1
|
Hovet O, Nahali N, Halaburkova A, Haugen LH, Paulsen J, Progida C. Nuclear mechano-confinement induces geometry-dependent HP1α condensate alterations. Commun Biol 2025; 8:308. [PMID: 40000755 PMCID: PMC11862009 DOI: 10.1038/s42003-025-07732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Cells sense external physical cues through complex processes involving signaling pathways, cytoskeletal dynamics, and transcriptional regulation to coordinate a cellular response. A key emerging principle underlying such mechanoresponses is the interplay between nuclear morphology, chromatin organization, and the dynamic behavior of nuclear bodies such as HP1α condensates. Here, applying Airyscan super-resolution live cell imaging, we report a hitherto undescribed level of mechanoresponse triggered by cell confinement below their resting nuclear diameter, which elicits changes in the number, size and dynamics of HP1α nuclear condensates. Utilizing biophysical polymer models, we observe radial redistribution of HP1α condensates within the nucleus, influenced by changes in nuclear geometry. These insights shed new light on the complex relationship between external forces and changes in nuclear shape and chromatin organization in cell mechanoreception.
Collapse
Affiliation(s)
- Oda Hovet
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Negar Nahali
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Andrea Halaburkova
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Linda Hofstad Haugen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Jonas Paulsen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway.
| | - Cinzia Progida
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Meza NP, Hardy CA, Morin KH, Huang C, Raghava S, Song J, Zhang J, Wang Y. Predicting Colloidal Stability of High-Concentration Monoclonal Antibody Formulations in Common Pharmaceutical Buffers Using Improved Polyethylene Glycol Induced Protein Precipitation Assay. Mol Pharm 2023; 20:5842-5855. [PMID: 37867303 DOI: 10.1021/acs.molpharmaceut.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Colloidal stability is an important consideration when developing high concentration mAb formulations. PEG-induced protein precipitation is a commonly used assay to assess the colloidal stability of protein solutions. However, the practical usefulness and the current theoretical model for this assay have yet to be verified over a large formulation space across multiple mAbs and mAb-based modalities. In the present study, we used PEG-induced protein precipitation assays to evaluate colloidal stability of 3 mAbs in 24 common formulation buffers at 20 and 5 °C. These prediction assays were conducted at low protein concentration (1 mg/mL). We also directly characterized high concentration (100 mg/mL) formulations for cold-induced phase separation, turbidity, and concentratibility by ultrafiltration. This systematic study allowed analysis of the correlation between the results of low concentration assays and the high concentration attributes. The key findings of this study include the following: (1) verification of the usefulness of three different parameters (Cmid, μB, and Tcloud) from PEG-induced protein precipitation assays for ranking colloidal stability of high concentration mAb formulations; (2) a new method to implement PEG-induced protein precipitation assay suitable for high throughput screening with low sample consumption; (3) improvement in the theoretical model for calculating robust thermodynamic parameters of colloidal stability (μB and εB) that are independent of specific experimental settings; (4) systematic evaluation of the effects of pH and buffer salts on colloidal stability of mAbs in common formulation buffers. These findings provide improved theoretical and practical tools for assessing the colloidal stability of mAbs and mAb-based modalities during formulation development.
Collapse
Affiliation(s)
- Noemi P Meza
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Colin A Hardy
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Kylie H Morin
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Chengbin Huang
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Smita Raghava
- Sterile and Specialty Products, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jing Song
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jingtao Zhang
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ying Wang
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| |
Collapse
|
3
|
Caragliano E, Brune W, Bosse JB. Herpesvirus Replication Compartments: Dynamic Biomolecular Condensates? Viruses 2022; 14:960. [PMID: 35632702 PMCID: PMC9147375 DOI: 10.3390/v14050960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
Recent progress has provided clear evidence that many RNA-viruses form cytoplasmic biomolecular condensates mediated by liquid-liquid phase separation to facilitate their replication. In contrast, seemingly contradictory data exist for herpesviruses, which replicate their DNA genomes in nuclear membrane-less replication compartments (RCs). Here, we review the current literature and comment on nuclear condensate formation by herpesviruses, specifically with regard to RC formation. Based on data obtained with human cytomegalovirus (human herpesvirus 5), we propose that liquid and homogenous early RCs convert into more heterogeneous RCs with complex properties over the course of infection. We highlight how the advent of DNA replication leads to the maturation of these biomolecular condensates, likely by adding an additional DNA scaffold.
Collapse
Affiliation(s)
- Enrico Caragliano
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany;
- Centre for Structural Systems Biology, 22607 Hamburg, Germany
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Wolfram Brune
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany;
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
| | - Jens B. Bosse
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany;
- Centre for Structural Systems Biology, 22607 Hamburg, Germany
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
4
|
Herbig M, Tessmer K, Nötzel M, Nawaz AA, Santos-Ferreira T, Borsch O, Gasparini SJ, Guck J, Ader M. Label-free imaging flow cytometry for analysis and sorting of enzymatically dissociated tissues. Sci Rep 2022; 12:963. [PMID: 35046492 PMCID: PMC8770577 DOI: 10.1038/s41598-022-05007-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023] Open
Abstract
Biomedical research relies on identification and isolation of specific cell types using molecular biomarkers and sorting methods such as fluorescence or magnetic activated cell sorting. Labelling processes potentially alter the cells’ properties and should be avoided, especially when purifying cells for clinical applications. A promising alternative is the label-free identification of cells based on physical properties. Sorting real-time deformability cytometry (soRT-DC) is a microfluidic technique for label-free analysis and sorting of single cells. In soRT-FDC, bright-field images of cells are analyzed by a deep neural net (DNN) to obtain a sorting decision, but sorting was so far only demonstrated for blood cells which show clear morphological differences and are naturally in suspension. Most cells, however, grow in tissues, requiring dissociation before cell sorting which is associated with challenges including changes in morphology, or presence of aggregates. Here, we introduce methods to improve robustness of analysis and sorting of single cells from nervous tissue and provide DNNs which can distinguish visually similar cells. We employ the DNN for image-based sorting to enrich photoreceptor cells from dissociated retina for transplantation into the mouse eye.
Collapse
Affiliation(s)
- Maik Herbig
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Karen Tessmer
- Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Martin Nötzel
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Ahsan Ahmad Nawaz
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum Für Physik Und Medizin, Erlangen, Germany
| | - Tiago Santos-Ferreira
- Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.,Roche Innovation Center Basel, F. Hoffman-La Roche Ltd., Basel, Switzerland
| | - Oliver Borsch
- Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Sylvia J Gasparini
- Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum Für Physik Und Medizin, Erlangen, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Sharma V, Freedman KJ. Constricted Apertures for Dynamic Trapping and Micro-/Nanoscale Discrimination Based on Recapture Kinetics. NANO LETTERS 2021; 21:3364-3371. [PMID: 33861619 DOI: 10.1021/acs.nanolett.0c04392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sensing via analyte passage through a constricted aperture is a powerful and robust technology which is being utilized broadly, from DNA sequencing to single virus and cell characterization. Micro- and nanoscale structures typically translocate a constricted aperture, or pore, using electrophoretic force. In the present work, we explore the advances in metrology which can be achieved through rapid directional switching of hydrodynamic forces. Interestingly, multipass measurements of microscale and nanoscale structures achieve cell discrimination. We explore this cell-discrimination phenomenon as well as other features of hydrodynamic focusing such as dynamic trapping and discrete interval sensing.
