1
|
Ali FEM, Badran KSA, Baraka MA, Althagafy HS, Hassanein EHM. Mechanism and impact of heavy metal-aluminum (Al) toxicity on male reproduction: Therapeutic approaches with some phytochemicals. Life Sci 2024; 340:122461. [PMID: 38286208 DOI: 10.1016/j.lfs.2024.122461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Heavy metals are ubiquitous environmental toxicants that have been known to have a serious effect on human and animal health. Aluminum (Al) is a widely distributed metal in nature. Al exposure has a detrimental impact on human fertility. This review focused on Al-induced male reproductive toxicity and the potential therapeutic approaches with some phytochemicals. Data from the literature showed that Al exposure is accompanied by a drastic decline in blood levels of FSH, LH, and testosterone, reduced sperm count, and affected sperm quality. Al exposure at high levels can cause oxidative stress by increasing ROS and RNS production, mediated mainly by downregulating Nrf2 signaling. Moreover, several investigations demonstrated that Al exposure evoked inflammation, evidenced by increased TNF-α and IL-6 levels. Additionally, substantial evidence concluded the key role of apoptosis in Al-induced testicular toxicity mediated by upregulating caspase-3 and downregulating Bcl2 protein. The damaging effects of Al on mitochondrial bioenergetics are thought to be due to the excessive generation of free radicals. This review helps to clarify the main mechanism involved in Al-associated testicular intoxication and the treatment strategy to attenuate the notable harmful effects on the male reproductive system. It will encourage clinical efforts to target the pathway involved in Al-associated testicular intoxication.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Khalid S A Badran
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
2
|
Miyazaki T. Identification of a novel enzyme and the regulation of key enzymes in mammalian taurine synthesis. J Pharmacol Sci 2024; 154:9-17. [PMID: 38081683 DOI: 10.1016/j.jphs.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Taurine has many pharmacological roles on various tissues. The maintenance of abundant taurine content in the mammalian body through endogenous synthesis, in addition to exogenous intake, is the essential factor for morphological and functional maintenances in most tissues. The synthesis of taurine from sulfur-containing amino acids is influenced by various factors. Previous literature findings indicate the influence of the intake of proteins and sulfur-containing amino acids on the activity of the rate-limiting enzymes cysteine dioxygenase and cysteine sulfinate decarboxylase. In addition, the regulation of the activity and expression of taurine-synthesis enzymes by hormones, bile acids, and inflammatory cytokines through nuclear receptors have been reported in liver and reproductive tissues. Furthermore, flavin-containing monooxygenase subtype 1 was recently identified as the taurine-synthesis enzyme that converts hypotaurine to taurine. This review introduces the novel taurine synthesis enzyme and the nuclear receptor-associated regulation of key enzymes in taurine synthesis.
Collapse
Affiliation(s)
- Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395, Japan.
| |
Collapse
|
3
|
Hansen AW, Venkatachalam KV. Sulfur-Element containing metabolic pathways in human health and crosstalk with the microbiome. Biochem Biophys Rep 2023; 35:101529. [PMID: 37601447 PMCID: PMC10439400 DOI: 10.1016/j.bbrep.2023.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
In humans, methionine derived from dietary proteins is necessary for cellular homeostasis and regeneration of sulfur containing pathways, which produce inorganic sulfur species (ISS) along with essential organic sulfur compounds (OSC). In recent years, inorganic sulfur species have gained attention as key players in the crosstalk of human health and the gut microbiome. Endogenously, ISS includes hydrogen sulfide (H2S), sulfite (SO32-), thiosulfate (S2O32-), and sulfate (SO42-), which are produced by enzymes in the transsulfuration and sulfur oxidation pathways. Additionally, sulfate-reducing bacteria (SRB) in the gut lumen are notable H2S producers which can contribute to the ISS pools of the human host. In this review, we will focus on the systemic effects of sulfur in biological pathways, describe the contrasting mechanisms of sulfurylation versus phosphorylation on the hydroxyl of serine/threonine and tyrosine residues of proteins in post-translational modifications, and the role of the gut microbiome in human sulfur metabolism.
