; Düsseldorf Germany
| | - G. Geerling
- Augenklinik, Universitätsklinikum Düsseldorf; Düsseldorf Germany
| | - S. Schrader
- Augenklinik, Universitätsklinikum Düsseldorf; Düsseldorf Germany
| |
Collapse
|
7
|
Massie I, Dietrich J, Roth M, Geerling G, Mertsch S, Schrader S. Development of Causative Treatment Strategies for Lacrimal Gland Insufficiency by Tissue Engineering and Cell Therapy. Part 2: Reconstruction of Lacrimal Gland Tissue: What Has Been Achieved So Far and What Are the Remaining Challenges? Curr Eye Res 2016; 41:1255-1265. [DOI: 10.3109/02713683.2016.1151531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Isobel Massie
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Jana Dietrich
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Mathias Roth
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Gerd Geerling
- Augenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Sonja Mertsch
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Stefan Schrader
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
- Augenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Spaniol K, Metzger M, Roth M, Greve B, Mertsch S, Geerling G, Schrader S. Engineering of a Secretory Active Three-Dimensional Lacrimal Gland Construct on the Basis of Decellularized Lacrimal Gland Tissue. Tissue Eng Part A 2015. [PMID: 26222647 DOI: 10.1089/ten.tea.2014.0694] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lacrimal gland (LG) insufficiency is a main cause for severe dry eye leading to pain, visual impairment, and eventually loss of sight. Engineering of transplantable LG tissue with secretory capacity is a desirable goal. In this study, a three-dimensional decellularized LG (DC-LG) scaffold with preserved LG morphology was generated by treatment with 1% sodium deoxycholate and DNase solution using porcine LG tissue. To address clinical applicability, the primary in vitro culture of secretory active LG cells from a small tissue biopsy of 1.5 mm diameter was introduced and compared with an established isolation method by enzymatic digestion. Cells from both isolation methods depicted an epithelial phenotype, maintained their secretory capacity for up to 30 days, and exhibited progenitor cell capacity as measured by aldehyde dehydrogenase-1 activity, side population assay, and colony-forming units. Cells from passage 0 were reseeded into the DC-LG and secretory active cells migrated into the tissue. The cells resembled an LG-like morphology and the constructs showed secretory activity. These results demonstrate the possibility of engineering a secretory competent, three-dimensional LG construct using LG cells expanded from a small tissue biopsy and DC-LG as a matrix that provides the native structure and physiological niche for these cells.
Collapse
Affiliation(s)
- Kristina Spaniol
- 1 Department of Ophthalmology, University of Düsseldorf , Düsseldorf, Germany
| | - Marco Metzger
- 2 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg and Translational Center Würzburg "Regenerative Therapies for Oncology and Musculoscelettal Diseases ," Würzburg, Germany
| | - Mathias Roth
- 1 Department of Ophthalmology, University of Düsseldorf , Düsseldorf, Germany
| | - Burkhard Greve
- 3 Department of Radiotherapy, University of Münster , Münster, Germany
| | - Sonja Mertsch
- 4 Institute for Experimental Ophthalmology, University of Münster , Münster, Germany
| | - Gerd Geerling
- 1 Department of Ophthalmology, University of Düsseldorf , Düsseldorf, Germany
| | - Stefan Schrader
- 1 Department of Ophthalmology, University of Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
9
|
Tiwari S, Ali MJ, Vemuganti GK. Human lacrimal gland regeneration: Perspectives and review of literature. Saudi J Ophthalmol 2014; 28:12-8. [PMID: 24526853 PMCID: PMC3923198 DOI: 10.1016/j.sjopt.2013.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The human lacrimal gland is an essential component of the lacrimal functional unit (LFU). Any perturbation of this unit can lead to the debilitating morbid condition called the dry eye syndrome (DES). The current line of therapy available for dry eye remains supportive and palliative with the patient being dependent on life long and frequent administration of lubricating eye drops. Even advanced therapies like punctual plugs, cyclosporine B administration, and salivary gland auto-transplantation have led to a limited success. Under these scenarios, the option of cell based therapy needs to be explored to provide better and long term relief to these patients. This review gives an overview of the efforts in lacrimal gland regeneration and examines the past and ongoing research in cell based therapies in animals as well as human lacrimal gland cultures. The authors discuss their first of its kind functionally viable human lacrimal gland in vitro culture system from fresh exenteration specimens. A brief overview of research in near future and the potential implications of lacrimal gland regenerative therapies have been discussed.