Collapse
Affiliation(s)
- Vinay Sharma
- University of California-Riverside, Department of Bioengineering, 900 University Avenue, Riverside, California 92521, United States
| | - Kevin J Freedman
- University of California-Riverside, Department of Bioengineering, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
6
|
Strickfaden H. Reflections on the organization and the physical state of chromatin in eukaryotic cells. Genome 2020; 64:311-325. [PMID: 33306433 DOI: 10.1139/gen-2020-0132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, our perception of chromatin structure and organization in the cell nucleus has changed in fundamental ways. The 30 nm chromatin fiber has lost its status as an essential in vivo structure. Hi-C and related biochemical methods, advanced electron and super-resolved fluorescence microscopy, together with concepts from soft matter physics, have revolutionized the field. A comprehensive understanding of the structural and functional interactions that regulate cell cycle and cell type specific nuclear functions appears within reach, but it requires the integration of top-down and bottom-up approachs. In this review, I present an update on nuclear architecture studies with an emphasis on organization and the controversy regarding the physical state of chromatin in cells.
Collapse
Affiliation(s)
- Hilmar Strickfaden
- Departments of Cell Biology and Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Departments of Cell Biology and Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Steinkühler J, Sezgin E, Urbančič I, Eggeling C, Dimova R. Mechanical properties of plasma membrane vesicles correlate with lipid order, viscosity and cell density. Commun Biol 2019; 2:337. [PMID: 31531398 PMCID: PMC6744421 DOI: 10.1038/s42003-019-0583-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/15/2019] [Indexed: 11/08/2022] Open
Abstract
Regulation of plasma membrane curvature and composition governs essential cellular processes. The material property of bending rigidity describes the energetic cost of membrane deformations and depends on the plasma membrane molecular composition. Because of compositional fluctuations and active processes, it is challenging to measure it in intact cells. Here, we study the plasma membrane using giant plasma membrane vesicles (GPMVs), which largely preserve the plasma membrane lipidome and proteome. We show that the bending rigidity of plasma membranes under varied conditions is correlated to readout from environment-sensitive dyes, which are indicative of membrane order and microviscosity. This correlation holds across different cell lines, upon cholesterol depletion or enrichment of the plasma membrane, and variations in cell density. Thus, polarity- and viscosity-sensitive probes represent a promising indicator of membrane mechanical properties. Additionally, our results allow for identifying synthetic membranes with a few well defined lipids as optimal plasma membrane mimetics.
Collapse
Affiliation(s)
- Jan Steinkühler
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS UK
| | - Iztok Urbančič
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS UK
- Condensed Matter Physics Department, “Jožef Stefan” Institute, Ljubljana, Slovenia
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS UK
- Institute of Applied Optics Friedrich‐Schiller‐University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Rumiana Dimova
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
8
|
Liu F, Lössl P, Rabbitts BM, Balaban RS, Heck AJR. The interactome of intact mitochondria by cross-linking mass spectrometry provides evidence for coexisting respiratory supercomplexes. Mol Cell Proteomics 2018; 17:216-232. [PMID: 29222160 PMCID: PMC5795388 DOI: 10.1074/mcp.ra117.000470] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 12/22/2022] Open
Abstract
Mitochondria exert an immense amount of cytophysiological functions, but the structural basis of most of these processes is still poorly understood. Here we use cross-linking mass spectrometry to probe the organization of proteins in native mouse heart mitochondria. Our approach provides the largest survey of mitochondrial protein interactions reported so far. In total, we identify 3,322 unique residue-to-residue contacts involving half of the mitochondrial proteome detected by bottom-up proteomics. The obtained mitochondrial protein interactome gives insights in the architecture and submitochondrial localization of defined protein assemblies, and reveals the mitochondrial localization of four proteins not yet included in the MitoCarta database. As one of the highlights, we show that the oxidative phosphorylation complexes I-V exist in close spatial proximity, providing direct evidence for supercomplex assembly in intact mitochondria. The specificity of these contacts is demonstrated by comparative analysis of mitochondria after high salt treatment, which disrupts the native supercomplexes and substantially changes the mitochondrial interactome.
Collapse
Affiliation(s)
- Fan Liu
- From the ‡Biomolecular Mass Spectrometry and Proteomics. Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- §Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- ¶Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle-Straβe 10, 13125 Berlin, Germany
| | - Philip Lössl
- From the ‡Biomolecular Mass Spectrometry and Proteomics. Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- §Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Beverley M Rabbitts
- ‖Laboratory of Cardiac Energetics, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Robert S Balaban
- ‖Laboratory of Cardiac Energetics, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Albert J R Heck
- From the ‡Biomolecular Mass Spectrometry and Proteomics. Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
- §Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
9
|
Flomm F, Bosse JB. Potential mechanisms facilitating herpesvirus-induced nuclear remodeling: how are herpesvirus capsids able to leave the nucleus? Future Virol 2017. [DOI: 10.2217/fvl-2017-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herpesviruses replicate their DNA, assemble and package their capsids in the host nucleus. How capsids transverse the nuclear space to reach nuclear egress sites at the inner nuclear membrane has been a matter of some debate. We recently showed that HSV-1 and pseudorabies virus rely on the large-scale remodeling of host chromatin to allow intranuclear capsids to cross the nucleoplasm by diffusion. Which molecular pathways induce large-scale chromatin remodeling is currently not known. In this perspective, we propose a four-step speculative model that bridges the gap between known virus–host interactions and large-scale chromatin remodeling. We hope that this hypothetical framework will be used as a basis to elucidate how herpesviruses remodel the host nucleus and enable capsids to escape the nucleus.
Collapse
Affiliation(s)
- Felix Flomm
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany
| | - Jens Bernhard Bosse
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany
- Institute for Biochemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
10
|
Neural Differentiation in HDAC1-Depleted Cells Is Accompanied by Coilin Downregulation and the Accumulation of Cajal Bodies in Nucleoli. Stem Cells Int 2017; 2017:1021240. [PMID: 28337219 PMCID: PMC5350323 DOI: 10.1155/2017/1021240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/12/2017] [Accepted: 01/26/2017] [Indexed: 12/23/2022] Open
Abstract
Cajal bodies (CBs) are important compartments containing accumulated proteins that preferentially regulate RNA-related nuclear events, including splicing. Here, we studied the nuclear distribution pattern of CBs in neurogenesis. In adult brains, coilin was present at a high density, but CB formation was absent in the nuclei of the choroid plexus of the lateral ventricles. Cells of the adult hippocampus were characterized by a crescent-like morphology of coilin protein. We additionally observed a 70 kDa splice variant of coilin in adult mouse brains, which was different to embryonic brains and mouse pluripotent embryonic stem cells (mESCs), characterized by the 80 kDa standard variant of coilin. Here, we also showed that depletion of coilin is induced during neural differentiation and HDAC1 deficiency in mESCs caused coilin accumulation inside the fibrillarin-positive region of the nucleoli. A similar distribution pattern was observed in adult brain hippocampi, characterized by lower levels of both coilin and HDAC1. In summary, we observed that neural differentiation and HDAC1 deficiency lead to coilin depletion and coilin accumulation in body-like structures inside the nucleoli.
