1
|
Abdelrazek HMA, Mahmoud MMA, Tag HM, Greish SM, Eltamany DA, Soliman MTA. Soy Isoflavones Ameliorate Metabolic and Immunological Alterations of Ovariectomy in Female Wistar Rats: Antioxidant and Estrogen Sparing Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5713606. [PMID: 30733850 PMCID: PMC6348823 DOI: 10.1155/2019/5713606] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/23/2018] [Accepted: 10/21/2018] [Indexed: 01/29/2023]
Abstract
Hormone replacement therapy (HRT) can alleviate estrogen deficiency symptoms especially during menopause. The present study aimed at investigating the effect of soy isoflavones as HRT on immunological and bone health-related parameters with a special focus on the interactions between immunological status and metabolism. Thirty healthy cyclic female Wistar rats were used in this experiment. Ten females were sham-operated, and 20 females were subjected to ovariectomy. Overiectomized (OVX) female rats were randomly divided into 2 groups: the control group (G1, OVX/casein) was fed a casein-based diet, and the second group (G2, OVX/soy) was fed a high soy isoflavone diet. Both groups were compared to a sham-operated group (G3, sham/casein). Treatments continued for 7 weeks. Feed intake, weight gain, and lymphoid organ relative weights were recorded. Some metabolic, immunological, and bone health-related parameters were measured. Moreover, nitric oxide (NO), malondialdehyde (MDA), and total antioxidant capacity (TAC) were determined. Bone histopathology and immunohistochemistry to estrogen receptor alpha (ERα) were done. Feeding soy to OVX females reduced feed intake, weight gain, relative lymphoid organ weight, and T-lymphocytes transformation. Soy isoflavone administration normalized nearly all metabolic and immunological parameters to a level comparable to the sham group via oxidative stress amelioration and bone ERα promotion. Soy isoflavones seemed to be good HRT in estrogen deprivation which modulated the appetite, weight gain, lipid profile, proinflammation, and bone turnover.
Collapse
Affiliation(s)
- Heba M. A. Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal M. A. Mahmoud
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hend M. Tag
- Department of Biology, Faculty of Sciences and Arts-Khulais, University of Jeddah, PO Box 355, ISIN Code 21-921, Jeddah, Saudi Arabia
- Department of Zoology, Faculty of Sciences, Suez Canal University, PO Box 41522, Egypt
| | - Sahar M. Greish
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Basic Medical Science Department, Faculty of Dentistry, Badr University in Cairo, Egypt
| | - Dalia A. Eltamany
- Nutrition and Food Science, Home Economic Department, Faculty of Education, Suez Canal University, Ismailia, Egypt
| | - Mohammed T. A. Soliman
- College of Applied Medical Sciences, Department of Medical Laboratory Sciences, University of Bisha, Saudi Arabia
| |
Collapse
|
2
|
Filipović B, Šošić‐Jurjević B, Ajdžanović V, Živanović J, Ristić N, Trifunović S, Milošević V. Response of trabecular bone, thyroid C and follicular cells to synthetic salmon calcitonin in middle-aged orchidectomized male rats. J Anat 2017; 230:787-795. [PMID: 28220476 PMCID: PMC5442141 DOI: 10.1111/joa.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2017] [Indexed: 11/29/2022] Open
Abstract
In contrast to studies in women, male osteoporosis is poorly understood and strictly related to advancing age. Among the first antiresorptive substances used in the prevention and treatment of osteoporosis is calcitonin (CT), a hypocalcemic hormone that potently inhibits osteoclastic bone resorption. Natural CT is produced and secreted by thyroid C-cells. The other endocrine population of thyroid cells produces thyroid hormones (TH), which also affect bone turnover. The aim of this study was to evaluate the influence of salmon CT on trabecular bone microarchitecture with special reference to effects on the structure and function of both CT- and TH-producing thyroid cells in orchidectomized (Orx) middle-aged rats. Twenty-four male Wistar rats aged 15 months were randomly divided into Orx and sham-operated (SO) groups. One group of Orx animals received (s.c.) synthetic salmon CT (Orx + CT; 100 IU kg-1 b.w.) subcutaneously every second day for 6 weeks. The second Orx group and SO rats were given the same volume of vehicle alone by the same schedule. Trabecular bone histomorphometrical parameters were: cancellous bone area (B.Ar), trabecular thickness (Tb.Th), trabecular number (Tb.N) and