1
|
Brassolatti P, de Almeida Rodolpho JM, Franco de Godoy K, de Castro CA, Flores Luna GL, Dias de Lima Fragelli B, Pedrino M, Assis M, Nani Leite M, Cancino-Bernardi J, Speglich C, Frade MA, de Freitas Anibal F. Functionalized Titanium Nanoparticles Induce Oxidative Stress and Cell Death in Human Skin Cells. Int J Nanomedicine 2022; 17:1495-1509. [PMID: 35388270 PMCID: PMC8978907 DOI: 10.2147/ijn.s325767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Patricia Brassolatti
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Correspondence: Patricia Brassolatti, Departamento de Morfologia e Patologia UFSCar, Rod. Washington Luís, Km 235 Caixa Postal 676, São Carlos, CEP. 13565-905, SP, Brazil, Tel +551633518325, Fax +551633518326, Email
| | - Joice Margareth de Almeida Rodolpho
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Krissia Franco de Godoy
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Cynthia Aparecida de Castro
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Genoveva Lourdes Flores Luna
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Bruna Dias de Lima Fragelli
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Matheus Pedrino
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Marcelo Assis
- Center for the Development of Functional Materials, Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Marcel Nani Leite
- Division of Dermatology - Wound Healing & Hansen’s Disease Lab, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Cancino-Bernardi
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Carlos Speglich
- Leopoldo Américo Miguez de Mello CENPES/Petrobras Research Center, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Andrey Frade
- Division of Dermatology - Wound Healing & Hansen’s Disease Lab, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda de Freitas Anibal
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
2
|
Park JH, Kim DJ, Park CY. Retinal cytotoxicity of silica and titanium dioxide nanoparticles. Toxicol Res (Camb) 2022; 11:88-100. [PMID: 35237414 PMCID: PMC8882788 DOI: 10.1093/toxres/tfab117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Indexed: 12/26/2022] Open
Abstract
The retina plays a key role in human vision. It is composed of cells that are essential for vision signal generation. Thus far, conventional medications have been ineffective for treating retinal diseases because of the intrinsic blood-retinal barrier. Nanoparticles (NPs) are promising effective platforms for ocular drug delivery. However, nanotoxicity in the retinal tissue has not received much attention. This study used R28 cells (a retinal precursor cell line that originated from rats) to investigate the safety of two commonly used types of NPs: silica nanoparticles (SiO2NPs, 100 nm) and titanium dioxide nanoparticles (TiO2NPs, 100 nm). Cellular viability and reactive oxygen species generation were measured after 24, 48, and 72 h of exposure to each NP. Cellular autophagy and the mTOR pathways were evaluated. The retinal toxicity of the NPs was investigated in vivo in rat models. Both types of NPs were found to induce significant dose-dependent toxicity on the R28 cells. A significant elevation of reactive oxygen species generation was also observed. Increased autophagy and decreased mTOR phosphorylation were observed after SiO2NPs and TiO2NPs exposure. The diffuse apoptosis of the retinal cellular layers was detected after intravitreal injection.