Collapse
|
11
|
Sánchez-Hernández N, Boireau S, Schmidt U, Muñoz-Cobo JP, Hernández-Munain C, Bertrand E, Suñé C. The in vivo dynamics of TCERG1, a factor that couples transcriptional elongation with splicing. RNA (NEW YORK, N.Y.) 2016; 22:571-582. [PMID: 26873599 PMCID: PMC4793212 DOI: 10.1261/rna.052795.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
Coupling between transcription and RNA processing is key for gene regulation. Using live-cell photobleaching techniques, we investigated the factor TCERG1, which coordinates transcriptional elongation with splicing. We demonstrate that TCERG1 is highly mobile in the nucleoplasm and that this mobility is slightly decreased when it is associated with speckles. Dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) but not α-amanitin treatment reduced the mobility of TCERG1, which suggests interaction with paused transcription elongation complexes. We found that TCERG1 mobility is rapid at the transcription site (TS) of a reporter that splices post-transcriptionally and that TCERG1 is recruited to the active TS independent of the CTD of RNAPII, thus excluding phosphorylated CTD as a requirement for recruiting this factor to the TS. Importantly, the mobility of TCERG1 is reduced when the reporter splices cotranscriptionally, which suggests that TCERG1 forms new macromolecular complexes when splicing occurs cotranscriptionally. In this condition, spliceostatin A has no effect, indicating that TCERG1 rapidly binds and dissociates from stalled spliceosomal complexes and that the mobility properties of TCERG1 do not depend on events occurring after the initial spliceosome formation. Taken together, these data suggest that TCERG1 binds independently to elongation and splicing complexes, thus performing their coupling by transient interactions rather than by stable association with one or the other complexes. This finding has conceptual implications for understanding the coupling between transcription and RNA processing.
Collapse
Affiliation(s)
- Noemí Sánchez-Hernández
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain
| | - Stéphanie Boireau
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | - Ute Schmidt
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | - Juan Pablo Muñoz-Cobo
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | - Carlos Suñé
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain
| |
Collapse
|
12
|
Bosse JB, Enquist LW. The diffusive way out: Herpesviruses remodel the host nucleus, enabling capsids to access the inner nuclear membrane. Nucleus 2016; 7:13-9. [PMID: 26889771 DOI: 10.1080/19491034.2016.1149665] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Herpesviruses are large DNA viruses that utilize the host nucleus for genome replication as well as capsid assembly. After maturation, these 125 nm large capsid assemblies must cross the nucleoplasm to engage the nuclear envelope and bud into the cytoplasm. Here we summarize our recent findings how this motility is facilitated. We suggest that herpesvirus induced nuclear remodeling allows capsids to move by diffusion in the nucleus and not by motor-dependent transport.
Collapse
Affiliation(s)
- Jens B Bosse
- a Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Lynn W Enquist
- b Department of Molecular Biology, Princeton University , Princeton , USA.,c Princeton Neuroscience Institute, Princeton University , Princeton , USA
| |
Collapse
|
13
|
Bosse JB, Hogue IB, Feric M, Thiberge SY, Sodeik B, Brangwynne CP, Enquist LW. Remodeling nuclear architecture allows efficient transport of herpesvirus capsids by diffusion. Proc Natl Acad Sci U S A 2015; 112:E5725-33. [PMID: 26438852 PMCID: PMC4620878 DOI: 10.1073/pnas.1513876112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The nuclear chromatin structure confines the movement of large macromolecular complexes to interchromatin corrals. Herpesvirus capsids of approximately 125 nm assemble in the nucleoplasm and must reach the nuclear membranes for egress. Previous studies concluded that nuclear herpesvirus capsid motility is active, directed, and based on nuclear filamentous actin, suggesting that large nuclear complexes need metabolic energy to escape nuclear entrapment. However, this hypothesis has recently been challenged. Commonly used microscopy techniques do not allow the imaging of rapid nuclear particle motility with sufficient spatiotemporal resolution. Here, we use a rotating, oblique light sheet, which we dubbed a ring-sheet, to image and track viral capsids with high temporal and spatial resolution. We do not find any evidence for directed transport. Instead, infection with different herpesviruses induced an enlargement of interchromatin domains and allowed particles to diffuse unrestricted over longer distances, thereby facilitating nuclear egress for a larger fraction of capsids.
Collapse
Affiliation(s)
- Jens B Bosse
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Ian B Hogue
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Marina Feric
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Stephan Y Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544;
| |
Collapse
|
14
|
Trinh LA, Fraser SE. Imaging the Cell and Molecular Dynamics of Craniofacial Development: Challenges and New Opportunities in Imaging Developmental Tissue Patterning. Curr Top Dev Biol 2015; 115:599-629. [PMID: 26589939 DOI: 10.1016/bs.ctdb.2015.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of the vertebrate head requires cell-cell and tissue-tissue interactions between derivatives of the three germ layers to coordinate morphogenetic movements in four dimensions (4D: x, y, z, t). The high spatial and temporal resolution offered by optical microscopy has made it the main imaging modularity for capturing the molecular and cellular dynamics of developmental processes. In this chapter, we highlight the challenges and new opportunities provided by emerging technologies that enable dynamic, high-information-content imaging of craniofacial development. We discuss the challenges of varying spatial and temporal scales encountered from the biological and technological perspectives. We identify molecular and fluorescence imaging technology that can provide solutions to some of the challenges. Application of the techniques described within this chapter combined with considerations of the biological and technical challenges will aid in formulating the best image-based studies to extend our understanding of the genetic and environmental influences underlying craniofacial anomalies.
Collapse
Affiliation(s)
- Le A Trinh
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Scott E Fraser
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
15
|
Park H, Han SS, Sako Y, Pack CG. Dynamic and unique nucleolar microenvironment revealed by fluorescence correlation spectroscopy. FASEB J 2014; 29:837-48. [PMID: 25404711 DOI: 10.1096/fj.14-254110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Organization and functions of the nucleolus is maintained by mobilities and interactions of nucleolar factors. Because the nucleolus is a densely packed structure, molecular crowding effects determined by the molecular concentrations and mobilities in the nucleolus should also be important for regulating nucleolar organization and functions. However, such molecular property of nucleolar organization is not fully understood. To understand the biophysical property of nucleolar organization, the diffusional behaviors of inert green fluorescent protein (GFP) oligomers with or without nuclear localization signals (NLSs) were analyzed under various conditions by fluorescence correlation spectroscopy. Our result demonstrates that the mobility of GFPs inside the nucleolus and the nucleoplasm can be represented by single free diffusion under normal conditions, even though the mobility in the nucleolus is considerably slower than that in the chromatin region. Moreover, the free diffusion of GFPs is found to be significantly size- and NLS-dependent only in the nucleolus. Interestingly, the mobility in the nucleolus is highly sensitive to ATP depletion, as well as actinomycin D (ActD) treatment. In contrast, the ultra-structure of the nucleolus was not significantly changed by ATP depletion but was changed by ActD treatment. These results suggest that the nucleolus behaves similarly to an open aqueous-phase medium with an increased molecular crowding effect that depends on both energy and transcription.