Collapse
Affiliation(s)
- Austin W. Hansen
- College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | | |
Collapse
|
4
|
Zhang D, Fan J, Liu H, Qiu G, Cui S. Testosterone enhances taurine synthesis by upregulating androgen receptor and cysteine sulfinic acid decarboxylase expressions in male mouse liver. Am J Physiol Gastrointest Liver Physiol 2023; 324:G295-G304. [PMID: 36749568 DOI: 10.1152/ajpgi.00076.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Taurine is an end-product of cysteine metabolism, whereas cysteine dioxygenase (CDO) and cysteine sulfinate decarboxylase (CSAD) are key enzymes regulating taurine synthesis. Sex steroids, including estrogens and androgens, are associated with liver physiopathological processes; however, we still do not know whether taurine and sex steroids interact in regulating liver physiology and hepatic diseases, and whether there are sex differences, although our recent study shows that the estrogen is involved in regulating taurine synthesis in mouse liver. The present study was thus proposed to identify whether 17-β-estradiol and testosterone (T) play their roles by regulating CDO and CSAD expression and taurine synthesis in male mouse liver. Our results demonstrated that testosterone did not have a significant influence on CDO expression but significantly enhanced CSAD, androgen receptor (AR) expressions, and taurine levels in mouse liver, cultured hepatocytes, and HepG2 cells, whereas these effects were abrogated by AR antagonist flutamide. Furthermore, our results showed that testosterone increased CSAD-promoter-luciferase activity through the direct interaction of the AR DNA binding domain with the CSAD promoter. These findings first demonstrate that testosterone acts as an important factor to regulate sulfur amino acid metabolism and taurine synthesis through AR/CSAD signaling pathway. In addition, the in vivo and in vitro experiments showed that 17-β-estradiol has no significant effects on liver CSAD expression and taurine synthesis in male mice and suggest that the effects of sex steroids on the taurine synthesis in mouse liver have sex differences. These results are crucial for understanding the physiological functions of taurine/androgen and their interacting mechanisms in the liver.NEW & NOTEWORTHY This study demonstrates that testosterone functions to enhance taurine synthesis by interacting with androgen receptor and binding to cysteine sulfinate decarboxylase (CSAD) promoter zone. Whereas estrogen has no significant effects either on liver CSAD expression or taurine synthesis in male mice and suggests that the effects of sex steroids on taurine synthesis in the liver have gender differences. These new findings are the potential for establishing effective protective and therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
| | - Jingjing Fan
- College of Biological and Agricultural Engineering, Weifang University, Weifang, People's Republic of China
| | - Hui Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
| | - Guobin Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
5
|
Li Y, Peng Q, Shang J, Dong W, Wu S, Guo X, Xie Z, Chen C. The role of taurine in male reproduction: Physiology, pathology and toxicology. Front Endocrinol (Lausanne) 2023; 14:1017886. [PMID: 36742382 PMCID: PMC9889556 DOI: 10.3389/fendo.2023.1017886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Taurine, a sulfur-containing amino acid, has a wide range of biological effects, such as bile salt formation, osmotic regulation, oxidative stress inhibition, immunomodulation and neuromodulation. Taurine has been proved to be synthesized and abundant in male reproductive organs. Recently, accumulating data showed that taurine has a potential protective effect on reproductive function of male animals. In physiology, taurine can promote the endocrine function of the hypothalamus-pituitary-testis (HPT) axis, testicular tissue development, spermatogenesis and maturation, delay the aging of testicular structure and function, maintain the homeostasis of the testicular environment, and enhance sexual ability. In pathology, taurine supplement may be beneficial to alleviate pathological damage of male reproductive system, including oxidative damage of sperm preservation in vitro, testicular reperfusion injury and diabetes -induced reproductive complications. In addition, taurine acts as a protective agent against toxic damage to the male reproductive system by exogenous substances (e.g., therapeutic drugs, environmental pollutants, radiation). Related mechanisms include reduced oxidative stress, increased antioxidant capacity, inhibited inflammation and apoptosis, restored the secretory activity of the HPT axis, reduced chromosomal variation, enhanced sperm mitochondrial energy metabolism, cell membrane stabilization effect, etc. Therefore, this article reviewed the protective effect of taurine on male reproductive function and its detailed mechanism, in order to provide reference for further research and clinical application.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Qianwen Peng
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Jia Shang
- Arts Department, School of Kaifeng Culture and Tourism, Henan, Kaifeng, China
| | - Wanglin Dong
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Sijia Wu
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Xiajun Guo
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Zhenxing Xie
- School of Basic Medical Science, Henan University, Henan, Kaifeng, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| |
Collapse
|
6
|
Holton K. The potential role of dietary intervention for the treatment of neuroinflammation. TRANSLATIONAL NEUROIMMUNOLOGY, VOLUME 7 2023:239-266. [DOI: 10.1016/b978-0-323-85841-0.00022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Research progress of L-aspartate-α-decarboxylase and its isoenzyme in the β-alanine synthesis. World J Microbiol Biotechnol 2022; 39:42. [PMID: 36513951 DOI: 10.1007/s11274-022-03483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Driven by the massive demand in recent years, the production of β-alanine has significantly progressed in chemical and biological ways. Although the chemical method is relatively mature compared to biological synthesis, its high cost of waste disposal and environmental pollution does not meet the environmental protection standard. Hence, the biological method has become more prevalent as a potential alternative to the chemical synthesis of β-alanine in recent years. As a result, the aspartate pathway from L-aspartate to β-alanine (the most significant rate-limiting step in the β-alanine synthesis) catalyzed by L-aspartate-α-decarboxylase (ADC) has become a research hotspot in recent years. Therefore, it is vital to comprehensively understand the different enzymes that possess a similar catalytic ability to ADC. This review will investigate the exploratory process of unique synthesis features and catalytic properties of ADC/ADC-like enzymes in particular creatures with similar catalytic capacity or high sequence homology. At the same time, we will discuss the different β-alanine production methods which can apply to future industrialization.