Collapse
Affiliation(s)
- Shubha Tiwari
- Sudhakar and Sreekant Ravi Stem Cell Biology Laboratory, L. V. Prasad Eye Institute, Hyderabad, India
| | | | - Geeta K Vemuganti
- Sudhakar and Sreekant Ravi Stem Cell Biology Laboratory, L. V. Prasad Eye Institute, Hyderabad, India ; School of Medical Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
10
|
Takahashi Y, Watanabe A, Matsuda H, Nakamura Y, Nakano T, Asamoto K, Ikeda H, Kakizaki H. Anatomy of secretory glands in the eyelid and conjunctiva: a photographic review. Ophthalmic Plast Reconstr Surg 2013; 29:215-9. [PMID: 23381567 DOI: 10.1097/iop.0b013e3182833dee] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The eyelid and conjunctiva are main targets in ophthalmic plastic surgery. Although dry eyes are known to occasionally occur after ophthalmic plastic surgery, little attention has been paid to the secretory glands in the eyelid and conjunctiva. The secretary glands in the eyelid and conjunctiva contain the main lacrimal gland, accessory lacrimal glands of Wolfring and Krause, goblet cells, ciliary glands of Moll and Zeis, and the meibomian gland of the tarsal plate. Understanding the details of these glands is helpful in preventing and managing secretion reduction after oculoplastic procedures.
Collapse
Affiliation(s)
- Yasuhiro Takahashi
- Department of Ophthalmology, Aichi Medical University, Nagakute, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Tiwari S, Vemuganti GK. Lacrimal Gland Regeneration: Progress and Promise. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
12
|
Tiwari S, Ali MJ, Balla MMS, Naik MN, Honavar SG, Reddy VAP, Vemuganti GK. Establishing human lacrimal gland cultures with secretory function. PLoS One 2012; 7:e29458. [PMID: 22253725 PMCID: PMC3258235 DOI: 10.1371/journal.pone.0029458] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022] Open
Abstract
Purpose Dry eye syndrome is a multifactorial chronic disabling disease mainly caused by the functional disruptions in the lacrimal gland. The treatment involves palliation like ocular surface lubrication and rehydration. Cell therapy involving replacement of the gland is a promising alternative for providing long-term relief to patients. This study aimed to establish functionally competent lacrimal gland cultures in–vitro and explore the presence of stem cells in the native gland and the established in-vitro cultures. Methods Fresh human lacrimal gland from patients undergoing exenteration was harvested for cultures after IRB approval. The freshly isolated cells were evaluated by flow cytometry for expression of stem cell markers ABCG2, high ALDH1 levels and c-kit. Cultures were established on Matrigel, collagen and HAM and the cultured cells evaluated for the presence of stem cell markers and differentiating markers of epithelial (E-cadherin, EpCAM), mesenchymal (Vimentin, CD90) and myofibroblastic (α-SMA, S-100) origin by flow cytometry and immunocytochemistry. The conditioned media was tested for secretory proteins (scIgA, lactoferrin, lysozyme) post carbachol (100 µM) stimulation by ELISA. Results Native human lacrimal gland expressed ABCG2 (mean±SEM: 3.1±0.61%), high ALDH1 (3.8±1.26%) and c-kit (6.7±2.0%). Lacrimal gland cultures formed a monolayer, in order of preference on Matrigel, collagen and HAM within 15–20 days, containing a heterogeneous population of stem-like and differentiated cells. The epithelial cells formed ‘spherules’ with duct like connections, suggestive of ductal origin. The levels of scIgA (47.43 to 61.56 ng/ml), lysozyme (24.36 to 144.74 ng/ml) and lactoferrin (32.45 to 40.31 ng/ml) in the conditioned media were significantly higher than the negative controls (p<0.05 for all comparisons). Conclusion The study reports the novel finding of establishing functionally competent human lacrimal gland cultures in-vitro. It also provides preliminary data on the presence of stem cells and duct-like cells in the fresh and in-vitro cultured human lacrimal gland. These significant findings could pave way for cell therapy in future.
Collapse
Affiliation(s)
- Shubha Tiwari
- Sudhakar and Sreekant Ravi Stem Cell Biology Laboratory, Professor Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, India
| | | | | | | | | | | | | |
Collapse
|
13
|
Tan SL, Sulaiman S, Pingguan-Murphy B, Selvaratnam L, Tai CC, Kamarul T. Human amnion as a novel cell delivery vehicle for chondrogenic mesenchymal stem cells. Cell Tissue Bank 2009; 12:59-70. [PMID: 19953328 DOI: 10.1007/s10561-009-9164-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 11/17/2009] [Indexed: 11/28/2022]
Abstract
This study investigates the feasibility of processed human amnion (HAM) as a substrate for chondrogenic differentiation of mesenchymal stem cells (MSCs). HAM preparations processed by air drying (AD) and freeze drying (FD) underwent histological examination and MSC seeding in chondrogenic medium for 15 days. Monolayer cultures were used as control for chondrogenic differentiation and HAMs without cell seeding were used as negative control. Qualitative observations were made using scanning electron microscopy analysis and quantitative analyses were based on the sulfated glycosaminoglycans (GAG) assays performed on day 1 and day 15. Histological examination of HAM substrates before seeding revealed a smooth surface in AD substrates, while the FD substrates exhibited a porous surface. Cell attachment to AD and FD substrates on day 15 was qualitatively comparable. GAG were significantly highly expressed in cells seeded on FD HAM substrates. This study indicates that processed HAM is a potentially valuable material as a cell-carrier for MSC differentiation.
Collapse
Affiliation(s)
- Sik-Loo Tan
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|