Collapse
Affiliation(s)
- Hweon Park
- *Department of Life Sciences, Korea University, Seoul, Republic of Korea; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan; and Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sung-Sik Han
- *Department of Life Sciences, Korea University, Seoul, Republic of Korea; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan; and Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yasushi Sako
- *Department of Life Sciences, Korea University, Seoul, Republic of Korea; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan; and Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Chan-Gi Pack
- *Department of Life Sciences, Korea University, Seoul, Republic of Korea; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan; and Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
16
|
DNA in motion during double-strand break repair. Trends Cell Biol 2013; 23:529-36. [PMID: 23867212 DOI: 10.1016/j.tcb.2013.05.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/28/2013] [Accepted: 05/22/2013] [Indexed: 01/04/2023]
Abstract
DNA organization and dynamics profoundly affect many biological processes such as gene regulation and DNA repair. In this review, we present the latest studies on DNA mobility in the context of DNA damage. Recent studies demonstrate that DNA mobility is dramatically increased in the presence of double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae. As a consequence, chromosomes explore a larger nuclear volume, facilitating homologous pairing but also increasing the rate of ectopic recombination. Increased DNA dynamics is dependent on several homologous recombination (HR) proteins and we are just beginning to understand how chromosome dynamics is regulated after DNA damage.
Collapse
|
17
|
Shu H, Wildhaber T, Siretskiy A, Gruissem W, Hennig L. Distinct modes of DNA accessibility in plant chromatin. Nat Commun 2012; 3:1281. [DOI: 10.1038/ncomms2259] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/05/2012] [Indexed: 01/06/2023] Open
|
18
|
Notas G, Nifli AP, Kampa M, Pelekanou V, Alexaki VI, Theodoropoulos P, Vercauteren J, Castanas E. Quercetin accumulates in nuclear structures and triggers specific gene expression in epithelial cells. J Nutr Biochem 2011; 23:656-66. [PMID: 21782406 DOI: 10.1016/j.jnutbio.2011.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 02/25/2011] [Accepted: 03/11/2011] [Indexed: 12/19/2022]
Abstract
Quercetin is a flavonol modifying a number of cell processes in different cell lines. Here, we present evidence that nonconjugated quercetin enters cells possibly via organic anion transporter polypeptides and quickly accumulates in the nucleus where it concentrates at distinct foci. Furthermore, it induces major transcriptional events with a high number of transcripts being modified over time and about 2200 transcripts being continuously influenced by the agent. The latter transcripts are related to cell cycle and adhesion, xenobiotic metabolism, immune-related factors and transcription. In addition, quercetin up-regulates the expression of estrogen receptors α and β. The overall outcome on cell fate is reflected by an inhibition of cell proliferation, cell cycle arrest in the G1 phase and reduction of the cells' migratory potential due to actin cytoskeleton disorganization. Finally, we report that the flavonol modifies the transcription and/or activity of numerous transcription factors. In conclusion, our data support the idea that quercetin may actively accumulate in discrete cell structures and exert more than just antioxidant actions on epithelial cells by regulating mechanisms related to gene transcription.
Collapse
Affiliation(s)
- George Notas
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Erdel F, Müller-Ott K, Baum M, Wachsmuth M, Rippe K. Dissecting chromatin interactions in living cells from protein mobility maps. Chromosome Res 2011; 19:99-115. [PMID: 20848178 DOI: 10.1007/s10577-010-9155-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The genome of eukaryotes is organized into a dynamic nucleoprotein complex referred to as chromatin, which can adopt different functional states. Both the DNA and the protein component of chromatin are subject to various post-translational modifications that define the cell's gene expression program. Their readout and establishment occurs in a spatio-temporally coordinated manner that is controlled by numerous chromatin-interacting proteins. Binding to chromatin in living cells can be measured by a spatially resolved analysis of protein mobility using fluorescence microscopy based approaches. Recent advancements in the acquisition of protein mobility data using fluorescence bleaching and correlation methods provide data sets on diffusion coefficients, binding kinetics, and cellular concentrations on different time and length scales. The combination of different techniques is needed to dissect the complex interplay of diffusive translocations, binding events, and mobility constraints of the chromatin environment. While bleaching techniques have their strength in the characterization of particles that are immobile on the second/minute time scale, a correlation analysis is advantageous to characterize transient binding events with millisecond residence time. The application and synergy effects of the different approaches to obtain protein mobility and interaction maps in the nucleus are illustrated for the analysis of heterochromatin protein 1.
Collapse
Affiliation(s)
- Fabian Erdel
- Deutsches Krebsforschungszentrum and BioQuant, Research Group Genome Organization and Function, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
20
|
Chromosome dynamics, molecular crowding, and diffusion in the interphase cell nucleus: a Monte Carlo lattice simulation study. Chromosome Res 2010; 19:63-81. [DOI: 10.1007/s10577-010-9168-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Nucleolar localization/retention signal is responsible for transient accumulation of histone H2B in the nucleolus through electrostatic interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:27-38. [PMID: 21095207 DOI: 10.1016/j.bbamcr.2010.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/24/2010] [Accepted: 11/10/2010] [Indexed: 11/21/2022]
Abstract
The majority of known nuclear proteins are highly mobile. The molecular mechanisms by which they accumulate inside stable compartments that are not separated from the nucleoplasm by membranes are obscure. The compartmental retention of some proteins is associated with their biological function; however, some protein interactions within distinct nuclear structures may be non-specific. The non-specific retention may lead to the accumulation of proteins in distinct structural domains, even if the protein does not function inside this domain. In this study, we have shown that histone H2B-EGFP initially accumulated in the nucleolus after ectopic expression, and then gradually incorporated into the chromatin to leave only a small amount of nucleolus-bound histone that was revealed by removing chromatin-bound proteins with DNase I treatment. Nucleolar histone H2B had several characteristics: (i) it preferentially bound to granular component of the nucleolus and interacted with RNA or RNA-containing nucleolar components; (ii) it freely exchanged between the nucleolus and nucleoplasm; (iii) it associated with the nuclear matrix; and (iv) it bound to interphase prenuclear bodies that formed after hypotonic treatment. The region in histone H2B that acts as a nucleolar localization/retention signal (NoRS) was identified. This signal overlapped with a nuclear localization signal (NLS), which appears to be the primary function of this region. The NoRS activity of this region was non-specific, but the molecular mechanism was probably similar to the NoRSs of other nucleolar proteins. All known NoRSs are enriched with basic amino acids, and we demonstrated that positively charged motifs (nona-arginine (R9) and nona-lysine (K9)) were sufficient for the nucleolar accumulation of EGFP. Also, the correlation between measured NoRS activity and the predicted charge was observed. Thus, NoRSs appear to achieve their function through electrostatic interactions with the negatively charged components of the nucleolus. Though these interactions are non-specific, the functionally unrelated retention of a protein can increase the probability of its interaction with specific and functionally related binding sites.
Collapse
|
22
|
Abstract
Many of the chapters in this volume are concerned with processes or structures inside the nucleus, and it is relevant to consider the properties of their environment, or rather of the multiple different and specific environments that must exist in local regions of the highly heterogeneous intranuclear space. Relatively little is known about the fundamental physical properties of these environments, and theoretical treatments of phenomena in such concentrated mixtures of charged macromolecules are complex and as yet poorly developed. Some of the phenomena that occur at the molecular level are unexpected and counterintuitive for biologists, although well known to colloid and polymer scientists; for example, the existence of short-range attractive forces between macromolecules or structures with like charges. As a background for the chapters that follow, we consider here some of the particular features of intranuclear environments, how they may influence processes and structures in the nucleus, and their implications for working with nuclei.
