1
|
Babou Kammoe RB, Sévigny J. Extracellular nucleotides in smooth muscle contraction. Biochem Pharmacol 2024; 220:116005. [PMID: 38142836 DOI: 10.1016/j.bcp.2023.116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Extracellular nucleotides and nucleosides are crucial signalling molecules, eliciting diverse biological responses in almost all organs and tissues. These molecules exert their effects by activating specific nucleotide receptors, which are finely regulated by ectonucleotidases that break down their ligands. In this comprehensive review, we aim to elucidate the relevance of extracellular nucleotides as signalling molecules in the context of smooth muscle contraction, considering the modulatory influence of ectonucleotidases on this intricate process. Specifically, we provide a detailed examination of the involvement of extracellular nucleotides in the contraction of non-vascular smooth muscles, including those found in the urinary bladder, the airways, the reproductive system, and the gastrointestinal tract. Furthermore, we present a broader overview of the role of extracellular nucleotides in vascular smooth muscle contraction.
Collapse
Affiliation(s)
- Romuald Brice Babou Kammoe
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
2
|
Belardin LB, Brochu K, Légaré C, Battistone MA, Breton S. Purinergic signaling in the male reproductive tract. Front Endocrinol (Lausanne) 2022; 13:1049511. [PMID: 36419764 PMCID: PMC9676935 DOI: 10.3389/fendo.2022.1049511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Purinergic receptors are ubiquitously expressed throughout the body and they participate in the autocrine and paracrine regulation of cell function during normal physiological and pathophysiological conditions. Extracellular nucleotides activate several types of plasma membrane purinergic receptors that form three distinct families: P1 receptors are activated by adenosine, P2X receptors are activated by ATP, and P2Y receptors are activated by nucleotides including ATP, ADP, UTP, UDP, and UDP-glucose. These specific pharmacological fingerprints and the distinct intracellular signaling pathways they trigger govern a large variety of cellular responses in an organ-specific manner. As such, purinergic signaling regulates several physiological cell functions, including cell proliferation, differentiation and death, smooth muscle contraction, vasodilatation, and transepithelial transport of water, solute, and protons, as well as pathological pathways such as inflammation. While purinergic signaling was first discovered more than 90 years ago, we are just starting to understand how deleterious signals mediated through purinergic receptors may be involved in male infertility. A large fraction of male infertility remains unexplained illustrating our poor understanding of male reproductive health. Purinergic signaling plays a variety of physiological and pathophysiological roles in the male reproductive system, but our knowledge in this context remains limited. This review focuses on the distribution of purinergic receptors in the testis, epididymis, and vas deferens, and their role in the establishment and maintenance of male fertility.
Collapse
Affiliation(s)
- Larissa Berloffa Belardin
- Centre Hospitalier Universitaire de Québec - Research Centre and Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Kéliane Brochu
- Centre Hospitalier Universitaire de Québec - Research Centre and Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Christine Légaré
- Centre Hospitalier Universitaire de Québec - Research Centre and Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Maria Agustina Battistone
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylvie Breton
- Centre Hospitalier Universitaire de Québec - Research Centre and Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
3
|
Zhang S, Yao Z, Li X, Zhang Z, Liu X, Yang P, Chen N, Xia X, Lyu S, Shi Q, Wang E, Ru B, Jiang Y, Lei C, Chen H, Huang Y. Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing data. BMC Genomics 2022; 23:460. [PMID: 35729510 PMCID: PMC9215082 DOI: 10.1186/s12864-022-08645-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Crossbreeding is an important way to improve production beef cattle performance. Pinan cattle is a new hybrid cattle obtained from crossing Piedmontese bulls with Nanyang cows. After more than 30 years of cross-breeding, Pinan cattle show a variety of excellent characteristics, including fast growth, early onset of puberty, and good meat quality. In this study, we analyzed the genetic diversity, population structure, and genomic region under the selection of Pinan cattle based on whole-genome sequencing data of 30 Pinan cattle and 169 published cattle genomic data worldwide. RESULTS: Estimating ancestry composition analysis showed that the composition proportions for our Pinan cattle were mainly Piedmontese and a small amount of Nanyang cattle. The analyses of nucleotide diversity and linkage disequilibrium decay indicated that the genomic diversity of Pinan cattle was higher than that of European cattle and lower than that of Chinese indigenous cattle. De-correlated composite of multiple selection signals, which combines four different statistics including θπ, CLR, FST, and XP-EHH, was computed to detect the signatures of selection in the Pinan cattle genome. A total of 83 genes were identified, affecting many economically important traits. Functional annotation revealed that these selected genes were related to immune (BOLA-DQA2, BOLA-DQB, LSM14A, SEC13, and NAALADL2), growth traits (CYP4A11, RPL26, and MYH10), embryo development (REV3L, NT5E, CDX2, KDM6B, and ADAMTS9), hornless traits (C1H21orf62), and climate adaptation (ANTXR2). CONCLUSION In this paper, we elucidated the genomic characteristics, ancestry composition, and selective signals related to important economic traits in Pinan cattle. These results will provide the basis for further genetic improvement of Pinan cattle and reference for other hybrid cattle related studies.
