1
|
RNA Extraction from Cartilage: Issues, Methods, Tips. Int J Mol Sci 2023; 24:ijms24032120. [PMID: 36768444 PMCID: PMC9917073 DOI: 10.3390/ijms24032120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The increase in degenerative diseases involving articular cartilage has pushed research to focus on their pathogenesis and treatment, exploiting increasingly complex techniques. Gene expression analyses from tissue are representative of the in vivo situation, but the protocols to be applied to obtain a reliable analysis are not completely cleared through customs. Thus, RNA extraction from fresh samples and specifically from musculoskeletal tissue such as cartilage is still a challenging issue. The aim of the review is to provide an overview of the techniques described in the literature for RNA extraction, highlighting limits and possibilities. The research retrieved 65 papers suitable for the purposes. The results highlighted the great difficulty in comparing the different studies, both for the sources of tissue used and for the techniques employed, as well as the details about protocols. Few papers compared different RNA extraction methods or homogenization techniques; the case study reported by authors about RNA extraction from sheep cartilage has not found an analog in the literature, confirming the existence of a relevant blank on studies about RNA extraction from cartilage tissue. However, the state of the art depicted can be used as a starting point to improve and expand studies on this topic.
Collapse
|
2
|
Xue M, McKelvey K, Shen K, Minhas N, March L, Park SY, Jackson CJ. Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage degradation. Rheumatology (Oxford) 2014; 53:2270-9. [PMID: 24982240 DOI: 10.1093/rheumatology/keu254] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effect of endogenous matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) on the invasive characteristics of RA synovial fibroblasts. METHODS Synovial fibroblasts isolated from patients with RA or OA were treated with MMP small interfering RNA (siRNA), inhibitors and recombinant proteins or TNF-α, with or without cartilage explants. Cell viability and proliferation were measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide and 5-bromo-2-deoxyuridine (BrdU) proliferation assays, respectively; apoptosis by an in situ cell death detection kit; migration and invasion by CytoSelect invasion assay, scratch migration and collagen gel assays; cartilage degradation by 1,9-dimethylmethylene blue assay; and inflammatory mediators and MMPs by ELISA, western blot and zymography. RESULTS MMP-2 was expressed by both OA and RA synovial fibroblasts, whereas only RA synovial fibroblasts expressed MMP-9. Suppressing MMP-2 or MMP-9 reduced RA synovial fibroblast proliferation equally. However, MMP-9 siRNA had greater effects compared with MMP-2 siRNA on promoting apoptosis and suppressing RA synovial fibroblast viability, migration and invasion. Suppression/inhibition of MMP-9 also decreased the production of IL-1β, IL-6, IL-8 and TNF-α, inactivated nuclear factor κB (NF-κB), extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) and suppressed RA synovial fibroblast-mediated cartilage degradation. In contrast, suppression/inhibition of MMP-2 stimulated TNF-α and IL-17 secretion and activated NF-κB, while recombinant MMP-2 (rMMP-2) inactivated NF-κB and suppressed RA synovial fibroblast-mediated cartilage degradation. Results using specific inhibitors and rMMPs provided supportive evidence for the siRNA results. CONCLUSION Endogenous MMP-2 or MMP-9 contribute to RA synovial fibroblast survival, proliferation, migration and invasion, with MMP-9 having more potent effects. Additionally, MMP-9 stimulates RA synovial fibroblast-mediated inflammation and degradation of cartilage, whereas MMP-2 inhibits these parameters. Overall, our data indicate that MMP-9 derived from RA synovial fibroblasts may directly contribute to joint destruction in RA.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Research Laboratory, Department of Rheumatology, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia and Bio-Safety Research Institute, Chonbuk National University, College of Veterinary Medicine, Jeonju, South Korea.
