1
|
Zhan FX, Wang SG, Cao L. Advances in hyperekplexia and other startle syndromes. Neurol Sci 2021; 42:4095-4107. [PMID: 34379238 DOI: 10.1007/s10072-021-05493-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023]
Abstract
Startle, a basic alerting reaction common to all mammals, is described as a sudden involuntary movement of the body evoked by all kinds of sudden and unexpected stimulus. Startle syndromes are heterogeneous groups of disorders with abnormal and exaggerated responses to startling events, including hyperekplexia, stimulus-induced disorders, and neuropsychiatric startle syndromes. Hyperekplexia can be attributed to a genetic, idiopathic, or symptomatic cause. Excluding secondary factors, hereditary hyperekplexia, a rare neurogenetic disorder with highly genetic heterogeneity, is characterized by neonatal hypertonia, exaggerated startle response provoked by the sudden external stimuli, and followed by a short period of general stiffness. It mainly arises from defects of inhibitory glycinergic neurotransmission. GLRA1 is the major pathogenic gene of hereditary hyperekplexia, along with many other genes involved in the function of glycinergic inhibitory synapses. While about 40% of patients remain negative genetic findings. Clonazepam, which can specifically upgrade the GABARA1 chloride channels, is the main and most effective administration for hereditary hyperekplexia patients. In this review, with the aim at enhancing the recognition and prompting potential treatment for hyperekplexia, we focused on discussing the advances in hereditary hyperekplexia genetics and the expound progress in pathogenic mechanisms of the glycinergic-synapse-related pathway and then followed by a brief overview of other common startle syndromes.
Collapse
Affiliation(s)
- Fei-Xia Zhan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Shi-Ge Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|
2
|
Biphasic Alteration of the Inhibitory Synapse Scaffold Protein Gephyrin in Early and Late Stages of an Alzheimer Disease Model. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2279-91. [DOI: 10.1016/j.ajpath.2016.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/20/2016] [Accepted: 05/10/2016] [Indexed: 11/22/2022]
|
3
|
Schwale C, Schumacher S, Bruehl C, Titz S, Schlicksupp A, Kokocinska M, Kirsch J, Draguhn A, Kuhse J. KCC2 knockdown impairs glycinergic synapse maturation in cultured spinal cord neurons. Histochem Cell Biol 2016; 145:637-46. [PMID: 26780567 DOI: 10.1007/s00418-015-1397-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2015] [Indexed: 11/26/2022]
Abstract
Synaptic inhibition in the spinal cord is mediated mainly by strychnine-sensitive glycine (GlyRs) and by γ-aminobutyric acid type A receptors (GABAAR). During neuronal maturation, neonatal GlyRs containing α2 subunits are replaced by adult-type GlyRs harboring α1 and α3 subunits. At the same time period of postnatal development, the transmembrane chloride gradient is changed due to increased expression of the potassium-chloride cotransporter (KCC2), thereby shifting the GABA- and glycine-mediated synaptic currents from mostly excitatory depolarization to inhibitory hyperpolarization. Here, we used RNA interference to suppress KCC2 expression during in vitro maturation of spinal cord neurons. Morphological analysis revealed reduced numbers and size of dendritic GlyR clusters containing α1 subunits but not of clusters harboring neonatal α2 subunits. The morphological changes were accompanied by decreased frequencies and amplitudes of glycinergic miniature inhibitory currents, whereas GABAergic synapses appeared functionally unaltered. Our data indicate that KCC2 exerts specific functions for the maturation of glycinergic synapses in cultured spinal cord neurons.