Collapse
Affiliation(s)
- Joo-Hee Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang 410-773, South Korea
| | - Dong Ju Kim
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang 410-773, South Korea
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang 410-773, South Korea
| |
Collapse
|
3
|
Guo D, Wang Z, Guo L, Yin X, Li Z, Zhou M, Li T, Chen C, Bi H. Zinc oxide nanoparticle-triggered oxidative stress and autophagy activation in human tenon fibroblasts. Eur J Pharmacol 2021; 907:174294. [PMID: 34217712 DOI: 10.1016/j.ejphar.2021.174294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide due to elevated intraocular pressure, and filtering surgery can efficiently control intraocular pressure of glaucoma patients. However, failure of filtering surgery commonly results from scarring formation at the surgical site, in which fibroblast proliferation plays an essential role in the scarring process. Our previous study has demonstrated that zinc oxide (ZnO) nanoparticles could efficiently inhibit human tenon fibroblasts (HTFs) proliferation. The present study aimed to explore the underlying mechanism involved in oxidative stress and autophagy signaling in zinc oxide (ZnO) nanoparticles-induced inhibition of HTFs proliferation. In this study, we investigated the effect of ZnO nanoparticles on HTFs proliferation, mitochondrial function, ATP production and nuclear morphology. Moreover, we also explored the interactions between ZnO nanoparticles and HTFs, investigated the influence of ZnO nanoparticles on the autophagosome formation, the expression of autophagy-related 5 (Atg5), Atg12 and Becn1 (Beclin 1), and the level of light chain 3 (LC3). The results suggested that ZnO nanoparticles can efficiently inhibit HTFs proliferation, disrupt the mitochondrial function, attenuate the adenosine triphosphate (ATP) generation, and damage the nuclear morphology of HTFs. Exposure of HTFs to ZnO nanoparticles can also induce the shifted peak, elevate the expression of Atg5, Atg12 and Becn1, enhance the autophagosome formation, and promote the LC3 expression, and thus activate autophagy signaling. Overall, ZnO nanoparticles can apparently trigger oxidative stress and activate autophagy signaling in HTFs, and thus inhibit HTFs proliferation and mediate HTFs apoptosis.
Collapse
Affiliation(s)
- Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| | - Zhe Wang
- Department of Ophthalmology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, 277000, China
| | - Lijie Guo
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xuewei Yin
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zonghong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Mengxian Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Tuling Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chen Chen
- Department of Ophthalmology, Linyi People's Hospital, Linyi, 276000, China.
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| |
Collapse
|
4
|
Wang L, Guo D, Wang Z, Yin X, Wei H, Hu W, Chen R, Chen C. Zinc oxide nanoparticles induce human tenon fibroblast apoptosis through reactive oxygen species and caspase signaling pathway. Arch Biochem Biophys 2020; 683:108324. [PMID: 32112740 DOI: 10.1016/j.abb.2020.108324] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/23/2020] [Accepted: 02/25/2020] [Indexed: 12/27/2022]
Abstract
Glaucoma is the leading cause of irreversible blindness in the world and trabeculectomy remains still the most commonly performed filtration surgery. Failure of trabeculectomy is due to the formation of scarring, which is associated with the increased fibroblast proliferation, activation, and collagen deposition at the site of the drainage channel with subconjunctival fibrosis. Our previous study has revealed that zinc oxide (ZnO) nanoparticles could efficiently decrease the expressions of TGF-β1 and inhibit fibroblast-mediated collagen lattice contraction. However, the mechanism underlying ZnO nanoparticle-induced fibroblast apoptosis is still unclear. In the present study, we investigated the effect of ZnO nanoparticles on the reactive oxygen species (ROS) and mitochondrial membrane potential (Δψm) in human Tenon fibroblasts (HTFs). Moreover, we also explored the influence of ZnO nanoparticles on the expression of Caspase-3, Caspase-9, apoptotic protease-activating factor-1 (Apaf-1), fibroblast-specific protein-1 (FSP-1), collagen III, and E-cadherin. The results indicated that ZnO nanoparticles markedly inhibit HTFs viability and decrease the Δψm in a concentration-dependent pattern. Exposure of HTFs to ZnO nanoparticles could also induce the elevated Caspase-3, Caspase-9, and Apaf-1 expression, decrease the levels of FSP-1, collagen III, and E-cadherin expression, leading to HTFs apoptosis. Our results suggested that elevated ROS and activated Caspase signaling play a fundamental role in ZnO nanoparticle-induced HTFs apoptosis.
Collapse
Affiliation(s)
- Ling Wang
- Jining Medical University, Jining, 272000, Shandong Province, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, 250002, Shandong Province, China
| | - Zhe Wang
- Department of Ophthalmology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, 277000, China
| | - Xuewei Yin
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Huixia Wei
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Wanli Hu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan, 250355, China
| | - Ruihong Chen
- Jining Medical University, Jining, 272000, Shandong Province, China
| | - Chao Chen
- Department of Ophthalmology, the First People's Hospital of Jining, Jining, 272002, Shandong Province, China.
| |
Collapse
|