Collapse
|
8
|
Wu H, Zhang X, Yang J, Feng T, Chen Y, Feng R, Wang H, Qian Y. OUP accepted manuscript. Hum Reprod 2022; 37:1229-1243. [PMID: 35526154 PMCID: PMC9156853 DOI: 10.1093/humrep/deac089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/02/2022] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Are taurine and its transporter TAUT associated with spermiogenesis and early embryo development? SUMMARY ANSWER Morphologically abnormal spermatozoa increased after local functional interference by intratesticular injection, and taurine depletion significantly reduced the normal embryo numbers in vivo and blastocyst formation rate in vitro. WHAT IS KNOWN ALREADY Taurine is one of the most abundant amino acids in the male reproductive system and it has been demonstrated that taurine can efficiently improve spermatogenic function in rat models of testicular injury. However, limited information is known about the role of taurine and its transporter TAUT in spermatogenesis and early embryo development. STUDY DESIGN, SIZE, DURATION Clinical characteristics from 110 couples who have experienced recurrent pregnancy loss (RPL) were collected from December 2014 to March 2018. According to whether a fetal heartbeat was seen in the previous pregnancy under ultrasonic monitoring, patients with RPL were divided into two groups: an RPL without heartbeat (pregnancy with no fetal heartbeat, ROH) group, and an RPL with heartbeat (one or more pregnancies with fetal heartbeat, RWH) group. Semen samples (21 ROH and 20 RWH) were finally used for metabolomic analysis. Furthermore, semen samples were obtained from 30 patients with teratozoospermia (normal sperm morphology <4%) seeking evaluation for infertility and 25 age-matched control subjects with normal semen quality for western blotting. Animal experiments were performed in CD-1/ICR mice. PARTICIPANTS/MATERIALS, SETTING, METHODS Metabolomics was performed to determine the metabolic changes between the ROH and RWH groups. Sperm proteins from patients with teratozoospermia and healthy controls were extracted for detecting TAUT expression using western blot analysis. Immunofluorescence was used to characterize the localization of TAUT in the testis and ejaculated spermatozoa. Functional analysis in mice was performed by intratesticular injection of siRNAs or antagonist (β-alanine) and 5% β-alanine was provided in drinking water to 3-week-old male mice for 5 weeks with the aim of depleting taurine. Murine epididymal spermatozoa were stained with hematoxylin and eosin for morphological assessment. IVF and mating tests were performed in mice for assessing fertility. MAIN RESULTS AND THE ROLE OF CHANCE Metabolomic analysis demonstrated that the taurine content was lower in spermatozoa but higher in seminal plasma from the ROH than the RWH group. TAUT expression was lower in spermatozoa from patients with teratozoospermia than controls. Immunofluorescence showed that TAUT was localized to the manchette in mouse elongated spermatids functional analysis showed that morphologically abnormal spermatozoa increased after interference, and this defect increased after supplementation with 5% β-alanine but was improved by 5% taurine supplementation. Supplementation with 5% β-alanine significantly reduced the normal embryo number in the mouse uterus as well as blastocyst formation rate in vitro. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION The sample size was low and larger cohorts are needed to confirm the positive effect of taurine on human sperm quality. A comprehensive safety examination should be performed to evaluate whether taurine is a possible treatment for teratozoospermia. Furthermore, the specific molecular mechanism of TAUT involvement in spermiogenesis remains to be clarified. WIDER IMPLICATIONS OF THE FINDINGS The study provides new insights into the role of taurine and its transporter TAUT in male reproduction and embryo development. The results also indicate that TAUT is a promising molecular candidate for the assessment of sperm quality, which may contribute to the diagnosis and treatment for teratozoospermia. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from the National Natural Science Foundation of China (no. 81774075, 31900605, 81971451), Jiangsu Science and Technology Program Grant (BK20190654) and Maternal and child health scientific research of Jiangsu Province (F202121). The authors declare no competing financial interests.
Collapse
Affiliation(s)
| | | | - Jihong Yang
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Feng
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Chen
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruizhi Feng
- State Key Laboratory of Reproductive Medicine, Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Correspondence address. Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing 210011, China. Tel: +86-025-58771027; E-mail: (Y.Q.); Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China. Tel: +86-025-86869380; E-mail: (H.W.)
| | - Yun Qian
- Correspondence address. Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing 210011, China. Tel: +86-025-58771027; E-mail: (Y.Q.); Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China. Tel: +86-025-86869380; E-mail: (H.W.)
| |
Collapse
|
9
|
Du Y, Liu H, Zhang M, Zhang S, Hu J, Wu G, Yang J. Taurine Increases Spermatozoa Quality and Function in Asthenospermia Rats Impaired by Ornidazole. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:507-520. [PMID: 31468427 DOI: 10.1007/978-981-13-8023-5_47] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Asthenospermia has been considered as one of the crucial causes of male infertility, which was closely related to epididymal dysfunction. Lots of documents have revealed that taurine palys an important role in male reproduction, including antioxidation, membrane stabilization, stimulation of sexual hormone secretion and elevation of sperm quality. The objective of this study was to expose the effect of taurine on spermatozoa quality and function in ornidazole-induced asthenospermia rats. We found that taurine treatment could obviously recover the decline of cauda epididymal sperm count, viability and motility, and the elevation of sperm abnormality in asthenospermia animals. Spermatozoa acrosin, LDH-X, SDH and CCO activities of model rats also were notably increased by taurine administration. The present data indicated that taurine could raise spermatozoa quality and function by elevating mitochondrial energy metabolism. Notably, taurine supplementation markedly raised serum GnRH, LH and T levels in asthenospermia rays, suggesting taurine rescued asthenosperm by means of stimulating hypothalamic-pituitary-testicular axis secretion. We also found that concentrations of asthenospermia epididymal carnitine, SA, α-Glu and ACP, and mRNA expression levels of MMP7 and IDO2 were significantly rised by taurine administration, indicating taurine may protect epididymal epithelium structure, improve secretion activity, and maintain intraluminal microenvironment homeostasis. Finally, the present results showed taurine effectively increased cauda epididymal SOD, GSH and γ-GT levels in model rats, reduced ROS and MDA production, suggesting epididymal antioxidant ability of asthenospermia rats could be elevated by taurine treatment. To sum up, our results indicated that taurine can promote spermatozoa quality and function in ornidazole-induced asthenospermia rats by facilitating epididymal epithelium secretion and luminal microenvironment homeostasis.
