1
|
Liu Y, Chen Y, Li XH, Cao C, Zhang HX, Zhou C, Chen Y, Gong Y, Yang JX, Cheng L, Chen XD, Shen H, Xiao HM, Tan LJ, Deng HW. Dissection of Cellular Communication between Human Primary Osteoblasts and Bone Marrow Mesenchymal Stem Cells in Osteoarthritis at Single-Cell Resolution. Int J Stem Cells 2023; 16:342-355. [PMID: 37105556 PMCID: PMC10465330 DOI: 10.15283/ijsc22101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 04/29/2023] Open
Abstract
Background and Objectives Osteoblasts are derived from bone marrow mesenchymal stem cells (BMMSCs) and play important role in bone remodeling. While our previous studies have investigated the cell subtypes and heterogeneity in osteoblasts and BMMSCs separately, cell-to-cell communications between osteoblasts and BMMSCs in vivo in humans have not been characterized. The aim of this study was to investigate the cellular communication between human primary osteoblasts and bone marrow mesenchymal stem cells. Methods and Results To investigate the cell-to-cell communications between osteoblasts and BMMSCs and identify new cell subtypes, we performed a systematic integration analysis with our single-cell RNA sequencing (scRNA-seq) transcriptomes data from BMMSCs and osteoblasts. We successfully identified a novel preosteoblasts subtype which highly expressed ATF3, CCL2, CXCL2 and IRF1. Biological functional annotations of the transcriptomes suggested that the novel preosteoblasts subtype may inhibit osteoblasts differentiation, maintain cells to a less differentiated status and recruit osteoclasts. Ligand-receptor interaction analysis showed strong interaction between mature osteoblasts and BMMSCs. Meanwhile, we found FZD1 was highly expressed in BMMSCs of osteogenic differentiation direction. WIF1 and SFRP4, which were highly expressed in mature osteoblasts were reported to inhibit osteogenic differentiation. We speculated that WIF1 and sFRP4 expressed in mature osteoblasts inhibited the binding of FZD1 to Wnt ligand in BMMSCs, thereby further inhibiting osteogenic differentiation of BMMSCs. Conclusions Our study provided a more systematic and comprehensive understanding of the heterogeneity of osteogenic cells. At the single cell level, this study provided insights into the cell-to-cell communications between BMMSCs and osteoblasts and mature osteoblasts may mediate negative feedback regulation of osteogenesis process.
Collapse
Affiliation(s)
- Ying Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yan Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiao-Hua Li
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chong Cao
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui-Xi Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cui Zhou
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jun-Xiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Cheng
- Department of Orthopedics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hong-Mei Xiao
- School of Basic Medical Science, Central South University, Changsha, China
- Center of Reproductive Health, System Biology and Data Information, Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
2
|
The effect of melatonin on the mouse ameloblast-lineage cell line ALCs. Sci Rep 2022; 12:8225. [PMID: 35581244 PMCID: PMC9114102 DOI: 10.1038/s41598-022-11912-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/13/2022] [Indexed: 01/17/2023] Open
Abstract
Melatonin plays a critical role in promoting the proliferation of osteoblasts and the growth and development of dental papilla cells. However, the effect and mechanism of melatonin on the growth and development of ALCs still need to be explored. CCK8 assay was used for the evaluation of cell numbers. qRT-PCR was used to identify the differentially expressed genes in ALCs after melatonin treatment. The number and morphology of ALCs were investigated by confocal microscopy. Alkaline phosphatase assay and Alizarin red S staining were used for measuring mineralization. Then, we focused on observing the crucial factors of the signaling pathway by RNA-seq and qRT-PCR. Melatonin limited the cell number of ALCs in a dose-dependent manner and promoted the production of actin fibers. A high concentration of melatonin significantly promoted the mRNA levels of enamel matrix proteins and the formation of mineralized nodules. RNA-seq data showed that Wnt signaling pathway may be involved in the differentiation of ALCs under the influence of melatonin. This study suggests that melatonin plays a regulatory role in the cell number, differentiation, and mineralization of the ALCs, and then shows the relationship between the Wnt signaling pathway with the ALCs under melatonin.
Collapse
|
3
|
Zhao Z, Li J, Ding XN, Zhou L, Sun DG. ADAM28 dramatically regulates the biological features of human gingival fibroblasts. Odontology 2018; 107:333-341. [PMID: 30552542 DOI: 10.1007/s10266-018-0403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 11/25/2018] [Indexed: 11/29/2022]
Abstract
This study was to explore the effects of a disintegrin and metalloproteinase 28 (ADAM28) on the proliferation, differentiation, and apoptosis of human gingival fibroblasts (HGFs) and probable mechanism. After ADAM28 antisense oligodeoxynucleotide (AS-ODN) and sense oligodeoxynucleotide (S-ODN) were transfected into HGFs by Lipofectamine 2000, respectively, the expression discrepancies of ADAM28 among various groups were evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and Western-blotting. Methabenzthiazuron (MTT) and cell-cycle assays were used to test the HGFs proliferation activity. Annexin V fluorescein isothiocyanate (FITC)/propidium iodide (PI) and alkaline phosphatase (ALP) analysis were performed separately to measure apoptosis and the cytodifferentiation standard. Immunocytochemistry and Western-blotting were carried out to determine the influence of ADAM28 AS-ODN on HGFs expressing core binding factor α1 (Cbfα1), cementum protein 1 (CEMP1), osteopontin (OPN) and dentin matrix protein 1 (DMP1). The AS-ODN group displayed the lowest expression level in HGFs, meanwhile the ADAM28 S-ODN group showed the highest. Furthermore, blocking of ADAM28 could inhibit the proliferation of HGFs, enhance HGFs differentiation and induce apoptosis of HGFs. Whereas, overexpression of ADAM28 generated the opposite effects and inhibited apoptosis. ADAM28 AS-ODN was able to notably suppress the expressions of Cbfα1 and CEMP1, and ADAM28 had positive correlations with cbfα1 and CEMP1. These provided conspicuous evidence that ADAM28 may play a crucial role in root development as a potential regulator of growth, differentiation, and apoptosis of HGFs.