trabecular separation (Tb.Sp) were obtained with an ImageJ public-domain image-processing program. The peroxidase-antiperoxidase method was applied for localization of CT in C-cells. Anti-human CT antisera served as the primary antibodies. For immunohistochemical characterization of vascular endothelial growth factor (VEGF) in thyroid tissue, rabbit antisera against human VEGF, served as primary antibodies. CT-immunopositive thyroid C-cells, thyroid follicular epithelium, interstitium and colloid were evaluated morphometrically. Blood serum samples were analyzed for CT, osteocalcin (OC), and thyroxine (T4 ), and calcium (Ca2+ ) concentration was determined in urine samples. Salmon CT application significantly increased B.Ar, TbTh and TbN, but markedly decreased Tb.Sp. Administration of exogenous CT significantly decreased mean volume (Vc) and relative volume density (Vv) of thyroid C-cells in relation to both SO and Orx groups. The Vv of the colloid was higher, whereas the VV of the follicular epithelium was lower after CT treatment compared with Orx alone. CT treatment markedly elevated serum CT, whereas serum OC, T4 and urinary Ca2+ concentrations were lower than in the Orx group. These results indicate that salmon CT stimulates trabecular bone microarchitecture, strongly inhibits thyroid C-cells and changes the structure of the thyroid gland, indicating hypoactivity.
Collapse
Affiliation(s)
- Branko Filipović
- Department of CytologyInstitute for Biological Research ‘Siniša Stanković’ University of BelgradeBelgradeSerbia
| | - Branka Šošić‐Jurjević
- Department of CytologyInstitute for Biological Research ‘Siniša Stanković’ University of BelgradeBelgradeSerbia
| | - Vladimir Ajdžanović
- Department of CytologyInstitute for Biological Research ‘Siniša Stanković’ University of BelgradeBelgradeSerbia
| | - Jasmina Živanović
- Department of CytologyInstitute for Biological Research ‘Siniša Stanković’ University of BelgradeBelgradeSerbia
| | - Nataša Ristić
- Department of CytologyInstitute for Biological Research ‘Siniša Stanković’ University of BelgradeBelgradeSerbia
| | - Svetlana Trifunović
- Department of CytologyInstitute for Biological Research ‘Siniša Stanković’ University of BelgradeBelgradeSerbia
| | - Verica Milošević
- Department of CytologyInstitute for Biological Research ‘Siniša Stanković’ University of BelgradeBelgradeSerbia
| |
Collapse
|
3
|
Filipović B, Šošić-Jurjević B, Ajdžanović V, Živanović J, Isenović E, Popovska-Perčinić F, Milošević V. Tamoxifen stimulates calcitonin-producing thyroid C-cells and prevents trabecular bone loss in a rat model of androgen deficiency. J Anat 2015; 226:489-96. [PMID: 25851663 DOI: 10.1111/joa.12298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2015] [Indexed: 11/30/2022] Open
Abstract
Thyroid C-cells produce calcitonin (CT), a hypocalcemic hormone, that acts as an inhibitor of bone resorption. In this study, we investigated the effects of tamoxifen (TAM) as a selective estrogen receptor modulator on thyroid C-cells, trabecular bone and biochemical markers of bone metabolism in an animal model of androgen deficiency, represented by middle-aged orchidectomized (Orx) rats. Fifteen-month-old male Wistar rats were divided into: Orx and sham-operated (SO) groups. Rats from one Orx group were injected subcutaneously with TAM citrate (Orx + TAM; 0.3 mg kg(-1) b.w.), while the rats from SO and a second Orx group received vehicle alone, once a day for 3 weeks. The peroxidase-antiperoxidase method was applied for localization of CT in C-cells. Thyroid C-cells were morphometrically and ultrastructurally analyzed. An ImageJ image-processing program was used to measure bone histomorphometric parameters. Blood serum samples were analyzed for CT, osteocalcin (OC), calcium (Ca2+ ) and phosphorus (P). Urinary Ca2+ concentrations were measured. TAM treatment significantly increased thyroid C-cell volume (Vc ) and serum CT when compared with vehicle-treated Orx rats. Analysis of trabecular microarchitecture of the tibia showed that administration of TAM significantly increased cancellous bone area, trabecular thickness and trabecular number, whereas trabecular separation was significantly decreased compared with vehicle-treated Orx rats. Serum OC and urinary Ca2+ concentrations were significantly lower in comparison with the control Orx group. These results indicate that in our rat model of androgen deficiency, TAM stimulated calcitonin-producing thyroid C-cells and increased trabecular bone mass.