Collapse
|
23
|
In vivo pair correlation analysis of EGFP intranuclear diffusion reveals DNA-dependent molecular flow. Proc Natl Acad Sci U S A 2010; 107:16560-5. [PMID: 20823232 DOI: 10.1073/pnas.1006731107] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
No methods proposed thus far have the capability to measure overall molecular flow in the nucleus of living cells. Here, we apply the pair correlation function analysis (pCF) to measure molecular anisotropic diffusion in the interphase nucleus of live cells. In the pCF method, we cross-correlate fluctuations at several distances and locations within the nucleus, enabling us to define migration paths and barriers to diffusion. We use monomeric EGFP as a prototypical inert molecule and measure flow in and between different nuclear environments. Our results suggest that there are two disconnect molecular flows throughout the nucleus associated with high and low DNA density regions. We show that different density regions of DNA form a networked channel that allows EGFP to diffuse freely throughout, however with restricted ability to traverse the channel. We also observe rare and sudden bursts of molecules traveling across DNA density regions with characteristic time of ≈300 ms, suggesting intrinsic localized change in chromatin structure. This is a unique in vivo demonstration of the intricate chromatin network showing channel directed diffusion of an inert molecule with high spatial and temporal resolution.
Collapse
|
24
|
Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 2010; 11:545-55. [PMID: 20628411 DOI: 10.1038/nrm2938] [Citation(s) in RCA: 1013] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heat shock factors (HSFs) are essential for all organisms to survive exposures to acute stress. They are best known as inducible transcriptional regulators of genes encoding molecular chaperones and other stress proteins. Four members of the HSF family are also important for normal development and lifespan-enhancing pathways, and the repertoire of HSF targets has thus expanded well beyond the heat shock genes. These unexpected observations have uncovered complex layers of post-translational regulation of HSFs that integrate the metabolic state of the cell with stress biology, and in doing so control fundamental aspects of the health of the proteome and ageing.
Collapse
Affiliation(s)
- Malin Akerfelt
- Department of Biosciences, Abo Akademi University, BioCity, 20520 Turku, Finland
| | | | | |
Collapse
|
25
|
Fritsch CC, Langowski J. Anomalous diffusion in the interphase cell nucleus: The effect of spatial correlations of chromatin. J Chem Phys 2010; 133:025101. [DOI: 10.1063/1.3435345] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
26
|
Rouquette J, Cremer C, Cremer T, Fakan S. Functional nuclear architecture studied by microscopy: present and future. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 282:1-90. [PMID: 20630466 DOI: 10.1016/s1937-6448(10)82001-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review we describe major contributions of light and electron microscopic approaches to the present understanding of functional nuclear architecture. The large gap of knowledge, which must still be bridged from the molecular level to the level of higher order structure, is emphasized by differences of currently discussed models of nuclear architecture. Molecular biological tools represent new means for the multicolor visualization of various nuclear components in living cells. New achievements offer the possibility to surpass the resolution limit of conventional light microscopy down to the nanometer scale and require improved bioinformatics tools able to handle the analysis of large amounts of data. In combination with the much higher resolution of electron microscopic methods, including ultrastructural cytochemistry, correlative microscopy of the same cells in their living and fixed state is the approach of choice to combine the advantages of different techniques. This will make possible future analyses of cell type- and species-specific differences of nuclear architecture in more detail and to put different models to critical tests.
Collapse
Affiliation(s)
- Jacques Rouquette
- Biocenter, Ludwig Maximilians University (LMU), Martinsried, Germany
| | | | | | | |
Collapse
|
27
|
Krull S, Dörries J, Boysen B, Reidenbach S, Magnius L, Norder H, Thyberg J, Cordes VC. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J 2010; 29:1659-73. [PMID: 20407419 PMCID: PMC2876962 DOI: 10.1038/emboj.2010.54] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 03/09/2010] [Indexed: 12/21/2022] Open
Abstract
Amassments of heterochromatin in somatic cells occur in close contact with the nuclear envelope (NE) but are gapped by channel- and cone-like zones that appear largely free of heterochromatin and associated with the nuclear pore complexes (NPCs). To identify proteins involved in forming such heterochromatin exclusion zones (HEZs), we used a cell culture model in which chromatin condensation induced by poliovirus (PV) infection revealed HEZs resembling those in normal tissue cells. HEZ occurrence depended on the NPC-associated protein Tpr and its large coiled coil-forming domain. RNAi-mediated loss of Tpr allowed condensing chromatin to occur all along the NE's nuclear surface, resulting in HEZs no longer being established and NPCs covered by heterochromatin. These results assign a central function to Tpr as a determinant of perinuclear organization, with a direct role in forming a morphologically distinct nuclear sub-compartment and delimiting heterochromatin distribution.
Collapse
Affiliation(s)
- Sandra Krull
- Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Julia Dörries
- Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Björn Boysen
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Sonja Reidenbach
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Lars Magnius
- Department of Virology, Swedish Institute for Infectious Disease Control, Solna, Sweden
| | - Helene Norder
- Department of Virology, Swedish Institute for Infectious Disease Control, Solna, Sweden
| | - Johan Thyberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Volker C Cordes
- Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Manteifel VM, Karu TY. Loosening of condensed chromatin in human blood lymphocytes exposed to irradiation with a low-energy He-Ne laser. BIOL BULL+ 2009. [DOI: 10.1134/s1062359009060028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
DE VOS W, JOSS G, HAFFMANS W, HOEBE R, MANDERS E, VAN OOSTVELDT P. Four-dimensional telomere analysis in recordings of living human cells acquired with Controlled Light Exposure Microscopy. J Microsc 2009; 238:254-64. [DOI: 10.1111/j.1365-2818.2009.03350.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:813-28. [DOI: 10.1007/s00249-009-0499-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/24/2009] [Accepted: 05/25/2009] [Indexed: 11/25/2022]
|
31
|
Dross N, Spriet C, Zwerger M, Müller G, Waldeck W, Langowski J. Mapping eGFP oligomer mobility in living cell nuclei. PLoS One 2009; 4:e5041. [PMID: 19347038 PMCID: PMC2660426 DOI: 10.1371/journal.pone.0005041] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/05/2009] [Indexed: 01/09/2023] Open
Abstract
Movement of particles in cell nuclei can be affected by viscosity, directed flows, active transport, or the presence of obstacles such as the chromatin network. Here we investigate whether the mobility of small fluorescent proteins is affected by the chromatin density. Diffusion of inert fluorescent proteins was studied in living cell nuclei using fluorescence correlation spectroscopy (FCS) with a two-color confocal scanning detection system. We first present experiments exposing FCS-specific artifacts encountered in live cell studies as well as strategies to prevent them, in particular those arising from the choice of the fluorophore used for calibration of the focal volume, as well as temperature and acquisition conditions used for fluorescence fluctuation measurements. After defining the best acquisition conditions, we show for various human cell lines that the mobility of GFP varies significantly within the cell nucleus, but does not correlate with chromatin density. The intranuclear diffusional mobility strongly depends on protein size: in a series of GFP-oligomers, used as free inert fluorescent tracers, the diffusion coefficient decreased from the monomer to the tetramer much more than expected for molecules free in aqueous solution. Still, the entire intranuclear chromatin network is freely accessible for small proteins up to the size of eGFP-tetramers, regardless of the chromatin density or cell line. Even the densest chromatin regions do not exclude free eGFP-monomers or multimers.