Collapse
Affiliation(s)
- Shunjin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Zhi Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Xinmiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou Henan, 450008, China
| | - Peng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Xiaoting Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Shijie Lyu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou Henan, 450008, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China.
| |
Collapse
|
4
|
Olofinsan KA, Salau VF, Erukainure OL, Islam MS. Ocimum tenuiflorum mitigates iron-induced testicular toxicity via modulation of redox imbalance, cholinergic and purinergic dysfunctions, and glucose metabolizing enzymes activities. Andrologia 2021; 53:e14179. [PMID: 34228819 DOI: 10.1111/and.14179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a primary culprit in the pathophysiology of infertility conditions in males. This study investigated the effects of Ocimum tenuiflorum on redox imbalance, cholinergic and purinergic dysfunctions and glucose dysmetabolism in oxidative-mediated testicular toxicity using in vitro, ex vivo and in silico models. Induction of oxidative testicular injury was carried out by incubating normal testicular tissue with 0.1 mM FeSO4 and treated by co-incubating with different concentrations of O. tenuiflorum infusion for 30 min at 37°C. O. tenuiflorum displayed significant ferric reducing power activity while scavenging DPPH and hydroxyl (OH˙) free radicals in vitro. Oxidative testicular injury significantly reduced the glutathione level and superoxide dismutase and catalase activities with concomitant elevation of malondialdehyde and nitric oxide levels and acetylcholinesterase, ATPase, fructose-1,6-bisphosphatase and glycogen phosphorylase (GlyP) activities. Incubation with the infusion significantly reversed these levels and activities. The phytochemical constituent of the infusion was detected by gas chromatography-mass spectroscopy analysis and revealed favourable binding energies when docked with some of the studied proteins. These results suggest O. tenuiflorum exerts a protective effect against Fe2+ induced testicular toxicity via mitigation of redox imbalance while modulating metabolic dysfunctions linked to male infertility.