Collapse
Affiliation(s)
- Chrysovalandis Schwale
- Institute for Physiology and Pathophysiology, University of Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Stefanie Schumacher
- Institute for Anatomy and Cell Biology, University of Heidelberg, INF 307, 69120, Heidelberg, Germany
| | - Claus Bruehl
- Institute for Physiology and Pathophysiology, University of Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Stefan Titz
- Institute for Physiology and Pathophysiology, University of Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Andrea Schlicksupp
- Institute for Anatomy and Cell Biology, University of Heidelberg, INF 307, 69120, Heidelberg, Germany
| | - Mirka Kokocinska
- Institute for Anatomy and Cell Biology, University of Heidelberg, INF 307, 69120, Heidelberg, Germany
| | - Joachim Kirsch
- Institute for Anatomy and Cell Biology, University of Heidelberg, INF 307, 69120, Heidelberg, Germany
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, University of Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Jochen Kuhse
- Institute for Anatomy and Cell Biology, University of Heidelberg, INF 307, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Abstract
Ion channels and receptors are the fundamental basis for neuronal communication in the nervous system and are important targets of autoimmunity. The different neuronal domains contain a unique repertoire of voltage-gated Na(+) (Nav), Ca(2+) (Cav), and K(+) (Kv), as well as other K(+) channels and hyperpolarization-gated cyclic nucleotide-regulated channels. The distinct ion channel distribution defines the electrophysiologic properties of different subtypes of neurons. The different neuronal compartments also express neurotransmitter-gated ion channels, or ionotropic receptors, as well as G protein-coupled receptors. Of particular relevance in the central nervous system are excitatory glutamate receptors and inhibitory γ-aminobutyric acid and glycine receptors. The interactions among different ion channels and receptors regulate neuronal excitability; frequency and pattern of firing of action potentials (AP); propagation of the AP along the axon; neurotransmitter release at synaptic terminals; AP backpropagation from the axon initial segment to the somatodendritic domain; dendritic integration of synaptic signals; and use-dependent plasticity.
Collapse
|
5
|
Burgos CF, Muñoz B, Guzman L, Aguayo LG. Ethanol effects on glycinergic transmission: From molecular pharmacology to behavior responses. Pharmacol Res 2015; 101:18-29. [PMID: 26158502 DOI: 10.1016/j.phrs.2015.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
It is well accepted that ethanol is able to produce major health and economic problems associated to its abuse. Because of its intoxicating and addictive properties, it is necessary to analyze its effect in the central nervous system. However, we are only now learning about the mechanisms controlling the modification of important membrane proteins such as ligand-activated ion channels by ethanol. Furthermore, only recently are these effects being correlated to behavioral changes. Current studies show that the glycine receptor (GlyR) is a susceptible target for low concentrations of ethanol (5-40mM). GlyRs are relevant for the effects of ethanol because they are found in the spinal cord and brain stem where they primarily express the α1 subunit. More recently, the presence of GlyRs was described in higher regions, such as the hippocampus and nucleus accumbens, with a prevalence of α2/α3 subunits. Here, we review data on the following aspects of ethanol effects on GlyRs: (1) direct interaction of ethanol with amino acids in the extracellular or transmembrane domains, and indirect mechanisms through the activation of signal transduction pathways; (2) analysis of α2 and α3 subunits having different sensitivities to ethanol which allows the identification of structural requirements for ethanol modulation present in the intracellular domain and C-terminal region; (3) Genetically modified knock-in mice for α1 GlyRs that have an impaired interaction with G protein and demonstrate reduced ethanol sensitivity without changes in glycinergic transmission; and (4) GlyRs as potential therapeutic targets.
Collapse
Affiliation(s)
- Carlos F Burgos
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile
| | - Braulio Muñoz
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile
| | - Leonardo Guzman
- Laboratory of Molecular Neurobiology, Department of Physiology, University of Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile.
| |
Collapse
|
6
|
Sánchez A, Yévenes GE, San Martin L, Burgos CF, Moraga-Cid G, Harvey RJ, Aguayo LG. Control of ethanol sensitivity of the glycine receptor α3 subunit by transmembrane 2, the intracellular splice cassette and C-terminal domains. J Pharmacol Exp Ther 2015; 353:80-90. [PMID: 25589412 DOI: 10.1124/jpet.114.221143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous studies have shown that the effect of ethanol onglycine receptors (GlyRs) containing the a1 subunit is affected by interaction with heterotrimeric G proteins (Gβγ). GlyRs containing the α3 subunit are involved in inflammatory pain sensitization and rhythmic breathing and have received much recent attention. For example, it is unknown whether ethanol affects the function of this important GlyR subtype. Electrophysiologic experiments showed that GlyR α3 subunits were not potentiated by pharmacologic concentrations of ethanol or by Gβγ. Thus, we studied GlyR α1–α3 chimeras and mutants to determine the molecular properties that confer ethanol insensitivity. Mutation of corresponding glycine 254 in transmembrane domain 2 (TM2) found in a1 in the α3(A254G) –α1 chimera induced a glycine-evoked current that displayed potentiation during application of ethanol (46 ± 5%, 100 mM) and Gβγ activation (80 ± 17%). Interestingly,insertion of the intracellular α3L splice cassette into GlyR α1 abolished the enhancement of the glycine-activated current by ethanol (5 ± 6%) and activation by Gβγ (21 6 7%). In corporation of the GlyR α1 C terminus into the ethanol-resistant α3S(A254G) mutant produced a construct that displayed potentiation of the glycine-activated current with 100 mM ethanol (40 ± 6%)together with a current enhancement after G protein activation (68 ± 25%). Taken together, these data demonstrate that GlyRα3 subunits are not modulated by ethanol. Residue A254 in TM2, the α3L splice cassette, and the C-terminal domain of α3GlyRs are determinants for low ethanol sensitivity and form the molecular basis of subtype-selective modulation of GlyRs by alcohol.