| | - Kelly McKelvey
- Sutton Research Laboratory, Department of Rheumatology, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia and Bio-Safety Research Institute, Chonbuk National University, College of Veterinary Medicine, Jeonju, South Korea
| | - Kaitlin Shen
- Sutton Research Laboratory, Department of Rheumatology, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia and Bio-Safety Research Institute, Chonbuk National University, College of Veterinary Medicine, Jeonju, South Korea
| | - Nikita Minhas
- Sutton Research Laboratory, Department of Rheumatology, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia and Bio-Safety Research Institute, Chonbuk National University, College of Veterinary Medicine, Jeonju, South Korea
| | - Lyn March
- Sutton Research Laboratory, Department of Rheumatology, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia and Bio-Safety Research Institute, Chonbuk National University, College of Veterinary Medicine, Jeonju, South Korea
| | - Sang-Youel Park
- Sutton Research Laboratory, Department of Rheumatology, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia and Bio-Safety Research Institute, Chonbuk National University, College of Veterinary Medicine, Jeonju, South Korea
| | - Christopher J Jackson
- Sutton Research Laboratory, Department of Rheumatology, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia and Bio-Safety Research Institute, Chonbuk National University, College of Veterinary Medicine, Jeonju, South Korea
| |
Collapse
|
3
|
Nissinen L, Kähäri VM. Matrix metalloproteinases in inflammation. Biochim Biophys Acta Gen Subj 2014; 1840:2571-80. [PMID: 24631662 DOI: 10.1016/j.bbagen.2014.03.007] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a family of ubiquitously expressed zinc-dependent endopeptidases with broad substrate specificity and strictly regulated tissue specific expression. They are expressed in physiological situations and pathological conditions involving inflammation. MMPs regulate several functions related to inflammation including bioavailability and activity of inflammatory cytokines and chemokines. There is also evidence that MMPs regulate inflammation in tumor microenvironment, which plays an important role in cancer progression. SCOPE OF REVIEW Here, we discuss the current view on the role of MMPs in the regulation of inflammation. MAJOR CONCLUSIONS MMPs modulate inflammation by regulating bioavailability and activity of cytokines, chemokines, and growth factors, as well as integrity of physical tissue barriers. MMPs are also involved in immune evasion of tumor cells and in regulation of inflammation in tumor microenvironment. GENERAL SIGNIFICANCE There is increasing evidence for non-matrix substrates of MMPs that are related to regulation of inflammatory processes. New methods have been employed for identification of the substrates of MMPs in inflammatory processes in vivo. Detailed information on the substrates of MMPs may offer more specific and effective ways of inhibiting MMP function by blocking the cleavage site in substrate or by inhibition of the bioactivity of the substrate. It is expected, that more precise information on the MMP-substrate interaction may offer novel strategies for therapeutic intervention in inflammatory diseases and cancer without blocking beneficial actions of MMPs. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, FI-20521, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, FI-20521, Turku, Finland.
| |
Collapse
|
4
|
Fransès R, McWilliams D, Mapp P, Walsh D. Osteochondral angiogenesis and increased protease inhibitor expression in OA. Osteoarthritis Cartilage 2010; 18:563-71. [PMID: 20060952 PMCID: PMC2877870 DOI: 10.1016/j.joca.2009.11.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 10/26/2009] [Accepted: 11/27/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Normal cartilage is resistant to vascular invasion and anti-angiogenic protease inhibitors may contribute to its avascular status. We hypothesized that dysregulated expression of four key anti-angiogenic protease inhibitors may contribute to increased osteochondral vascularity in osteoarthritis (OA). DESIGN Medial tibial plateaux from OA patients (n=40) were compared with those from non-arthritic controls collected post-mortem (PM, n=10). Immunohistochemistry was performed for protease inhibitors TIMP-1, TIMP-3, PAI-1 and SLPI and the pro-angiogenic factor vascular endothelial growth factor (VEGF). Immunoreactivity in articular chondrocytes was scored. Chondropathy was measured as a modified Mankin score, and osteochondral vascular density as number of channels crossing each mm of tidemark. Non-parametric analyses were used for all data. RESULTS All protease inhibitors and VEGF were localised to chondrocytes near the articular surface, less often in the middle zone, and rarely to deep chondrocytes. Scores for VEGF, TIMP-1, TIMP-3, SLPI and PAI-1 were all increased in OA compared with PM, and higher scores were associated with greater chondropathy. Chondrocyte expression of VEGF was associated with higher osteochondral vascular density (r=0.32, P<0.05), whereas protease inhibitors were not. CONCLUSIONS The resistance of normal articular cartilage to vascular invasion may be more due to its matrix environment than ongoing protease inhibitor expression. Upregulation of protease inhibitors by superficial chondrocytes in OA may moderate the angiogenic effects of growth factors such as VEGF. However, failure of deep chondrocytes to express anti-angiogenic protease inhibitors may permit vascular invasion into the articular cartilage.
Collapse
Affiliation(s)
| | | | | | - D.A. Walsh
- Address correspondence and reprint requests to: D.A. Walsh, Academic Rheumatology, University of Nottingham, Clinical Sciences Building, Nottingham City Hospital, Hucknall Road, Nottingham NG5 1PB, UK. Tel: 44-(0)-115-8231751; Fax: 44-(0)-115-8231757.
