1
|
Prétot D, Della Volpe Waizel M, Kaminska K, Valmaggia P, Placidi G, Falsini B, Fries FN, Szentmáry N, Rivolta C, Scholl HPN, Calzetti G. Retinal oxygen metabolic function in choroideremia and retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 2024:10.1007/s00417-024-06659-8. [PMID: 39394491 DOI: 10.1007/s00417-024-06659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
PURPOSE To measure the retinal oxygen metabolic function with retinal oximetry (RO) in patients with choroideremia (CHM) and compare these findings with retinitis pigmentosa (RP) patients and controls. METHODS Prospective observational study including 18 eyes of 9 molecularly confirmed CHM patients (9♂; 40.2 ± 21.2 years (mean ± SD), 77 eyes from 39 patients with RP (15♀ 24♂; 45.6 ± 14.7 years) and 100 eyes from 53 controls (31♀ 22♂; 40.2 ± 13.4 years). Main outcome parameters were the mean arterial (A-SO2; %), venular (V-SO2; %) oxygen saturation, and their difference (A-V SO2; %) recorded with the oxygen saturation tool of the Retinal Vessel Analyzer (IMEDOS Systems UG, Germany). Statistical analyses were performed with linear mixed-effects models. RESULTS Eyes suffering from CHM differed significantly from both RP and control eyes, when the retinal oxygen metabolic parameters were taken into account. While RP showed significantly higher A-SO2 and V-SO2 values when compared to controls, CHM showed opposite findings with significantly lower values when compared to both RP and controls (P < 0.001). The A-V SO2, which represents the retinal oxygen metabolic consumption, showed significantly lower values in CHM compared to controls. CONCLUSION The retina in CHM is a relatively hypoxic environment. The decrease in oxygen levels may be due to the profound choroidal degeneration, leading to decreased oxygen flux to the retina. RO measurements may help understand the pathogenesis of CHM and RP. These findings may provide useful details to inform the planning of clinical trials of emerging therapies for CHM. KEY MESSAGES What was known before? Retinal oxygen metabolic function measured with retinal oximetry (RO) shows significant alterations in patients with retinitis pigmentosa. WHAT THIS STUDY ADDS RO function in choroideremia is significantly altered when compared to controls. Furthermore, RO in choroideremia shows opposing findings within different oxygen metabolic parameters to those that were so far known for retinitis pigmentosa. By providing insights into the retinal oxygen metabolic mechanisms, RO can help understand the underlying pathophysiology in choroideremia.
Collapse
Affiliation(s)
- Dominique Prétot
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland
- Heuberger Eye Clinic, Olten, Switzerland
| | - Maria Della Volpe Waizel
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Karolina Kaminska
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Philippe Valmaggia
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Giorgio Placidi
- Ophthalmology Unit, Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS/Università Cattolica del S. Cuore, Rome, Italy
| | - Benedetto Falsini
- Ophthalmology Unit, Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS/Università Cattolica del S. Cuore, Rome, Italy
| | - Fabian N Fries
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Carlo Rivolta
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Hendrik P N Scholl
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Giacomo Calzetti
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland.
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- Vista Vision Eye Clinic, Brescia, Italy.
| |
Collapse
|
2
|
Jolly JK, Grigg JR, McKendrick AM, Fujinami K, Cideciyan AV, Thompson DA, Matsumoto C, Asaoka R, Johnson C, Dul MW, Artes PH, Robson AG. ISCEV and IPS guideline for the full-field stimulus test (FST). Doc Ophthalmol 2024; 148:3-14. [PMID: 38238632 PMCID: PMC10879267 DOI: 10.1007/s10633-023-09962-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 02/21/2024]
Abstract
The full-field stimulus test (FST) is a psychophysical technique designed for the measurement of visual function in low vision. The method involves the use of a ganzfeld stimulator, as used in routine full-field electroretinography, to deliver full-field flashes of light. This guideline was developed jointly by the International Society for Clinical Electrophysiology of Vision (ISCEV) and Imaging and Perimetry Society (IPS) in order to provide technical information, promote consistency of testing and reporting, and encourage convergence of methods for FST. It is intended to aid practitioners and guide the formulation of FST protocols, with a view to future standardisation.
Collapse
Affiliation(s)
- J K Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Young Street, Cambridge, CB1 2LZ, UK.
| | - J R Grigg
- Save Sight Institute, Specialty of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Eye Genetics Research Unit, Sydney Children's Hospitals Network, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - A M McKendrick
- Lions Eye Institute, University of Western Australia, Perth, Australia
- School of Allied Health, University of Western Australia, Crawley, Australia
| | - K Fujinami
- Laboratory of Visual Physiology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- Institute of Ophthalmology, University College London, London, UK
| | - A V Cideciyan
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, University of Pennsylvania, Philadelphia, USA
| | - D A Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic, Department of Ophthalmology, Sight and Sound Centre, Great Ormond Street Hospital for Children NHS Trust, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - C Matsumoto
- Department of Ophthalmology, Kindai University, Osakasayama, Japan
| | - R Asaoka
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
- Seirei Christopher University, Hamamatsu, Shizuoka, Japan
- Nanovision Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka, Japan
- The Graduate School for the Creation of New Photonics Industries, Shizuoka, Japan
| | - C Johnson
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
- School of Optometry, The Ohio State University, Columbus, IA, USA
| | - M W Dul
- Department of Biological and Vision Science, College of Optometry, State University of New York, New York, USA
| | - P H Artes
- Faculty of Health, University of Plymouth, Plymouth, UK
| | - A G Robson
- Institute of Ophthalmology, University College London, London, UK
- Department of Electrophysiology, Moorfields Eye Hospital, London, UK
| |
Collapse
|
3
|
Shi LF, Hall AJ, Thompson DA. Full-field stimulus threshold testing: a scoping review of current practice. Eye (Lond) 2024; 38:33-53. [PMID: 37443335 PMCID: PMC10764876 DOI: 10.1038/s41433-023-02636-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The full-field stimulus threshold (FST) is a psychophysical measure of whole-field retinal light sensitivity. It can assess residual visual function in patients with severe retinal disease and is increasingly being adopted as an endpoint in clinical trials. FST applications in routine ophthalmology clinics are also growing, but as yet there is no formalised standard guidance for measuring FST. This scoping review explored current variability in FST conduct and reporting, with an aim to inform further evidence synthesis and consensus guidance. A comprehensive electronic search and review of the literature was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis Extension for Scoping Reviews (PRISMA-ScR) checklist. Key source, participant, methodology and outcomes data from 85 included sources were qualitatively and quantitatively compared and summarised. Data from 85 sources highlight how the variability and insufficient reporting of FST methodology, including parameters such as units of flash luminance, colour, duration, test strategy and dark adaptation, can hinder comparison and interpretation of clinical significance across centres. The review also highlights an unmet need for paediatric-specific considerations for test optimisation. Further evidence synthesis, empirical research or structured panel consultation may be required to establish coherent standardised guidance on FST methodology and context or condition dependent modifications. Consistent reporting of core elements, most crucially the flash luminance equivalence to 0 dB reference level is a first step. The development of criteria for quality assurance, calibration and age-appropriate reference data generation may further strengthen rigour of measurement.
Collapse
Affiliation(s)
- Linda F Shi
- Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Amanda J Hall
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Dorothy A Thompson
- Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- UCL Great Ormond Street Institute for Child Health, University College London, London, UK.
| |
Collapse
|