Collapse
Affiliation(s)
- Nicolas Dross
- Division Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Corentin Spriet
- Biophotonique Cellulaire Fonctionelle, IRI, Parc de la Haute Borne, Villeneuve d'Ascq, France
| | - Monika Zwerger
- Division of Functional Cell Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gabriele Müller
- Division Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Waldemar Waldeck
- Division Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
32
|
State-of-the-art technologies, current opinions and developments, and novel findings: news from the field of histochemistry and cell biology. Histochem Cell Biol 2008; 130:1205-51. [PMID: 18985372 DOI: 10.1007/s00418-008-0535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 10/25/2022]
Abstract
Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.
Collapse
|
33
|
Wachsmuth M, Caudron-Herger M, Rippe K. Genome organization: Balancing stability and plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2061-79. [DOI: 10.1016/j.bbamcr.2008.07.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/21/2008] [Accepted: 07/24/2008] [Indexed: 12/18/2022]
|
34
|
Wang X, Kam Z, Carlton PM, Xu L, Sedat JW, Blackburn EH. Rapid telomere motions in live human cells analyzed by highly time-resolved microscopy. Epigenetics Chromatin 2008; 1:4. [PMID: 19014413 PMCID: PMC2585561 DOI: 10.1186/1756-8935-1-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 10/27/2008] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Telomeres cap chromosome ends and protect the genome. We studied individual telomeres in live human cancer cells. In capturing telomere motions using quantitative imaging to acquire complete high-resolution three-dimensional datasets every second for 200 seconds, telomere dynamics were systematically analyzed. RESULTS The motility of individual telomeres within the same cancer cell nucleus was widely heterogeneous. One class of internal heterochromatic regions of chromosomes analyzed moved more uniformly and showed less motion and heterogeneity than telomeres. The single telomere analyses in cancer cells revealed that shorter telomeres showed more motion, and the more rapid telomere motions were energy dependent. Experimentally increasing bulk telomere length dampened telomere motion. In contrast, telomere uncapping, but not a DNA damaging agent, methyl methanesulfonate, significantly increased telomere motion. CONCLUSION New methods for seconds-scale, four-dimensional, live cell microscopic imaging and data analysis, allowing systematic tracking of individual telomeres in live cells, have defined a previously undescribed form of telomere behavior in human cells, in which the degree of telomere motion was dependent upon telomere length and functionality.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Biochemistry and Biophysics, University of California at San Francisco, California, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Suissa M, Place C, Goillot E, Freyssingeas E. Internal dynamics of a living cell nucleus investigated by dynamic light scattering. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2008; 26:435-48. [PMID: 19230214 DOI: 10.1140/epje/i2007-10346-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recent progresses in cellular biology have shown that the nucleus of a living cell is a structured integration of many functional domains with a complex spatial organization. This organization, as well as molecular and biochemical processes, is time regulated. In the past years many investigations have been performed using fluorescent microscopy techniques to study the internal dynamics of the nucleus of a living cell. These investigations, however, have never focussed on the global internal dynamics of the nucleus, which is still unknown. In this article we present an original light scattering experimental device that we built to investigate this dynamics during biological processes. By means of this experimental set-up, we investigated the global dynamics of the nucleus of a living cell treated with a DNA replication inhibitor. This dynamics presents different and independent kinds of relaxation well separated in time that vary as a function of the cell cycle phases.
Collapse
Affiliation(s)
- M Suissa
- Université de Lyon, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, CNRS, 46 allée d'Italie, 69364 Lyon, France
| | | | | | | |
Collapse
|
36
|
Rowat AC, Lammerding J, Herrmann H, Aebi U. Towards an integrated understanding of the structure and mechanics of the cell nucleus. Bioessays 2008; 30:226-36. [PMID: 18293361 DOI: 10.1002/bies.20720] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Changes in the shape and structural organization of the cell nucleus occur during many fundamental processes including development, differentiation and aging. In many of these processes, the cell responds to physical forces by altering gene expression within the nucleus. How the nucleus itself senses and responds to such mechanical cues is not well understood. In addition to these external forces, epigenetic modifications of chromatin structure inside the nucleus could also alter its physical properties. To achieve a better understanding, we need to elucidate the relationship between nuclear structure and material properties. Recently, new approaches have been developed to systematically investigate nuclear mechanical properties. These experiments provide important new insights into the disease mechanism of a growing class of tissue-specific disorders termed 'nuclear envelopathies'. Here we review our current understanding of what determines the shape and mechanical properties of the cell nucleus.
Collapse
Affiliation(s)
- Amy C Rowat
- Department of Physics/School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
Genome activity and nuclear metabolism clearly depend on accessibility, but it is not known whether and to what extent nuclear structures limit the mobility and access of individual molecules. We used fluorescently labeled streptavidin with a nuclear localization signal as an average-sized, inert protein to probe the nuclear environment. The protein was injected into the cytoplasm of mouse cells, and single molecules were tracked in the nucleus with high-speed fluorescence microscopy. We analyzed and compared the mobility of single streptavidin molecules in structurally and functionally distinct nuclear compartments of living cells. Our results indicated that all nuclear subcompartments were easily and similarly accessible for such an average-sized protein, and even condensed heterochromatin neither excluded single molecules nor impeded their passage. The only significant difference was a higher frequency of transient trappings in heterochromatin, which lasted only tens of milliseconds. The streptavidin molecules, however, did not accumulate in heterochromatin, suggesting comparatively less free volume. Interestingly, the nucleolus seemed to exclude streptavidin, as it did many other nuclear proteins, when visualized by conventional fluorescence microscopy. The tracking of single molecules, nonetheless, showed no evidence for repulsion at the border but relatively unimpeded passage through the nucleolus. These results clearly show that single-molecule tracking can provide novel insights into mobility of proteins in the nucleus that cannot be obtained by conventional fluorescence microscopy. Our results suggest that nuclear processes may not be regulated at the level of physical accessibility but rather by local concentration of reactants and availability of binding sites.
Collapse
|
38
|
Abstract
Trafficking of proteins and RNAs is essential for cellular function and homeostasis. While it has long been appreciated that proteins and RNAs move within cells, only recently has it become possible to visualize trafficking events in vivo. Analysis of protein and RNA motion within the cell nucleus have been particularly intriguing as they have revealed an unanticipated degree of dynamics within the organelle. These methods have revealed that the intranuclear trafficking occurs largely by energy-independent mechanisms and is driven by diffusion. RNA molecules and non-DNA binding proteins undergo constrained diffusion, largely limited by the spatial constraint imposed by chromatin, and chromatin binding proteins move by a stop-and-go mechanism where their free diffusion is interrupted by random association with the chromatin fiber. The ability and mode of motion of proteins and RNAs has implications for how they find nuclear targets on chromatin and in nuclear subcompartments and how macromolecular complexes are assembled in vivo. Most importantly, the dynamic nature of proteins and RNAs is emerging as a means to control physiological cellular responses and pathways.