Collapse
Affiliation(s)
| | - Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Biochemistry, Veritas University, Bwari, Abuja, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
5
|
Missel A, Walenta L, Eubler K, Mundt N, Heikelä H, Pickl U, Trottmann M, Popper B, Poutanen M, Strauss L, Köhn FM, Kunz L, Spehr M, Mayerhofer A. Testicular adenosine acts as a pro-inflammatory molecule: role of testicular peritubular cells. Mol Hum Reprod 2021; 27:6276438. [PMID: 33993290 DOI: 10.1093/molehr/gaab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular ATP has been described to be involved in inflammatory cytokine production by human testicular peritubular cells (HTPCs). The ectonucleotidases ENTPD1 and NT5E degrade ATP and have been reported in rodent testicular peritubular cells. We hypothesized that if a similar situation exists in human testis, ATP metabolites may contribute to cytokine production. Indeed, ENTPD1 and NT5E were found in situ and in vitro in HTPCs. Malachite green assays confirmed enzyme activities in HTPCs. Pharmacological inhibition of ENTPD1 (by POM-1) significantly reduced pro-inflammatory cytokines evoked by ATP treatment, suggesting that metabolites of ATP, including adenosine, are likely involved. We focused on adenosine and detected three of the four known adenosine receptors in HTPCs. One, A2B, was also found in situ in peritubular cells of human testicular sections. The A2B agonist BAY60-6583 significantly elevated levels of IL6 and CXCL8, a result also obtained with adenosine and its analogue NECA. Results of siRNA-mediated A2B down-regulation support a role of this receptor. In mouse peritubular cells, in contrast to HTPCs, all four of the known adenosine receptors were detected; when challenged with adenosine, cytokine expression levels significantly increased. Organotypic short-term testis cultures yielded comparable results and indicate an overall pro-inflammatory action of adenosine in the mouse testis. If transferable to the in vivo situation, our results may implicate that interference with the generation of ATP metabolites or interference with adenosine receptors could reduce inflammatory events in the testis. These novel insights may provide new avenues for treatment of sterile inflammation in male subfertility and infertility.
Collapse
Affiliation(s)
- Annika Missel
- Cell Biology-Anatomy III, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Lena Walenta
- Cell Biology-Anatomy III, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Katja Eubler
- Cell Biology-Anatomy III, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Nadine Mundt
- Institute of Biology II/Department of Chemosensation, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416, MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Hanna Heikelä
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | | | | | - Bastian Popper
- Biomedical Center (BMC), Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Matti Poutanen
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Leena Strauss
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | | | - Lars Kunz
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Marc Spehr
- Institute of Biology II/Department of Chemosensation, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416, MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Artur Mayerhofer
- Cell Biology-Anatomy III, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Martinsried, Germany
| |
Collapse
|
6
|
Yoshitake H, Araki Y. Role of the Glycosylphosphatidylinositol-Anchored Protein TEX101 and Its Related Molecules in Spermatogenesis. Int J Mol Sci 2020; 21:ijms21186628. [PMID: 32927778 PMCID: PMC7555588 DOI: 10.3390/ijms21186628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) on the plasma membrane are involved in several cellular processes, including sperm functions. Thus far, several GPI-APs have been identified in the testicular germ cells, and there is increasing evidence of their biological significance during fertilization. Among GPI-APs identified in the testis, this review focuses on TEX101, a germ cell-specific GPI-AP that belongs to the lymphocyte antigen 6/urokinase-type plasminogen activator receptor superfamily. This molecule was originally identified as a glycoprotein that contained the antigen epitope for a specific monoclonal antibody; it was produced by immunizing female mice with an allogenic testicular homogenate. This review mainly describes the current understanding of the biochemical, morphological, and physiological characteristics of TEX101. Furthermore, future avenues for the investigation of testicular GPI-Aps, including their potential role as regulators of ion channels, are discussed.
Collapse
Affiliation(s)
- Hiroshi Yoshitake
- Institute for Environmental & Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan;
| | - Yoshihiko Araki
- Institute for Environmental & Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan;
- Department of Obstetrics & Gynecology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo 113-8421, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
- Correspondence: ; Tel.: +81-47-353-3171; Fax: +81-47-353-3178
| |
Collapse
|
7
|
Breton S, Nair AV, Battistone MA. Epithelial dynamics in the epididymis: role in the maturation, protection, and storage of spermatozoa. Andrology 2019; 7:631-643. [PMID: 31044554 PMCID: PMC6688936 DOI: 10.1111/andr.12632] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/07/2019] [Accepted: 03/29/2019] [Indexed: 01/10/2023]
Abstract
Epithelial cells line the lumen of tubular organs and are key players in their respective functions. They establish a unique luminal environment by providing a protective barrier and by performing vectorial transport of ions, nutrients, solutes, proteins, and water. Complex intercellular communication networks, specific for each organ, ensure their interaction with adjacent epithelial and non-epithelial cells, allowing them to respond to and modulate their immediate environment. In the epididymis, several epithelial cell types work in a concerted manner to establish a luminal acidic milieu that is essential for the post-testicular maturation and storage of spermatozoa. The epididymis also prevents autoimmune responses against auto-antigenic spermatozoa, while ensuring protection against ascending and blood pathogens. This is achieved by a network of immune cells that are in close contact and interact with epithelial cells. This review highlights the coordinated interactions between spermatozoa, basal cells, principal cells, narrow cells, clear cells, and immune cells that contribute to the maturation, protection, selection, and storage of spermatozoa in the lumen of the epididymis.