| |
Collapse
|
5
|
Page CE, Smale S, Carty SM, Amos N, Lauder SN, Goodfellow RM, Richards PJ, Jones SA, Topley N, Williams AS. Interferon-gamma inhibits interleukin-1beta-induced matrix metalloproteinase production by synovial fibroblasts and protects articular cartilage in early arthritis. Arthritis Res Ther 2010; 12:R49. [PMID: 20307272 PMCID: PMC2888198 DOI: 10.1186/ar2960] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 02/18/2010] [Accepted: 03/22/2010] [Indexed: 02/07/2023] Open
Abstract
Introduction The first few months after symptom onset represents a pathologically distinct phase in rheumatoid arthritis (RA). We used relevant experimental models to define the pathological role of interferon-γ (IFN-γ) during early inflammatory arthritis. Methods We studied IFN-γ's capacity to modulate interleukin-1β (IL-1β) induced degenerative responses using RA fibroblast-like synoviocytes (FLS), a bovine articular cartilage explant (BACE)/RA-FLS co-culture model and an experimental inflammatory arthritis model (murine antigen-induced arthritis (AIA)). Results IFN-γ modulated IL-1β driven matrix metalloproteinases (MMP) synthesis resulting in the down-regulation of MMP-1 and MMP-3 production in vitro. IFN-γ did not affect IL-1β induced tissue inhibitor of metalloproteinase-1 (TIMP-1) production by RA FLS but skewed the MMP/TIMP-1 balance sufficiently to attenuate glycosaminoglycan-depletion in our BACE model. IFN-γ reduced IL-1β expression in the arthritic joint and prevented cartilage degeneration on Day 3 of AIA. Conclusions Early therapeutic intervention with IFN-γ may be critical to orchestrate tissue-protective responses during inflammatory arthritis.
Collapse
Affiliation(s)
- Charlotte E Page
- Section of Rheumatology, University Hospital of Wales, Cardiff and Vale NHS Trust, Cardiff, Wales, CF14 4XW, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sahebjam S, Khokha R, Mort JS. Increased collagen and aggrecan degradation with age in the joints ofTimp3−/− mice. ACTA ACUST UNITED AC 2007; 56:905-9. [PMID: 17328064 DOI: 10.1002/art.22427] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To investigate the in vivo effect of an imbalance between metalloproteinases and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), in mouse articular cartilage. METHODS Hind joints of Timp3(-/-) and wild-type mice were examined by routine staining and by immunohistochemical analysis using antibodies specific for type X collagen and for the neoepitopes produced on proteolytic cleavage of aggrecan (... VDIPEN and ... NVTEGE) and type II collagen. The neoepitope generated on cleavage of type II collagen by collagenases was quantitated in sera by enzyme-linked immunosorbent assay. RESULTS Articular cartilage from Timp3-knockout animals (ages > or =6 months) showed reduced Safranin O staining and an increase in ...VDIPEN content compared with cartilage from heterozygous and wild-type animals. There was also a slight increase in ... NVTEGE content in articular cartilage and menisci of Timp3(-/-) animals. Chondrocytes showed strong pericellular staining for type II collagen cleavage neoepitopes, particularly in the superficial layer, in knockout mice. Also, there was more type X collagen expression in the superficial zone of articular cartilage, especially around clusters of proliferating chondrocytes, in the knockout mice. More type II collagen cleavage product was found in the serum of Timp3(-/-) mice compared with wild-type animals. This increase was significant in 15-month-old animals. CONCLUSION These results indicate that TIMP-3 deficiency results in mild cartilage degradation similar to changes seen in patients with osteoarthritis, suggesting that an imbalance between metalloproteinases and TIMP-3 may play a pathophysiologic role in the development of this disease.
Collapse
Affiliation(s)
- Solmaz Sahebjam
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
7
|
Taatjes DJ, Zuber C, Roth J. The histochemistry and cell biology vade mecum: a review of 2005–2006. Histochem Cell Biol 2006; 126:743-88. [PMID: 17149649 DOI: 10.1007/s00418-006-0253-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2006] [Indexed: 02/07/2023]
Abstract
The procurement of new knowledge and understanding in the ever expanding discipline of cell biology continues to advance at a breakneck pace. The progress in discerning the physiology of cells and tissues in health and disease has been driven to a large extent by the continued development of new probes and imaging techniques. The recent introduction of semi-conductor quantum dots as stable, specific markers for both fluorescence light microscopy and electron microscopy, as well as a virtual treasure-trove of new fluorescent proteins, has in conjunction with newly introduced spectral imaging systems, opened vistas into the seemingly unlimited possibilities for experimental design. Although it oftentimes proves difficult to predict what the future will hold with respect to advances in disciplines such as cell biology and histochemistry, it is facile to look back on what has already occurred. In this spirit, this review will highlight some advancements made in these areas in the past 2 years.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology, Microscopy Imaging Center, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
8
|
Taatjes DJ, Roth J. Recent progress in histochemistry and cell biology: the state of the art 2005. Histochem Cell Biol 2005; 124:547-74. [PMID: 16283358 DOI: 10.1007/s00418-005-0110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
Advances in the field of histochemistry, a multidisciplinary area including the detection, localization and functional characterization of molecules in single cells and complex tissues, often drives the attainment of new knowledge in the broadly defined discipline of cell biology. These two disciplines, histochemistry and cell biology, have been joined in this journal to facilitate the flow of information with celerity from technical advancement in histochemical procedures, to their utilization in experimental models. This review summarizes advancements in these fields during the past year.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Microscopy Imaging Center, Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|