Collapse
Affiliation(s)
- Yanting Du
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Hong Liu
- Experimental Animal Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Meng Zhang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shu Zhang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jianmin Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Schaalan MF, Ramadan BK, H. Abd Elwahab A. Ameliorative effect of taurine-chloramine in azathioprine-induced testicular damage; a deeper insight into the mechanism of protection. Altern Ther Health Med 2018; 18:255. [PMID: 30223827 PMCID: PMC6142322 DOI: 10.1186/s12906-018-2272-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/26/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND The male reproductive system is a sensitive and intricate process that can be distressed following exposure to various toxicants. Therapeutic drugs, especially chemotherapeutics, can also adversely affect male fertility by instigating hormonal changes leading to testicular cells injury. Azathioprine (AZA) is an effective anticancer drug, but some cases of testicular toxicity have been reported. The aim of this work was to investigate the protective effects of taurine chloramine (TAU-Cl), a reported antioxidant and antiinflammtory peptide, against AZA-induced testicular dysfunction in male rats and ascertain the contributing mechanisms. METHODS Forty male rats were allocated into four equal groups; (i) normal control rats, (ii) TAU-Cl group (100 mg/kg b.w/day for 10 weeks, (iii) AZA group (5 mg/day for 4 weeks); (iv) TAU-Cl/AZA group. RESULTS AZA caused increased DNA damage in the testes, and alterations in sex hormones and sperm quality, including sperm count, viability, and motility. Moreover, testicular tissue from the AZA-treated group had increased levels of oxidative stress indicator, MDA, and decreased activity of the antioxidant enzymes as superoxide dismutase (SOD), reduced glutathione (GSH) and catalase (CAT) levels. These deleterious events were accompanied by upregulated levels of the pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), and protein expression of iNOS and NFκB-p65, interleukin-1beta (IL-1β), and proapoptotic marker; caspase-9, together with decreased Bcl-2, NrF2 and hemeoxygenase (HO-1) expression. In contrast, TAU-Cl pretreatment significantly abrogated these toxic effects which were confirmed histologically. CONCLUSION Pretreatment with TAU-Cl exerts a protective effect against AZA-induced male reproductive testicular atrophy. This finding could open new avenues for the use of TAU-Cl as a complementary approach to chemotherapy supportive care.
Collapse
|
11
|
Deng J, Wu Q, Gao H, Ou Q, Wu B, Yan B, Jiang C. Molecular Characterization and Directed Evolution of a Metagenome-Derived l-Cysteine Sulfinate Decarboxylase. Food Technol Biotechnol 2018; 56:117-123. [PMID: 29796005 DOI: 10.17113/ftb.56.01.18.5415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
l-Cysteine sulfinate decarboxylase (CSD, EC 4.1.1.29), the rate-limiting enzyme in taurine synthesis pathway, catalyzes l-cysteine sulfinic acid to form hypotaurine. Identification of the novel CSD that could improve the biosynthetic efficiency of taurine is important. An unexplored decarboxylase gene named undec1A was identified in a previous work through sequence-based screening of uncultured soil microorganisms. Random mutagenesis through sequential error-prone polymerase chain reaction was used in Undec1A. A mutant Undec1A-1180, which was obtained from mutagenesis library, had 5.62-fold higher specific activity than Undec1A at 35 °C and pH=7.0. Molecular docking results indicated that amino acid residues Ala235, Val237, Asp239, Ile267, Ala268, and Lys298 in the Undec1A-1180 protein helped recognize and catalyze the substrate molecules of l-cysteine sulfinic acid. These results could serve as a basis for elucidating the characteristics of the Undec1A-1180. Directed evolution technology is a convenient way to improve the biotechnological applications of metagenome-derived genes.