Collapse
Affiliation(s)
- Branko Filipović
- Institute for Biological Research ″Siniša Stanković″, University of Belgrade, Belgrade, Serbia
| | - Branka Šošić-Jurjević
- Institute for Biological Research ″Siniša Stanković″, University of Belgrade, Belgrade, Serbia
| | - Vladimir Ajdžanović
- Institute for Biological Research ″Siniša Stanković″, University of Belgrade, Belgrade, Serbia
| | - Jasmina Živanović
- Institute for Biological Research ″Siniša Stanković″, University of Belgrade, Belgrade, Serbia
| | - Esma Isenović
- Vinca Institute of Nuclear Science, Laboratory for Molecular Genetics and Radiobiology, University of Belgrade, Belgrade, Serbia
| | - Florina Popovska-Perčinić
- Faculty of Veterinary Medicine, ″Ss Cyril and Methodius″ University of Skopje, Skopje, FYR of Macedonia
| | - Verica Milošević
- Institute for Biological Research ″Siniša Stanković″, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Filipović B, Sošić-Jurjević B, Ajdžanović V, Pantelić J, Nestorović N, Milošević V, Sekulić M. The effects of sex steroids on thyroid C cells and trabecular bone structure in the rat model of male osteoporosis. J Anat 2012; 222:313-20. [PMID: 23171170 DOI: 10.1111/joa.12013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2012] [Indexed: 11/26/2022] Open
Abstract
Androgen deficiency is one of the major factors leading to the development of osteoporosis in men. Since calcitonin (CT) is a potent antiresorptive agent, in the present study we investigated the effects of androgen deficiency and subsequent testosterone and estradiol treatment on CT-producing thyroid C cells, skeletal and hormonal changes in middle-aged orchidectomized (Orx) rats. Fifteen-month-old male Wistar rats were either Orx or sham-operated (SO). One group of Orx rats received 5 mg kg(-1) b.w. testosterone propionate (TP) subcutaneously, while another group was injected with 0.06 mg kg(-1) b.w. estradiol dipropionate (EDP) once a day for 3 weeks. A peroxidase-antiperoxidase method was applied for localization of CT in the C cells. The studies included ultrastructural microscopic observation of these cells. The metaphyseal region of the proximal tibia was measured histomorphometrically using an imagej public domain image processing program. TP or EDP treatment significantly increased C cell volume (Vc), volume densities (Vv) and serum CT concentration compared with the Orx animals. Administration of both TP and EDP significantly enhanced cancellous bone area (B.Ar), trabecular thickness (Tb.Th) and trabecular number (Tb.N) and reduced trabecular separation (Tb.Sp). Serum osteocalcin (OC) and urinary Ca concentrations were significantly lower after these treatments in comparison with Orx rats. These data suggest that testosterone and estradiol treatment in Orx middle-aged rats affect calcitonin-producing thyroid C cells, which may contribute to the bone protective effects of sex hormones in the rat model of male osteoporosis.