Collapse
Affiliation(s)
- Andrea Sánchez
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Concepción, Chile
| | | | | | | | | | | | | |
Collapse
|
7
|
van Coevorden-Hameete MH, de Graaff E, Titulaer MJ, Hoogenraad CC, Sillevis Smitt PAE. Molecular and cellular mechanisms underlying anti-neuronal antibody mediated disorders of the central nervous system. Autoimmun Rev 2014; 13:299-312. [PMID: 24225076 DOI: 10.1016/j.autrev.2013.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 10/30/2013] [Indexed: 12/31/2022]
Abstract
Over the last decade multiple autoantigens located on the plasma membrane of neurons have been identified. Neuronal surface antigens include molecules directly involved in neurotransmission and excitability. Binding of the antibody to the antigen may directly alter the target protein's function, resulting in neurological disorders. The often striking reversibility of symptoms following early aggressive immunotherapy supports a pathogenic role for autoantibodies to neuronal surface antigens. In order to better understand and treat these neurologic disorders it is important to gain insight in the underlying mechanisms of antibody pathogenicity. In this review we discuss the clinical, circumstantial, in vitro and in vivo evidence for neuronal surface antibody pathogenicity and the possible underlying cellular and molecular mechanisms. This review shows that antibodies to neuronal surface antigens are often directed at conformational epitopes located in the extracellular domain of the antigen. The conformation of the epitope can be affected by specific posttranslational modifications. This may explain the distinct clinical phenotypes that are seen in patients with antibodies to antigens that are expressed throughout the brain. Furthermore, it is likely that there is a heterogeneous antibody population, consisting of different IgG subtypes and directed at multiple epitopes located in an immunogenic region. Binding of these antibodies may result in different pathophysiological mechanisms occurring in the same patient, together contributing to the clinical syndrome. Unraveling the predominant mechanism in each distinct antigen could provide clues for therapeutic interventions.
Collapse
Affiliation(s)
- M H van Coevorden-Hameete
- Department of Biology, Division of Cell Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - E de Graaff
- Department of Biology, Division of Cell Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - M J Titulaer
- Department of Neurology, Erasmus MC, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - C C Hoogenraad
- Department of Biology, Division of Cell Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - P A E Sillevis Smitt
- Department of Neurology, Erasmus MC, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Petrat F, Boengler K, Schulz R, de Groot H. Glycine, a simple physiological compound protecting by yet puzzling mechanism(s) against ischaemia-reperfusion injury: current knowledge. Br J Pharmacol 2012; 165:2059-72. [PMID: 22044190 DOI: 10.1111/j.1476-5381.2011.01711.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ischaemia is amongst the leading causes of death. Despite this importance, there are only a few therapeutic approaches to protect from ischaemia-reperfusion injury (IRI). In experimental studies, the amino acid glycine effectively protected from IRI. In the prevention of IRI by glycine in cells and isolated perfused or cold-stored organs (tissues), direct cytoprotection plays a crucial role, most likely by prevention of the formation of pathological plasma membrane pores. Under in vivo conditions, the mechanism of protection by glycine is less clear, partly due to the physiological presence of the amino acid. Here, inhibition of the inflammatory response in the injured tissue is considered to contribute decisively to the glycine-induced reduction of IRI. However, attenuation of IRI recently achieved in experimental animals by low-dose glycine treatment regimens suggests additional/other (unknown) protective mechanisms. Despite the convincing experimental evidence and the large therapeutic width of glycine, there are only a few clinical trials on the protection from IRI by glycine with ambivalent results. Thus, both the mechanism(s) behind the protection of glycine against IRI in vivo and its true clinical potential remain to be addressed in future experimental studies/clinical trials.