Collapse
Affiliation(s)
- Jie Deng
- Guangxi Key Laboratory of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, 92 Changqing Rd., Beihai, Guangxi, PR China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Rd., Nanning, Guangxi, PR China
| | - Qiaofen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Rd., Nanning, Guangxi, PR China
| | - Hua Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Rd., Nanning, Guangxi, PR China
| | - Qian Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Rd., Nanning, Guangxi, PR China
| | - Bo Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Rd., Nanning, Guangxi, PR China
| | - Bing Yan
- Guangxi Key Laboratory of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, 92 Changqing Rd., Beihai, Guangxi, PR China
| | - Chengjian Jiang
- Guangxi Key Laboratory of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, 92 Changqing Rd., Beihai, Guangxi, PR China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Rd., Nanning, Guangxi, PR China
| |
Collapse
|
12
|
Asano A, Roman HB, Hirschberger LL, Ushiyama A, Nelson JL, Hinchman MM, Stipanuk MH, Travis AJ. Cysteine dioxygenase is essential for mouse sperm osmoadaptation and male fertility. FEBS J 2018; 285:1827-1839. [PMID: 29604178 PMCID: PMC5992081 DOI: 10.1111/febs.14449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 02/11/2018] [Accepted: 03/26/2018] [Indexed: 01/17/2023]
Abstract
Sperm entering the epididymis are immotile and cannot respond to stimuli that will enable them to fertilize. The epididymis is a highly complex organ, with multiple histological zones and cell types that together change the composition and functional abilities of sperm through poorly understood mechanisms. Sperm take up taurine during epididymal transit, which may play antioxidant or osmoregulatory roles. Cysteine dioxygenase (CDO) is a critical enzyme for taurine synthesis. A previous study reported that male CDO-/- mice exhibit idiopathic infertility, prompting us to investigate the functions of CDO in male fertility. Immunoblotting and quantitative reverse transcription-polymerase chain reaction analysis of epididymal segments showed that androgen-dependent CDO expression was highest in the caput epididymidis. CDO-/- mouse sperm demonstrated a severe lack of in vitro fertilization ability. Acrosome exocytosis and tyrosine phosphorylation profiles in response to stimuli were normal, suggesting normal functioning of pathways associated with capacitation. CDO-/- sperm had a slight increase in head abnormalities. Taurine and hypotaurine concentrations in CDO-/- sperm decreased in the epididymal intraluminal fluid and sperm cytosol. We found no evidence of antioxidant protection against lipid peroxidation. However, CDO-/- sperm exhibited severe defects in volume regulation, swelling in response to the relatively hypo-osmotic conditions found in the female reproductive tract. Our findings suggest that epididymal CDO plays a key role in post-testicular sperm maturation, enabling sperm to osmoregulate as they transition from the male to the female reproductive tract, and provide new understanding of the compartmentalized functions of the epididymis.
Collapse
Affiliation(s)
- Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- The Baker Institute for Animal Health, Cornell University, Ithaca New York 14853
| | - Heather B. Roman
- Department of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | | | - Ai Ushiyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Jacquelyn L. Nelson
- The Baker Institute for Animal Health, Cornell University, Ithaca New York 14853
| | - Meleana M. Hinchman
- The Baker Institute for Animal Health, Cornell University, Ithaca New York 14853
| | - Martha H. Stipanuk
- Department of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | - Alexander J. Travis
- The Baker Institute for Animal Health, Cornell University, Ithaca New York 14853
| |
Collapse
|
13
|
Taurine increases testicular function in aged rats by inhibiting oxidative stress and apoptosis. Amino Acids 2015; 47:1549-58. [DOI: 10.1007/s00726-015-1995-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/22/2015] [Indexed: 01/10/2023]
|
14
|
Liu S, Liu Y, Ma Q, Cui S, Liu J. Expression and localization of cysteine sulfinate decarboxylase in major salivary glands of male mice. Arch Oral Biol 2015; 60:615-21. [DOI: 10.1016/j.archoralbio.2014.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
|
15
|
Vermeulen MAR, van Stijn MFM, Visser M, Lemmens SMP, Houdijk APJ, van Leeuwen PAM, Oudemans-van Straaten HM. Taurine Concentrations Decrease in Critically Ill Patients With Shock Given Enteral Nutrition. JPEN J Parenter Enteral Nutr 2015; 40:264-72. [PMID: 25587009 DOI: 10.1177/0148607114567199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 12/01/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Nutrition studies in the intensive care unit (ICU) have shown that adequate enteral nutrition (EN) support has clinical benefits. However, the course of amino acid concentrations in plasma has never been investigated in patients admitted with shock receiving EN. We hypothesized that plasma concentrations, when deficit, increase during EN and that persistent deficiency is associated with poor outcome. METHODS In 33 septic or cardiogenic shock patients receiving EN, plasma amino acid concentrations were measured during 5 days. Changes in amino acid concentrations, correlations with clinical outcome variables, and regression analyses were studied. RESULTS On ICU admission, several plasma concentrations were deficient. Plasma concentrations of almost all amino acids increased. In contrast, taurine decreased by >50%, from 47.6 µmol/L on admission to 20.0 µmol/L at day 1, and remained low at day 5. Taurine (admission) correlated with time on mechanical ventilation (R = -0.42, P = .015). Taurine decrease within 24 hours correlated with Acute Physiology and Chronic Health Evaluation II predicted mortality (R = 0.43, P = .017) and Sequential Organ Failure Assessment score (R = 0.36, P = .05). Regression analyses confirmed correlations. CONCLUSIONS Several amino acids were deficient in plasma on ICU admission but increased during EN. Taurine concentrations declined and were associated with longer periods of mechanical ventilation and ICU support. Fast taurine decline correlated with severity of organ failure. These findings support the role of taurine during ischemia, reperfusion, and inflammation. Taurine may be an essential candidate to enrich nutrition support for critically ill patients, although more research is required.