Collapse
Affiliation(s)
- Branko Filipović
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
5
|
Filipović B, Sosić-Jurjević B, Ajdzanović V, Brkić D, Manojlović-Stojanoski M, Milosević V, Sekulić M. Daidzein administration positively affects thyroid C cells and bone structure in orchidectomized middle-aged rats. Osteoporos Int 2010; 21:1609-16. [PMID: 19859640 DOI: 10.1007/s00198-009-1092-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 10/06/2009] [Indexed: 10/20/2022]
Abstract
SUMMARY Thyroid C cells hormone, calcitonine, inhibits bone resorption. We have demonstrated that daidzein treatment of orchidectomized rats (model for osteoporosis) stimulated C cells and increased trabecular bone mass. These results suggest that, besides direct action, daidzein may also affect bone structure indirectly through enhancement of thyroid C cell activity. INTRODUCTION Thyroid C cells produce calcitonin (CT) which acts as an inhibitor of bone resorption. In this study, the influence of daidzein treatment on thyroid C cells, bone structure, and bone function in orchidectomized (Orx) middle-aged rats was investigated. METHODS Sixteen-month-old Wistar rats were divided into Orx and sham-operated (SO) groups. Half the Orx rats were given subcutaneous injections of daidzein (30 mg/kg b.w./day) for 3 weeks. CT-immunopositive thyroid C cells were morphometrically analyzed. The metaphyseal region of the proximal tibia was measured histomorphometrically, and cancellous bone area (B.Ar), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp) were calculated. Serum samples were analyzed for CT and osteocalcin (OC), calcium (Ca) and phosphorus concentrations, and urine samples for Ca levels. RESULTS Treatment of Orx animals with daidzein significantly increased volume of C cells compared to the Orx rats. Daidzein also enhanced B.Ar, Tb.Th, and Tb.N and reduced Tb.Sp. The serum OC and urinary Ca concentrations decreased significantly in comparison with the Orx group. CONCLUSIONS These findings indicate that daidzein treatment stimulates thyroid C cells, increase trabecular bone mass, and decrease bone turnover in Orx middle-aged rats, which is the model of male osteoporosis.
Collapse
Affiliation(s)
- B Filipović
- Institute for Biological Research, Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
6
|
Pufe T, Claassen H, Scholz-Ahrens KE, Varoga D, Drescher W, Franke ATM, Wruck C, Petersen W, Cellarius C, Schrezenmeir J, Glüer CC. Influence of estradiol on vascular endothelial growth factor expression in bone: a study in Göttingen miniature pigs and human osteoblasts. Calcif Tissue Int 2007; 80:184-91. [PMID: 17334879 DOI: 10.1007/s00223-006-0275-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 11/24/2006] [Indexed: 10/23/2022]
Abstract
Ovariectomy (OVX) in animal models is an accepted method to simulate postmenopausal osteoprosis. Vascular endothelial growth factor (VEGF) has been recently shown to play an important role during endochondral bone formation, hypertrophic cartilage remodeling, ossification, and angiogenesis. We hypothesized that reduced VEGF expression in bone contributes to OVX-induced bone loss and tested it in a miniature pig model and in vitro using human osteoblasts. Seventeen primiparous sows (Göttingen miniature pigs) were allocated to two experimental groups when they were 30 months old: a control group (n = 9) and an OVX group (n = 8). After 15 months, VEGF levels in lumbar vertebrae were measured by enzyme-linked immunosorbent assay and verified by Western blot analysis. VEGF and its receptor (VEGFR) were localized by immunohistochemistry. Expression of VEGF mRNA was analyzed by real-time reverse-transcription polymerase chain reaction. Differently sulfated glycosaminoglycans were localized in subchondral bone histochemically. Osteoblasts were immunopositive for VEGF. VEGF concentration in the vertebra was 27% lower in OVX miniature pigs. VEGFR-2 could be immunostained on osteoblasts. VEGF mRNA and protein were detectable in the lumbar vertebrae of all animals. In subchondral trabecular bone of OVX animals, significantly more islands of mineralized cartilage containing chondroitin 4- and 6-sulfate or keratan sulfate occurred compared to the control group. The occurrence of remnants of mineralized cartilage in subchondral bone of the OVX group may be caused by a delayed bone turnover due to low VEGF levels. In vitro experiments revealed an increase of VEGF in the supernatant of osteoblasts after incubation with estradiol. In conclusion, estrogen seems to be a key factor for regulation of VEGF expression in bone. Loss of VEGF due to menopause may be a reason for reduction of bone density.