Collapse
Affiliation(s)
- S Breton
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Harvard Medical School, Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - A V Nair
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Harvard Medical School, Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - M A Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Harvard Medical School, Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Battistone MA, Merkulova M, Park Y, Peralta MA, Gombar F, Brown D, Breton S. Unravelling purinergic regulation in the epididymis: activation of V-ATPase-dependent acidification by luminal ATP and adenosine. J Physiol 2019; 597:1957-1973. [PMID: 30746715 PMCID: PMC6441927 DOI: 10.1113/jp277565] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS In the epididymis, elaborate communication networks between epithelial cells are important with respect to establishing an optimal acidic luminal environment for the maturation and storage of spermatozoa, which is essential for male fertility. Proton secretion by epididymal clear cells is achieved via the proton pumping V-ATPase located in their apical membrane. In the present study, we dissect the molecular mechanisms by which clear cells respond to luminal ATP and adenosine to modulate their acidifying activity via the adenosine receptor ADORA2B and the pH-sensitive ATP receptor P2X4. We demonstrate that the hydrolysis of ATP to produce adenosine by ectonucleotidases plays a key role in V-ATPase-dependent proton secretion, and is part of a feedback loop that ensures acidification of the luminal compartment These results help us better understand how professional proton-secreting cells respond to extracellular cues to modulate their functions, and how they communicate with neighbouring cells. ABSTRACT Cell-cell cross-talk is crucial for the dynamic function of epithelia, although how epithelial cells detect and respond to variations in extracellular stimuli to modulate their environment remains incompletely understood. In the present study, we used the epididymis as a model system to investigate epithelial cell regulation by luminal factors. In the epididymis, elaborate communication networks between the different epithelial cell types are important for establishing an optimal acidic luminal environment for the maturation and storage of spermatozoa. In particular, clear cells (CCs) secrete protons into the lumen via the proton pumping V-ATPase located in their apical membrane, a process that is activated by luminal alkalinization. However, how CCs detect luminal pH variations to modulate their function remains uncharacterized. Purinergic regulation of epithelial transport is modulated by extracellular pH in other tissues. In the present study, functional analysis of the mouse cauda epididymis perfused in vivo showed that luminal ATP and adenosine modulate the acidifying activity of CCs via the purinergic ADORA2B and P2X4 receptors, and that luminal adenosine content is itself regulated by luminal pH. Altogether, our observations illustrate mechanisms by which CCs are activated by pH sensitive P2X4 receptor and ectonucleotidases, providing a feedback mechanism for the maintenance of luminal pH. These novel mechanisms by which professional proton-secreting cells respond to extracellular cues to modulate their functions, as well as how they communicate with neighbouring cells, might be translatable to other acidifying epithelia.