Collapse
Affiliation(s)
- Mechteld A R Vermeulen
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Marlieke Visser
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands Department of Cardio-thoracic Surgery, Academic Medical Center University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Heleen M Oudemans-van Straaten
- Intensive Care Unit, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands Intensive Care Unit, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Kerr TA, Matsumoto Y, Matsumoto H, Xie Y, Hirschberger LL, Stipanuk MH, Anakk S, Moore DD, Watanabe M, Kennedy S, Davidson NO. Cysteine sulfinic acid decarboxylase regulation: A role for farnesoid X receptor and small heterodimer partner in murine hepatic taurine metabolism. Hepatol Res 2014; 44:E218-28. [PMID: 24033844 PMCID: PMC3995905 DOI: 10.1111/hepr.12230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/29/2013] [Accepted: 08/19/2013] [Indexed: 01/12/2023]
Abstract
AIM Bile acid synthesis is regulated by nuclear receptors including farnesoid X receptor (FXR) and small heterodimer partner (SHP), and by fibroblast growth factor 15/19 (FGF15/19). We hypothesized that hepatic cysteine sulfinic acid decarboxylase (CSAD) (a key enzyme in taurine synthesis) is regulated by bile acids (BA). The aim of this study was to investigate CSAD regulation by BA dependent regulatory mechanisms. METHODS Mice were fed a control diet or a diet supplemented with either 0.5% cholate or 2% cholestyramine. To study BA dependent pathways, we utilized GW4064 (FXR agonist), FGF19 or T-0901317 (liver X receptor [LXR] agonist) and Shp-/- mice. Tissue mRNA was determined by quantitative reverse transcription polymerase chain reaction. Amino acids were measured by high-performance liquid chromatography. RESULTS Mice supplemented with dietary cholate exhibited reduced hepatic CSAD mRNA while those receiving cholestyramine exhibited increased mRNA. Activation of FXR suppressed CSAD mRNA expression whereas CSAD expression was increased in Shp-/- mice. Hepatic hypotaurine concentration (the product of CSAD) was higher in Shp-/- mice with a corresponding increase in serum taurine conjugated BA. FGF19 administration suppressed hepatic cholesterol 7-α-hydroxylase (CYP7A1) mRNA but did not change CSAD mRNA expression. LXR activation induced CYP7A1 mRNA yet failed to induce CSAD mRNA expression. CONCLUSION BA regulate CSAD mRNA expression in a feedback fashion via mechanisms involving SHP and FXR but not FGF15/19 or LXR. These findings implicate BA as regulators of CSAD mRNA via mechanisms shared with CYP7A1.
Collapse
Affiliation(s)
- Thomas A. Kerr
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, (phone) 314-362-2027, (fax) 314-362-2033
| | - Yuri Matsumoto
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, (phone) 314-362-2027, (fax) 314-362-2033
| | - Hitoshi Matsumoto
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, (phone) 314-362-2027, (fax) 314-362-2033
| | - Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, (phone) 314-362-2027, (fax) 314-362-2033
| | | | | | | | - David D. Moore
- Department of Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Mitsuhiro Watanabe
- Graduate School of Media and Governance, Keio University, Kanagawa, Japan
| | - Susan Kennedy
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, (phone) 314-362-2027, (fax) 314-362-2033
| | - Nicholas O. Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, (phone) 314-362-2027, (fax) 314-362-2033
| |
Collapse
|
17
|
Abstract
Abstract:Taurine appears to exert potent protections against glutamate (Glu)-induced injury to neurons, but the underlying molecular mechanisms are not fully understood. The possibly protected targets consist of the plasma membrane and the mitochondrial as well as endoplasmic reticulum (ER) membranes. Protection may be provided through a variety of effects, including the prevention of membrane depolarization, neuronal excitotoxicity and mitochondrial energy failure, increases in intracellular free calcium ([Ca2+]i), activation of calpain, and reduction of Bcl-2 levels. These activities are likely to be linked spatially and temporally in the neuroprotective functions of taurine. In addition, events that occur downstream of Glu stimulation, including altered enzymatic activities, apoptotic pathways, and necrosis triggered by the increased [Ca2+]i, can be inhibited by taurine. This review discusses the possible molecular mechanisms of taurine against Glu-induced neuronal injury, providing a better understanding of the protective processes, which might be helpful in the development of novel interventional strategies.