Collapse
Affiliation(s)
- Zheng Zhao
- Qingdao Stomatological Hospital, No.17 De-xian Road, Qingdao, 266000, Shandong, People's Republic of China.
| | - Jie Li
- Qingdao Stomatological Hospital, No.17 De-xian Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Xiu-Na Ding
- Qingdao Stomatological Hospital, No.17 De-xian Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Lei Zhou
- Qingdao Stomatological Hospital, No.17 De-xian Road, Qingdao, 266000, Shandong, People's Republic of China
| | - De-Gang Sun
- Qingdao Stomatological Hospital, No.17 De-xian Road, Qingdao, 266000, Shandong, People's Republic of China
| |
Collapse
|
4
|
Zhao Z, Liu H, Wang D. ADAM28 manipulates proliferation, differentiation, and apoptosis of human dental pulp stem cells. J Endod 2011; 37:332-9. [PMID: 21329817 DOI: 10.1016/j.joen.2010.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The purpose of this study was to investigate the influence of a disintegrin and metalloproteinase 28 (ADAM28) on the proliferation, differentiation, and apoptosis of human dental pulp stem cells (HDPSCs) and possible mechanism. METHODS After ADAM28 eukaryotic plasmid and antisense oligodeoxynucleotides (AS-ODNs) were constructed and respectively transfected into HDPSCs by Lipofectamine 2000, the ADAM28 expression levels among diverse groups were estimated by reverse transcription polymerase chain reaction (RT-PCR) and western blotting. Methabenzthiazuron (MTT) and cell cycle assays were used to test the HDPSCs proliferation activity. Annexin V- fluorescein isothiocyanate (FITC)/propidium iodide and alkaline phosphatase analysis were performed respectively to measure apoptosis and the cytodifferentiation level. Immunocytochemistry and western blotting were performed to determine the effects of ADAM28 eukaryotic plasmid on HDPSCs expressing dentin sialophosphoprotein (DSPP), dentin matrix protein 1, and bone sialoprotein. RESULTS ADAM28 could be correctly transcribed, translated, and expressed in HDPSCs. The ADAM28 AS-ODN group displayed the highest optical density value, whereas the eukaryotic plasmid group showed the lowest, which suggested that ADAM28 had a negative regulatory effect on the proliferation of HDPSCs. ADAM28 eukaryotic plasmid could significantly inhibit the HDPSC proliferation, promote specific differentiation of HDPSCs, induce apoptosis, and enhance the DSPP expression, whereas ADAM28 AS-ODN produced the opposite effects. CONCLUSIONS Our results proved that ADAM28 might actively participate in manipulating the proliferation, differentiation, and apoptosis of HDPSCs.
Collapse
Affiliation(s)
- Zheng Zhao
- Institute of Stomatology, General Hospital of Chinese People's Liberation Army, Beijing, China.
| | | | | |
Collapse
|
6
|
Brocker CN, Vasiliou V, Nebert DW. Evolutionary divergence and functions of the ADAM and ADAMTS gene families. Hum Genomics 2010; 4:43-55. [PMID: 19951893 PMCID: PMC3500187 DOI: 10.1186/1479-7364-4-1-43] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The 'A-disintegrin and metalloproteinase' (ADAM) and 'A-disintegrin and metalloproteinase with thrombospondin motifs' (ADAMTS) genes make up two similar, yet distinct, gene families. The human and mouse genomes contain 21 and 24 putatively functional protein-coding ADAM genes, respectively, and 24 versus 32 putatively functional protein-coding ADAMTS genes, respectively. Analysis of evolutionary divergence shows that both families are unique. Each of the two families can be separated, if need be, into groups of more closely related members: six subfamilies for ADAM, four subfamilies for ADAMTS. The presence of both disintegrin and peptidase domains within the ADAM and ADAMTS proteins implies multiple biological roles within the cell. Membrane-anchored ADAM proteins are best known for their role in activating zymogens -- including tumour necrosis factor-α, epidermal growth factor (EGF) and amyloid precursor protein (APP). ADAM proteins can also participate in cell adhesion via their interaction with integrins in neighbouring cells. ADAMTS are secreted proteins that participate in extracellular matrix maintenance by way of their cleavage of procollagen and proteoglycans. ADAMTS proteins also are involved in coagulation by cleaving von Willibrand factor precursor protein. ADAM and ADAMTS proteins participate in a wide range of cellular processes, including cell adhesion and migration, ectodomain shedding, proteolysis, development, ovulation and angiogenesis. Because these enzymes are believed to play an important role in a number of pathologies, including Alzheimer's disease, rheumatoid arthritis, atherosclerosis, asthma and cancer progression, the products of the ADAM and ADAMTS genes represent promising drug targets for the prevention and management of a number of human diseases.
Collapse
Affiliation(s)
- Chad N Brocker
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | |
Collapse
|
7
|
Extending the knowledge in histochemistry and cell biology. Histochem Cell Biol 2009; 133:1-40. [PMID: 19946696 DOI: 10.1007/s00418-009-0665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/21/2023]
Abstract
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Collapse
|
8
|
State-of-the-art technologies, current opinions and developments, and novel findings: news from the field of histochemistry and cell biology. Histochem Cell Biol 2008; 130:1205-51. [PMID: 18985372 DOI: 10.1007/s00418-008-0535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 10/25/2022]
Abstract
Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.
Collapse
|