Collapse
Affiliation(s)
- Maria A. Battistone
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Maria Merkulova
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Yoo‐Jin Park
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Maria A. Peralta
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Flavia Gombar
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Dennis Brown
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Sylvie Breton
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
9
|
Ahmed M, Ghabriel M, Amleh A. Enrichment, Propagation, and Characterization of Mouse Testis-Derived Mesenchymal Stromal Cells. Cell Reprogram 2017; 19:35-43. [PMID: 28055237 DOI: 10.1089/cell.2016.0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The therapeutic potential of multipotent stromal cells (MSCs) largely depends on the isolation and expansion methods used. In this study, we propose a laminin-based technique to select and enrich for MSCs isolated from the mouse testis. Primary cell cultures were prepared from juvenile mouse testes and the capacity to generate colony forming units together with population doubling time (PDT) during expansion were determined. The identity of MSCs was assayed using reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry for the active expression of cell surface markers, such as CD44, CD73, and CD29; absence of the CD45 hematopoietic cell marker; and in vitro differentiation of the cells into osteoblasts and adipocytes. Testis-derived MSCs (tMSCs) displayed self-renewal properties and in the early passages, exhibited high proliferation patterns with an average PDT of 44.1 hours. The lack of Vasa expression implied that the tMSCs were not of germ cell origin. The RT-PCR data, which were confirmed by immunophenotyping, revealed high expression of CD44 and the absence of CD45 expression in tMSCs. The strong Alizarin Red stain in tMSCs that were stimulated into making bone cells was indicative of the presence of calcium-producing cells (osteoblasts). Likewise, the adipogenic potential of tMSCs was demonstrated based on Oil Red O staining of lipid vacuoles in differentiated cells. Loss of fibroblast-like morphology in late passage cells along with the increase in PDT and the decrease in the mRNA levels of CD73 and CD29 suggested that the tMSCs developmental program is reformed at this stage.
Collapse
Affiliation(s)
- Mai Ahmed
- 1 Biotechnology Program, School of Sciences and Engineering, The American University in Cairo , New Cairo, Egypt
| | - Myret Ghabriel
- 1 Biotechnology Program, School of Sciences and Engineering, The American University in Cairo , New Cairo, Egypt
| | - Asma Amleh
- 1 Biotechnology Program, School of Sciences and Engineering, The American University in Cairo , New Cairo, Egypt .,2 Department of Biology, School of Sciences and Engineering, The American University in Cairo , New Cairo, Egypt
| |
Collapse
|
10
|
Bergeron A, Aragon JP, Guillemette C, Hébert A, Sullivan R, Blondin P, Richard FJ. Characterization of cAMP-phosphodiesterase activity in bovine seminal plasma. Andrology 2016; 4:1123-1130. [PMID: 27565610 DOI: 10.1111/andr.12267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/22/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) has a central role in sperm physiology. Extracellular cAMP can be sequentially degraded into 5'AMP and adenosine by ecto-phosphodiesterases (ecto-PDE) and ecto-nucleotidases, a phenomenon called extracellular cAMP-adenosine pathway. As cAMP-adenosine pathway is involved in sperm capacitation, we hypothesize that extracellular PDEs are functionally present in seminal plasma. Exclusively measuring cAMP-PDE activity, total activity in bovine seminal plasma was 10.1 ± 1.5 fmoles/min/μg. Using different family-specific PDE inhibitors, we showed that in seminal plasma, the major cAMP-PDE activity was papaverine sensitive (47.5%). These data support the presence of PDE10 in bovine seminal plasma and was further confirmed by western blot. In epididymal fluid, total cAMP-PDE activity was 48.2 ± 14.8 fmoles/min/μg and we showed that the major cAMP-PDE activity was 3-isobutyl-methylxanthine insensitive and thus ascribed to PDE8 family. PDE10A mRNAs were found in the testis, epididymis, and seminal vesicles. cAMP-PDE activity is present in bovine seminal plasma and epididymal fluid. The results suggest a role for ecto-PDEs present in those fluids in the signaling pathways involved in sperm functions.