Collapse
Affiliation(s)
- Frank Petrat
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | | | | | | |
Collapse
|
9
|
Expression and subcellular distribution of gephyrin in non-neuronal tissues and cells. Histochem Cell Biol 2012; 137:471-82. [PMID: 22270318 DOI: 10.1007/s00418-012-0914-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
Abstract
Gephyrin is a scaffolding protein required for the accumulation of inhibitory neurotransmitter receptors at neuronal postsynaptic membranes. In non-neuronal tissues, gephyrin is indispensible for the biosynthesis of molybdenum cofactor, the prosthetic group of oxidoreductases including sulfite oxidase and xanthine oxidase. However, the molecular and cellular basis of gephyrin's non-neuronal function is poorly understood; in particular, the roles of its splice variants remain enigmatic. Here, we used cDNA screening as well as Northern and immunoblot analyses to show that mammalian liver contains only a limited number of gephyrin splice variants, with the C3-containing variant being the predominant isoform. Using new and established anti-gephyrin antibodies in immunofluorescence and subcellular fractionation studies, we report that gephyrin localizes to the cytoplasm of both tissue hepatocytes and cultured immortalized cells. These findings were corroborated by RNA interference studies in which the cytosolic distribution was found to be abolished. Finally, by blue-native PAGE we show that cytoplasmic gephyrin is part of a ~600 kDa protein complex of yet unknown composition. Our data suggest that the expression pattern of non-neuronal gephyrin is simpler than indicated by previous evidence. In addition, gephyrin's presence in a cytosolic 600 kDa protein complex suggests that its metabolic and/or other non-neuronal functions are exerted in the cytoplasm and are not confined to a particular subcellular compartment.
Collapse
|
10
|
Affiliation(s)
- Edda Gössinger
- Institut für Organische Chemie der Universität Wien, Währinger Strasse 38, 1090, Vienna, Austria.
| |
Collapse
|
11
|
Ganser LR, Dallman JE. Glycinergic synapse development, plasticity, and homeostasis in zebrafish. Front Mol Neurosci 2009; 2:30. [PMID: 20126315 PMCID: PMC2815536 DOI: 10.3389/neuro.02.030.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 11/26/2009] [Indexed: 11/13/2022] Open
Abstract
The zebrafish glial glycine transporter 1 (GlyT1) mutant provides an animal model in which homeostatic plasticity at glycinergic synapses restores rhythmic motor behaviors. GlyT1 mutants, initially paralyzed by the build-up of the inhibitory neurotransmitter glycine, stage a gradual recovery that is associated with reductions in the strength of evoked glycinergic responses. Gradual motor recovery suggests sequential compensatory mechanisms that culminate in the down-regulation of the neuronal glycine receptor. However, how motor recovery is initiated and how other forms of plasticity contribute to behavioral recovery are still outstanding questions that we discuss in the context of (1) glycinergic synapses as they function in spinal circuits that produce rhythmic motor behaviors, (2) the proteins involved in regulating glycinergic synaptic strength, (3) current models of glycinergic synaptogenesis, and (4) plasticity mechanisms that modulate the strength of glycinergic synapses. Concluding remarks (5) explore the potential for distinct plasticity mechanisms to act in concert at different spatial and temporal scales to achieve a dynamic stability that results in balanced motor behaviors.
Collapse
Affiliation(s)
- Lisa R Ganser
- Department of Biology, University of Miami Coral Gables, FL, USA
| | | |
Collapse
|
12
|
State-of-the-art technologies, current opinions and developments, and novel findings: news from the field of histochemistry and cell biology. Histochem Cell Biol 2008; 130:1205-51. [PMID: 18985372 DOI: 10.1007/s00418-008-0535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 10/25/2022]
Abstract
Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.
Collapse
|