Collapse
|
18
|
Fan JJ, Zhou JL, Li JH, Cui S. Accessory sex glands of male mice have the ability to synthesize taurinevia the cysteine sulfinate decarboxylase pathway. Cell Biol Int 2013; 33:684-9. [DOI: 10.1016/j.cellbi.2009.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 12/29/2008] [Accepted: 03/20/2009] [Indexed: 11/26/2022]
|
19
|
Taurine Enhances the Sexual Response and Mating Ability in Aged Male Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 776:347-55. [DOI: 10.1007/978-1-4614-6093-0_32] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Liu P, Ding H, Christensen BM, Li J. Cysteine sulfinic acid decarboxylase activity of Aedes aegypti aspartate 1-decarboxylase: the structural basis of its substrate selectivity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:396-403. [PMID: 22685715 DOI: 10.1016/j.ibmb.2012.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Insect aspartate 1-decarboxylase (ADC) catalyzes the decarboxylation of aspartate to β-alanine. Insect ADC proteins share high sequence identity to mammalian cysteine sulfinic acid decarboxylase (CSADC), but there have been no reports indicating any CSADC activity in insect ADC or any ADC activity in mammalian CSADC. Substrate screening of Aedes aegypti ADC (AeADC), however, demonstrates that other than its activity to aspartate, the mosquito enzyme catalyzes the decarboxylation of cysteine sulfinic acid and cysteic acid as efficiently as those of mammalian CSADC under the same testing conditions. Further analysis of Drosophila melanogaster ADC also demonstrated its CSADC activity, suggesting that all insect ADC likely has CSADC activity. This represents the first identification of CSADC activity of insect ADC. On the other hand, HuCSADC displayed no detectable activity to aspartate. Homology modeling of AeADC and substrate docking suggest that residue Q377, localized at the active site of AeADC, could better interact with aspartate through hydrogen bonding, which may play a role in aspartate selectivity. A leucine residue in mammalian CSADC occupies the same position. A mutation at position 377 from glutamine to leucine in AeADC diminished its decarboxylation activity to aspartate with no major effect on its CSADC activity. Comparison of insect ADC sequences revealed that Q377 is stringently conserved among the available insect ADC sequences. Our data clearly established the CSADC activity of mosquito and Drosophila ADC and revealed the primary role Q377 plays in aspartate selectivity in insect ADC.
Collapse
Affiliation(s)
- Pingyang Liu
- Department of Biochemistry, Engel Hall 204, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
21
|
Higuchi M, Celino FT, Tamai A, Miura C, Miura T. The synthesis and role of taurine in the Japanese eel testis. Amino Acids 2011; 43:773-81. [PMID: 22045384 DOI: 10.1007/s00726-011-1128-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 10/15/2011] [Indexed: 10/16/2022]
Abstract
In teleost fish, the progestin 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) is an essential component of the spermatogenesis pathway. In a series of investigations on the mechanisms underlying progestin-stimulated spermatogenesis, we have found that DHP up-regulates the expression of cysteine dioxygenase1 (CDO1) in the Japanese eel testis. CDO1 is one of the enzymes involved in the taurine biosynthesis pathway. To evaluate whether taurine is synthesized in the eel testis, cysteine sulfinate decarboxylase (CSD), another enzyme involved in taurine synthesis, was isolated from this species. RT-PCR and in vitro eel testicular culture revealed that although CSD was also expressed in eel testis, neither DHP nor other sex steroids affect CSD mRNA expression in a similar manner to CDO1. Using an in vitro eel testicular culture system, we further investigated the effects of DHP on taurine synthesis in the eel testis. HPLC analysis showed that DHP treatment significantly increases the taurine levels in the eel testis. These results suggest that DHP promotes taurine synthesis via the up-regulation of CDO1 mRNA expression during eel spermatogenesis. Furthermore, we observed from our analysis that although taurine does not induce complete spermatogenesis, it promotes spermatogonial DNA synthesis and the expression of Spo11, a meiosis-specific marker. These data thus suggest that taurine augments the effects of sex steroids in the promotion of spermatogonial proliferation and/or meiosis and hence that taurine plays important roles in spermatogenesis.
Collapse
Affiliation(s)
- Masato Higuchi
- Research Group for Reproductive Physiology, South Ehime Fisheries Research Center, Ehime University, Ainan, Ehime, Japan
| | | | | | | | | |
Collapse
|
22
|
Yang J, Wu G, Feng Y, Lv Q, Lin S, Hu J. Effects of taurine on male reproduction in rats of different ages. J Biomed Sci 2010; 17 Suppl 1:S9. [PMID: 20804629 PMCID: PMC2994374 DOI: 10.1186/1423-0127-17-s1-s9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND It has been demonstrated that taurine is one of the most abundant free amino acids in the male reproductive system, and can be biosynthesized by male reproductive organs. But the effect of taurine on male reproduction is poorly understood. METHODS Taurine and beta-alanine (taurine transport inhibitor) were offered in water to male rats of different ages. The effects of taurine on reproductive hormones, testis marker enzymes, antioxidative ability and sperm quality were investigated. RESULTS The levels of T and LH were obviously increased by taurine supplementation in rats of different ages, and the level of E was also significantly elevated in baby rats. The levels of SOD, ACP, SDH and NOS were obviously increased by taurine administration in adult rats, but the levels of AKP, AST, ALT and NO were significantly decreased. The levels of SOD, ACP, LDH, SDH, NOS, NO and GSH were significantly elevated by taurine administration in aged rats, but the levels of AST and ALT were significantly decreased. The motility of spermatozoa was obviously increased by taurine supplement in adult rats. The numbers and motility of spermatozoa, the rate of live spermatozoa were significantly increased by taurine supplement in aged rats. CONCLUSIONS The present study demonstrated that a taurine supplement could stimulate the secretion of LH and T, increase the levels of testicular marker enzymes, elevate testicular antioxidation and improve sperm quality. The results imply that taurine plays important roles in male reproduction especially in aged animals.