Collapse
Affiliation(s)
- T Pufe
- Department of Anatomy, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24098, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Filipović B, Jurjević BS, Stojanoski MM, Nestorović N, Milosević V, Sekulić M. The effect of chronic calcium treatment on thyroid C cells in ovariectomized rats. Life Sci 2005; 77:121-9. [PMID: 15862597 DOI: 10.1016/j.lfs.2004.09.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 09/28/2004] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to investigate the influence of chronic calcium treatment on the structure and function of thyroid C cells in ovariectomzed adult female rats. Eighteen 3-month-old, female Wistar rats were divided into three groups. The first group was used as the sham-operated control, and the other two were surgically ovariectomized (Ovx). One month after gonadectomy, one group of Ovx rats was injected with 28.55 mg Ca-glucoheptonate (Ca)/kg b.w., while the other two groups were chronically treated with vehicle alone (Ovx and sham control). Two months after surgery, the animals were killed. In the thyroid C cells, calcitonin (CT) was localized with the peroxidase-antiperoxidase method. Stereology was used to evaluate morphometric changes in the volume of C cells, their nuclei and relative volume density. The number of C cells per unit area was calculated. Serum CT content was determined by radioimmunoassay. After chronic Ca treatment C cells were numerous with darker cytoplasm than in C cells of sham-operated control animals, but more degranulated than the corresponding cells of Ovx rats. Their volume was significantly decreased by 14% (p < 0.05), while the number was increased by 47% (p < 0.05) in comparison with corresponding controls. Serum CT concentration was decreased by 27% (n.s.) in comparison to sham-operated control. Calcium treatment of Ovx rats led to a 32% increase of serum CT concentration in relation to untreated Ovx animals. These results suggest that chronic Ca treatment of Ovx female rats positively affected CT release from thyroid C cells, without any significant changes in morphometric parameters.
Collapse
Affiliation(s)
- B Filipović
- Institute for Biological Research, Despota Stefana 142, 11060 Belgrade, Serbia and Montenegro.
| | | | | | | | | | | |
Collapse
|
8
|
Asan E, Drenckhahn D. News and views in Histochemistry and Cell Biology. Histochem Cell Biol 2004; 122:593-621. [PMID: 15614519 DOI: 10.1007/s00418-004-0735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2004] [Indexed: 11/29/2022]
Abstract
Advances in histochemical methodology and ingenious applications of novel and improved methods continue to confirm the standing of morphological means and approaches in research efforts, and contribute significantly to increasing our knowledge about structures and functions in all areas of the life sciences from cell biology to pathology. Reports published during recent months documenting this progress are summarized in the present review.
Collapse
Affiliation(s)
- Esther Asan
- Department of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstrasse 6, 97070 Wuerzburg, Germany.
| | | |
Collapse
|
9
|
Asan E. Innovative techniques and applications in histochemistry and cell biology. Histochem Cell Biol 2003; 120:523-48. [PMID: 14648132 DOI: 10.1007/s00418-003-0604-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2003] [Indexed: 10/26/2022]
Abstract
Recent studies documenting novel histochemical methods and applications in cell biology and in other areas of the life sciences have again rendered insights into structure and functions of tissues, cells, and cellular components to the level of proteins and genes. Particularly, sophisticated microscopic techniques have proved to be able to significantly advance our knowledge. Findings of recent investigations representing this progress are summarized in the present review.
Collapse
Affiliation(s)
- Esther Asan
- Department of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstrasse 6, 97070 Wuerzburg, Germany.
| |
Collapse
|