Collapse
|
39
|
Prindull GA, Fibach E. Are postnatal hemangioblasts generated by dedifferentiation from committed hematopoietic stem cells? Exp Hematol 2007; 35:691-701. [PMID: 17577919 DOI: 10.1016/j.exphem.2007.01.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell dedifferentiation occurs in different cell systems. In spite of a relative paucity of data it seems reasonable to assume that cell dedifferentiation exists in reversible equilibrium with differentiation, to which cells resort in response to intercellular signals. The current literature is indeed compatible with the concept that dedifferentiation is guided by structural rearrangements of nuclear chromatin, directed by epigenetic cell memory information available as silenced genes stored on heterochromatin, and that gene transcription exists in reversible "fluctuating continua" during parental cell cycles. Here, we review the molecular mechanisms of cell dedifferentiation and suggest for hematopoietic development that postnatal hemangioblasts are generated by dedifferentiation of committed hematopoietic stem cells.
Collapse
Affiliation(s)
- Gregor A Prindull
- Department of Pediatrics,University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | | |
Collapse
|
40
|
Rippe K. Dynamic organization of the cell nucleus. Curr Opin Genet Dev 2007; 17:373-80. [PMID: 17913491 DOI: 10.1016/j.gde.2007.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/06/2007] [Accepted: 08/17/2007] [Indexed: 11/19/2022]
Abstract
The dynamic organization of the cell nucleus into subcompartments with distinct biological activities represents an important regulatory layer for cell function. Recent studies provide new insights into the principles, by which nuclear organelles form. This process frequently occurs in a self-organizing manner leading to the assembly of stable but plastic structures from multiple relatively weak interaction forces. These can rearrange into different functional states in response to specific modifications of the constituting components or changes in the nuclear environment.
Collapse
Affiliation(s)
- Karsten Rippe
- Deutsches Krebsforschungszentrum and BIOQUANT, Division of Genome Organization & Function, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
41
|
Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE. Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci U S A 2007; 104:15619-24. [PMID: 17893336 PMCID: PMC2000408 DOI: 10.1073/pnas.0702576104] [Citation(s) in RCA: 604] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cell differentiation in embryogenesis involves extensive changes in gene expression structural reorganization within the nucleus, including chromatin condensation and nucleoprotein immobilization. We hypothesized that nuclei in naive stem cells would therefore prove to be physically plastic and also more pliable than nuclei in differentiated cells. Micromanipulation methods indeed show that nuclei in human embryonic stem cells are highly deformable and stiffen 6-fold through terminal differentiation, and that nuclei in human adult stem cells possess an intermediate stiffness and deform irreversibly. Because the nucleo-skeletal component Lamin A/C is not expressed in either type of stem cell, we knocked down Lamin A/C in human epithelial cells and measured a deformability similar to that of adult hematopoietic stem cells. Rheologically, lamin-deficient states prove to be the most fluid-like, especially within the first approximately 10 sec of deformation. Nuclear distortions that persist longer than this are irreversible, and fluorescence-imaged microdeformation with photobleaching confirms that chromatin indeed flows, distends, and reorganizes while the lamina stretches. The rheological character of the nucleus is thus set largely by nucleoplasm/chromatin, whereas the extent of deformation is modulated by the lamina.
Collapse
Affiliation(s)
- J. David Pajerowski
- *Molecular and Cell Biophysics Laboratory, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104
| | - Kris Noel Dahl
- Departments of Chemical and Biomedical Engineering, 5000 Forbes Avenue, Carnegie Mellon University, Pittsburgh, PA 15213; and
| | - Franklin L. Zhong
- *Molecular and Cell Biophysics Laboratory, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104
| | - Paul J. Sammak
- Division of Developmental and Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Dennis E. Discher
- *Molecular and Cell Biophysics Laboratory, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Philips AS, Kwok JC, Chong BH. Analysis of the signals and mechanisms mediating nuclear trafficking of GATA-4. Loss of DNA binding is associated with localization in intranuclear speckles. J Biol Chem 2007; 282:24915-27. [PMID: 17548362 DOI: 10.1074/jbc.m701789200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleocytoplasmic transport of GATA-4 is important in maintaining and regulating normal cardiogenesis and heart function. This report investigates the detailed mechanisms of GATA-4 nuclear transport. We characterized a nonclassical nuclear localization signal between amino acids 270 and 324 that actively transports GATA-4 into the nucleus of both HeLa cells and cardiac myocytes. Fine mapping studies revealed four crucial arginine residues within this region that mediate active transport predominantly through the nonclassical pathway via interaction with importin beta. These four residues were also essential for the DNA binding activity of GATA-4 and transcriptional activation of cardiac-specific genes. Interestingly, mutation of these residues not only inhibited DNA binding and gene transcription but also resulted in a preferential accumulation of the GATA-4 protein in distinct subnuclear speckles. A cardiac myocyte-specific, chromosome maintenance region 1-dependent nuclear export signal consisting of three essential leucine residues was also identified. The current study provides detailed information on the nuclear shuttling pathways of GATA-4 that represents an additional mechanism of gene regulation.
Collapse
Affiliation(s)
- Alana S Philips
- Centre for Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | |
Collapse
|
43
|
Abstract
The cell nucleus is a highly structured compartment where nuclear components are thought to localize in non-random positions. Correct positioning of large chromatin domains may have a direct impact on the localization of other nuclear components, and can therefore influence the global functionality of the nuclear compartment. DNA methylation of cytosine residues in CpG dinucleotides is a prominent epigenetic modification of the chromatin fiber. DNA methylation, in conjunction with the biochemical modification pattern of histone tails, is known to lock chromatin in a close and transcriptionally inactive conformation. The relationship between DNA methylation and large-scale organization of nuclear architecture, however, is poorly understood. Here we briefly summarize present concepts of nuclear architecture and current data supporting a link between DNA methylation and the maintenance of large-scale nuclear organization.
Collapse
Affiliation(s)
- J Espada
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| | | |
Collapse
|
44
|
Taatjes DJ, Zuber C, Roth J. The histochemistry and cell biology vade mecum: a review of 2005–2006. Histochem Cell Biol 2006; 126:743-88. [PMID: 17149649 DOI: 10.1007/s00418-006-0253-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2006] [Indexed: 02/07/2023]
Abstract
The procurement of new knowledge and understanding in the ever expanding discipline of cell biology continues to advance at a breakneck pace. The progress in discerning the physiology of cells and tissues in health and disease has been driven to a large extent by the continued development of new probes and imaging techniques. The recent introduction of semi-conductor quantum dots as stable, specific markers for both fluorescence light microscopy and electron microscopy, as well as a virtual treasure-trove of new fluorescent proteins, has in conjunction with newly introduced spectral imaging systems, opened vistas into the seemingly unlimited possibilities for experimental design. Although it oftentimes proves difficult to predict what the future will hold with respect to advances in disciplines such as cell biology and histochemistry, it is facile to look back on what has already occurred. In this spirit, this review will highlight some advancements made in these areas in the past 2 years.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology, Microscopy Imaging Center, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
45
|
Albiez H, Cremer M, Tiberi C, Vecchio L, Schermelleh L, Dittrich S, Küpper K, Joffe B, Thormeyer T, von Hase J, Yang S, Rohr K, Leonhardt H, Solovei I, Cremer C, Fakan S, Cremer T. Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 2006; 14:707-33. [PMID: 17115328 DOI: 10.1007/s10577-006-1086-x] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 08/04/2006] [Accepted: 08/04/2006] [Indexed: 11/28/2022]
Abstract
In spite of strong evidence that the nucleus is a highly organized organelle, a consensus on basic principles of the global nuclear architecture has not so far been achieved. The chromosome territory-interchromatin compartment (CT-IC) model postulates an IC which expands between chromatin domains both in the interior and the periphery of CT. Other models, however, dispute the existence of the IC and claim that numerous chromatin loops expand between and within CTs. The present study was undertaken to resolve these conflicting views. (1) We demonstrate that most chromatin exists in the form of higher-order chromatin domains with a compaction level at least 10 times above the level of extended 30 nm chromatin fibers. A similar compaction level was obtained in a detailed analysis of a particularly gene-dense chromosome region on HSA 11, which often expanded from its CT as a finger-like chromatin protrusion. (2) We further applied an approach which allows the experimental manipulation of both chromatin condensation and the width of IC channels in a fully reversible manner. These experiments, together with electron microscopic observations, demonstrate the existence of the IC as a dynamic, structurally distinct nuclear compartment, which is functionally linked with the chromatin compartment.