Collapse
Affiliation(s)
- Jiancheng Yang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Gaofeng Wu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Ying Feng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Qiufeng Lv
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Shumei Lin
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Jianmin Hu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| |
Collapse
|
23
|
CSD mRNA expression in rat testis and the effect of taurine on testosterone secretion. Amino Acids 2009; 39:155-60. [DOI: 10.1007/s00726-009-0388-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 11/03/2009] [Indexed: 01/18/2023]
|
24
|
Wei SM, Yan ZZ, Zhou J. Beneficial effect of taurine on testicular ischemia-reperfusion injury in rats. Urology 2008; 70:1237-42. [PMID: 18158068 DOI: 10.1016/j.urology.2007.09.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 08/15/2007] [Accepted: 09/16/2007] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To evaluate the effect of taurine, a potent antioxidant, on testicular ischemia-reperfusion injury due to excess reactive oxygen species produced by neutrophils after testicular torsion-detorsion. METHODS A total of 60 adult male Sprague-Dawley rats were randomly divided into three groups, each containing 20 rats. The control group underwent a sham operation of the left testis. In the torsion-detorsion group, the left testis was rotated 720 degrees counterclockwise for 2 hours. The treatment group underwent the same surgical procedure as the torsion-detorsion group, but taurine was administered intravenously at repair of the testicular torsion. One half of the rats in each group underwent orchiectomy 4 hours after detorsion for measurement of myeloperoxidase activity, an indicator of neutrophil accumulation in the testis, and for evaluation of tissue malondialdehyde, an indicator of intratesticular reactive oxygen species content. The remainder were killed at orchiectomy 3 months after detorsion for analysis of testicular spermatogenesis. RESULTS Unilateral testicular torsion-detorsion caused a significant increase in myeloperoxidase activity and the malondialdehyde level and a significant decrease in testicular spermatogenesis in the ipsilateral testes. The decrease in ipsilateral testicular spermatogenesis involved a reduction in testicular weight, mean seminiferous tubular diameter, number of germ cell layers, and mean testicular biopsy score. The rats treated with taurine had a significant decrease in myeloperoxidase activity and malondialdehyde level and a significant increase in testicular spermatogenesis in the ipsilateral testes compared with the torsion-detorsion group. CONCLUSIONS The results of our study have shown that the administration of taurine exerts a beneficial effect on testicular ischemia-reperfusion injury. This effect might be partly the result of a reduction in reactive oxygen species generation by diminishing neutrophil recruitment to the testis.
Collapse
Affiliation(s)
- Si-Ming Wei
- Department of Urology, Third Affiliated Hospital of Hangzhou City, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China.
| | | | | |
Collapse
|
25
|
Yan J, Zhou B, Yang J, Tai P, Chen X, Zhang H, Zhang M, Xia G. Glucose can reverse the effects of acute fasting on mouse ovulation and oocyte maturation. Reprod Fertil Dev 2008; 20:703-12. [DOI: 10.1071/rd08034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 05/26/2008] [Indexed: 12/31/2022] Open
Abstract
Food deprivation suppresses ovulation. Although nutritional elements are responsible for this suppression, it is not clear whether energy metabolism has any effect on oocyte development under these circumstances. The aim of the present study was to determine which nutritional element is responsible for the effect of acute fasting on mouse ovulation and how oocyte development is affected. The results demonstrate that 64 h food deprivation blocks mouse ovulation. This was reversed by glucose feeding, oil feeding or short-term feeding, all of which elevated serum glucose levels. Furthermore, 48 h food deprivation inhibited follicle-stimulating hormone-induced oocyte maturation in vitro. However, 48 h glucose feeding increased serum glucose levels and restored oocyte maturation. Food deprivation increased serum progesterone levels and decreased serum oestradiol levels. Food deprivation also impaired follicle development, caused the death of oocytes and attenuated glucose consumption by cumulus–oocyte complexes. Taken together, the results indicate that: (1) the suppression of ovulation by acute fasting may be due to the control of oocyte development; and (2) maintaining serum glucose concentrations at a certain level is important for normal ovulation.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Taurine, a free amino acid, is found in millimolar concentrations in most mammalian tissues. Mammals are able to synthesize taurine endogenously, but some species such as humans are more dependent on dietary sources of taurine. A growing body of evidence suggests that taurine plays a preponderant role in many physiological processes, which will be summarized in this review. RECENT FINDINGS Evidence for the requirement of taurine in the human diet has been obtained in many studies involving animal models and a few clinical trials. Recent and past studies suggested that taurine might be a pertinent candidate for use as a nutritional supplement to protect against oxidative stress, neurodegenerative diseases or atherosclerosis. Taurine has demonstrated promising actions in vitro, and as a result clinical trials have begun to investigate its effects on various diseases. SUMMARY Taurine appears to have multiple functions and plays an important role in many physiological processes, such as osmoregulation, immunomodulation and bile salt formation. Taurine analogues/derivatives have recently been reported to have a marked activity on various disorders. Taken together, these observations actualize the old story of taurine.
Collapse
Affiliation(s)
- Thomas Bouckenooghe
- Laboratoire de Biologie Cellulaire, Institut des Sciences de la Vie, Université Catholique de Louvain, Bâtiment Carnoy Place, Croix du Sud 5, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|