1
|
Wallnöfer EA, Thurner GC, Kremser C, Talasz H, Stollenwerk MM, Helbok A, Klammsteiner N, Albrecht-Schgoer K, Dietrich H, Jaschke W, Debbage P. Albumin-based nanoparticles as contrast medium for MRI: vascular imaging, tissue and cell interactions, and pharmacokinetics of second-generation nanoparticles. Histochem Cell Biol 2020; 155:19-73. [PMID: 33040183 DOI: 10.1007/s00418-020-01919-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
This multidisciplinary study examined the pharmacokinetics of nanoparticles based on albumin-DTPA-gadolinium chelates, testing the hypothesis that these nanoparticles create a stronger vessel signal than conventional gadolinium-based contrast agents and exploring if they are safe for clinical use. Nanoparticles based on human serum albumin, bearing gadolinium and designed for use in magnetic resonance imaging, were used to generate magnet resonance images (MRI) of the vascular system in rats ("blood pool imaging"). At the low nanoparticle doses used for radionuclide imaging, nanoparticle-associated metals were cleared from the blood into the liver during the first 4 h after nanoparticle application. At the higher doses required for MRI, the liver became saturated and kidney and spleen acted as additional sinks for the metals, and accounted for most processing of the nanoparticles. The multiple components of the nanoparticles were cleared independently of one another. Albumin was detected in liver, spleen, and kidneys for up to 2 days after intravenous injection. Gadolinium was retained in the liver, kidneys, and spleen in significant concentrations for much longer. Gadolinium was present as significant fractions of initial dose for longer than 2 weeks after application, and gadolinium clearance was only complete after 6 weeks. Our analysis could not account quantitatively for the full dose of gadolinium that was applied, but numerous organs were found to contain gadolinium in the collagen of their connective tissues. Multiple lines of evidence indicated intracellular processing opening the DTPA chelates and leading to gadolinium long-term storage, in particular inside lysosomes. Turnover of the stored gadolinium was found to occur in soluble form in the kidneys, the liver, and the colon for up to 3 weeks after application. Gadolinium overload poses a significant hazard due to the high toxicity of free gadolinium ions. We discuss the relevance of our findings to gadolinium-deposition diseases.
Collapse
Affiliation(s)
- E A Wallnöfer
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - G C Thurner
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - C Kremser
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - H Talasz
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - M M Stollenwerk
- Faculty of Health and Society, Biomedical Laboratory Science, University Hospital MAS, Malmö University, 205 06, Malmö, Sweden
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - A Helbok
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - N Klammsteiner
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - K Albrecht-Schgoer
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innrain 80-82/IV, 6020, Innsbruck, Austria
- Institute of Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria
| | - H Dietrich
- Central Laboratory Animal Facilities, Innsbruck Medical University, Peter-Mayr-Strasse 4a, 6020, Innsbruck, Austria
| | - W Jaschke
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - P Debbage
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria.
| |
Collapse
|
2
|
Abstract
Targeted nanoparticles have the potential to improve drug delivery efficiencies by more than two orders of magnitude, from the ~ 0.1% which is common today. Most pharmacologically agents on the market today are small drug molecules, which diffuse across the body’s blood-tissue barriers and distribute not only into the lesion, but into almost all organs. Drug actions in the non-lesion organs are an inescapable part of the drug delivery principle, causing “side-effects” which limit the maximally tolerable doses and result in inadequate therapy of many lesions. Nanoparticles only cross barriers by design, so side-effects are not built into their mode of operation. Delivery rates of almost 90% have been reported. This review examines the significance of these statements and checks how far they need qualification. What type of targeting is required? Is a single targeting sufficient? What new types of clinical challenge, such as immunogenicity, might attend the use of targeted nanoparticles?
Collapse
|
3
|
Stollenwerk MM, Pashkunova-Martic I, Kremser C, Talasz H, Thurner GC, Abdelmoez AA, Wallnöfer EA, Helbok A, Neuhauser E, Klammsteiner N, Klimaschewski L, von Guggenberg E, Fröhlich E, Keppler B, Jaschke W, Debbage P. Albumin-based nanoparticles as magnetic resonance contrast agents: I. Concept, first syntheses and characterisation. Histochem Cell Biol 2010; 133:375-404. [PMID: 20174817 DOI: 10.1007/s00418-010-0676-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2010] [Indexed: 11/25/2022]
Abstract
To develop a platform for molecular magnetic resonance imaging, we prepared gadolinium-bearing albumin-polylactic acid nanoparticles in the size range 20-40 nm diameter. Iterative cycles of design and testing upscaled the synthesis procedures to gram amounts for physicochemical characterisation and for pharmacokinetic testing. Morphological analyses showed that the nanoparticles were spheroidal with rough surfaces. Particle sizes were measured by direct transmission electron microscopical measurements from negatively contrasted preparations, and by use of photon correlation spectroscopy; the two methods each documented nanoparticle sizes less than 100 nm and generally 10-40 nm diameter, though with significant intrabatch and interbatch variability. The particles' charge sufficed to hold them in suspension. HSA retained its tertiary structure in the particles. The nanoparticles were stable against turbulent flow conditions and against heat, though not against detergents. MRI imaging of liquid columns was possible at nanoparticle concentrations below 10 mg/ml. The particles were non-cytotoxic, non-thrombogenic and non-immunogenic in a range of assay systems developed for toxicity testing of nanoparticles. They were micellar prior to lyophilisation, but loosely structured aggregated masses after lyophilisation and subsequent resuspension. These nanoparticles provide a platform for further development, based on non-toxic materials of low immunogenicity already in clinical use, not expensive, and synthesized using methods which can be upscaled for industrial production.
Collapse
Affiliation(s)
- M M Stollenwerk
- Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Extending the knowledge in histochemistry and cell biology. Histochem Cell Biol 2009; 133:1-40. [PMID: 19946696 DOI: 10.1007/s00418-009-0665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/21/2023]
Abstract
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Collapse
|