Collapse
Affiliation(s)
- Heiner Albiez
- Department of Biology II, LMU Biozentrum, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Verschure PJ. Chromosome organization and gene control: it is difficult to see the picture when you are inside the frame. J Cell Biochem 2006; 99:23-34. [PMID: 16795053 DOI: 10.1002/jcb.20957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The organization of the genome in the nucleus is related to its function. The functional compartmentalization of the genome is described at the nuclear, chromosomal, subchromosomal, nucleosomal, and DNA sequence level. These descriptions originate from the techniques that were used for analysis. The different levels of compartmentalization are not easily reconciled, because the techniques applied to identify genome compartmentalization generally cannot be performed in combination. We have obtained a large body of information on individual "actors" and "scenes" in the nucleus regarding genome compartmentalization, but we still do not understand how and by what pieces of equipment the "actors" play their game. The next challenge is to understand the combined operation of the various levels of functional genome organization in the nucleus, that is, how do the epigenetic and genetic levels act together. In this paper, I will highlight some of the general features and observations of functional organization of the eukaryotic genome in interphase nuclei and discuss the concepts and views based on observed correlations between genome organization and function. I will reflect on what is to be expected from this field of research when the functional levels of genome compartmentalization are integrated. In this context I will draw attention to what might be needed to improve our understanding.
Collapse
Affiliation(s)
- Pernette J Verschure
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 318, 1098SM Amsterdam, The Netherlands
| |
Collapse
|
47
|
Pack C, Saito K, Tamura M, Kinjo M. Microenvironment and effect of energy depletion in the nucleus analyzed by mobility of multiple oligomeric EGFPs. Biophys J 2006; 91:3921-36. [PMID: 16950841 PMCID: PMC1630477 DOI: 10.1529/biophysj.105.079467] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four different tandem EGFPs were constructed to elucidate the nuclear microenvironment by quantifying its diffusional properties in both aqueous solution and the nuclei of living cells. Diffusion of tandem EGFP was dependent on the length of the protein as a rod-like molecule or molecular ruler in solution. On the other hand, we found two kinds of mobility, fast diffusional mobility and much slower diffusional mobility depending on cellular compartments in living cells. Diffusion in the cytoplasm and the nucleoplasm was mainly measured as fast diffusional mobility. In contrast, diffusion in the nucleolus was complex and mainly much slower diffusional mobility, although both the fast and the slow diffusional mobilities were dependent on the protein length. Interestingly, we found that diffusion in the nucleolus was clearly changed by energy depletion, even though the diffusion in the cytoplasm and the nucleoplasm was not changed. Our results suggest that the nucleolar microenvironment is sensitive to energy depletion and very different from the nucleoplasm.
Collapse
Affiliation(s)
- Changi Pack
- Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
48
|
Cremer T, Cremer M, Dietzel S, Müller S, Solovei I, Fakan S. Chromosome territories--a functional nuclear landscape. Curr Opin Cell Biol 2006; 18:307-16. [PMID: 16687245 DOI: 10.1016/j.ceb.2006.04.007] [Citation(s) in RCA: 475] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 04/10/2006] [Indexed: 11/17/2022]
Abstract
Understanding nuclear architecture is indispensable for understanding the cell-type-dependent orchestration of active and silent genes and other nuclear functions, such as RNA splicing, DNA replication and repair. Yet, while it is now generally agreed that chromosomes in the cell nucleus are organized as chromosome territories, present models of chromosome territory architecture differ widely with respect to the possible functional implications of dynamic changes of this architecture during the cell cycle and terminal cell differentiation.
Collapse
Affiliation(s)
- Thomas Cremer
- Department of Biology II, Ludwig-Maximilians-University, Grosshadernerstrasse 2, D-82152, Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Hoppe A, Beech SJ, Dimmock J, Leppard KN. Interaction of the adenovirus type 5 E4 Orf3 protein with promyelocytic leukemia protein isoform II is required for ND10 disruption. J Virol 2006; 80:3042-9. [PMID: 16501113 PMCID: PMC1395473 DOI: 10.1128/jvi.80.6.3042-3049.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear domain 10 (ND10s), or promyelocytic leukemia protein (PML) nuclear bodies, are spherical nuclear structures that require PML proteins for their formation. Many viruses target these structures during infection. The E4 Orf3 protein of adenovirus 5 (Ad5) rearranges ND10s, causing PML to colocalize with Orf3 in nuclear tracks or fibers. There are six different PML isoforms (I to VI) present at ND10s, all sharing a common N terminus but with structural differences at their C termini. In this study, PML II was the only one of these six isoforms that was found to interact directly and specifically with Ad5 E4 Orf3 in vitro and in vivo; these results define a new Orf3 activity. Three of a series of 18 mutant Orf3 proteins were unable to interact with PML II; these were also unable to cause ND10 rearrangement. Moreover, in PML-null cells that contained neoformed ND10s comprising a single PML isoform, only ND10s formed of PML II were rearranged by Orf3. These data show that the interaction between Orf3 and PML II is necessary for ND10 rearrangement to occur. Finally, Orf3 was shown to self-associate in vitro. This activity was absent in mutant Orf3 proteins that were unable to form tracks and to bind PML II. Thus, Orf3 oligomerization may mediate the formation of nuclear tracks in vivo and may also be important for PML II binding.
Collapse
Affiliation(s)
- Anne Hoppe
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | | | | | |
Collapse
|
50
|
Görisch SM, Wachsmuth M, Tóth KF, Lichter P, Rippe K. Histone acetylation increases chromatin accessibility. J Cell Sci 2005; 118:5825-34. [PMID: 16317046 DOI: 10.1242/jcs.02689] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, the interaction of DNA with proteins and supramolecular complexes involved in gene expression is controlled by the dynamic organization of chromatin inasmuch as it defines the DNA accessibility. Here, the nuclear distribution of microinjected fluorescein-labeled dextrans of 42 kDa to 2.5 MDa molecular mass was used to characterize the chromatin accessibility in dependence on histone acetylation. Measurements of the fluorescein-dextran sizes were combined with an image correlation spectroscopy analysis, and three different interphase chromatin condensation states with apparent pore sizes of 16-20 nm, 36-56 nm and 60-100 nm were identified. A reversible change of the chromatin conformation to a uniform 60-100 nm pore size distribution was observed upon increased histone acetylation. This result identifies histone acetylation as a central factor in the dynamic regulation of chromatin accessibility during interphase. In mitotic chromosomes, the chromatin exclusion limit was 10-20 nm and independent of the histone acetylation state.
Collapse
Affiliation(s)
- Sabine M Görisch
- Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|