Collapse
Affiliation(s)
- A Bergeron
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Université Laval, Québec, QC, Canada.,Département des Sciences Animales, Faculté des Sciences de L'agriculture et de L'alimentation, Université Laval, Québec, QC, Canada
| | - J P Aragon
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Université Laval, Québec, QC, Canada.,Département des Sciences Animales, Faculté des Sciences de L'agriculture et de L'alimentation, Université Laval, Québec, QC, Canada
| | - C Guillemette
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Université Laval, Québec, QC, Canada.,Département des Sciences Animales, Faculté des Sciences de L'agriculture et de L'alimentation, Université Laval, Québec, QC, Canada
| | - A Hébert
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Université Laval, Québec, QC, Canada.,Département des Sciences Animales, Faculté des Sciences de L'agriculture et de L'alimentation, Université Laval, Québec, QC, Canada
| | - R Sullivan
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Université Laval, Québec, QC, Canada.,Département Obstétrique, Gynécologie et Reproduction, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - P Blondin
- Boviteq, Saint-Hyacinthe, QC, Canada
| | - F J Richard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Université Laval, Québec, QC, Canada.,Département des Sciences Animales, Faculté des Sciences de L'agriculture et de L'alimentation, Université Laval, Québec, QC, Canada
| |
Collapse
|
11
|
Allard D, Allard B, Gaudreau PO, Chrobak P, Stagg J. CD73-adenosine: a next-generation target in immuno-oncology. Immunotherapy 2016; 8:145-63. [PMID: 26808918 DOI: 10.2217/imt.15.106] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy has entered in a new era with the development of first-generation immune checkpoint inhibitors targeting the PD1/PD-L1 and CTLA-4 pathways. In this context, considerable research effort is being deployed to find the next generation of cancer immunotherapeutics. The CD73-adenosine axis constitutes one of the most promising pathways in immuno-oncology. We and others have demonstrated the immunosuppressive role of CD73-adenosine in cancer and established proof-of-concept that the targeted blockade of CD73 or adenosine receptors could effectively promote anti-tumor immunity and enhance the activity of first-generation immune checkpoint blockers. With Phase I clinical trials now underway evaluating anti-CD73 or anti-A2A therapies in cancer patients, we here discuss the fundamental, preclinical and clinical findings related to the role of the CD73-adenosinergic pathway in tumor immunity.
Collapse
Affiliation(s)
- David Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - Pierre-Olivier Gaudreau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - Pavel Chrobak
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| |
Collapse
|
12
|
Torres-Fuentes JL, Rios M, Moreno RD. Involvement of a P2X7 Receptor in the Acrosome Reaction Induced by ATP in Rat Spermatozoa. J Cell Physiol 2015; 230:3068-75. [PMID: 25989529 DOI: 10.1002/jcp.25044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 05/11/2015] [Indexed: 02/06/2023]
Abstract
The acrosome reaction (AR) is the exocytosis of the acrosomal vesicle in response to different physiological and non-physiological stimuli. Particularly in mammals, the AR is needed for sperm to fuse with the oocyte plasma membrane, and it occurs only in capacitated sperm. Previous evidence in the literature indicates that extracellular ATP induces the AR in capacitated human and bovine spermatozoa, but its receptor has not yet been identified. The aim of this work was to define a putative ATP receptor in rat spermatozoa using pharmacological and biochemical approaches. We found that ATP induced the AR only in capacitated rat spermatozoa, which was inhibited in the presence of two general inhibitors of ATP receptors (P2 receptors), Suramin, and oxidized ATP (oATP), and one inhibitor of P2X receptor (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid [PPADS]). In addition, the AR induced by ATP in capacitated rat spermatozoa was inhibited by brilliant blue-G (BB-G) and 17-β-oestradiol, two blockers of P2X7 receptors. Moreover, the ATP analog 2'(3')-O-(4-benzoylbenzoyl) ATP (BzATP) was almost 500 times more potent than ATP to induce the AR, which agrees with the pharmacology of a P2X7 receptor. Here, we show the presence of P2X7 receptor by Western blot and its localization in the tail and acrosome by indirect immunofluorescence. Finally, we quantify the presence of ATP in the rat oviduct during the estrous cycle. We found that the ATP concentration within the lumen of the oviduct is similar to those required to induce acrosome reaction, which agree with its role during in vivo fertilization. Therefore, our results strongly suggest that ATP induces the AR in capacitated rat spermatozoa through a P2X7 receptor, which may be functional during in vivo fertilization.
Collapse
Affiliation(s)
- Jorge L Torres-Fuentes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Rios
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo D Moreno
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
|
14
|
Cardoso AM, Schetinger MRC, Correia-de-Sá P, Sévigny J. Impact of ectonucleotidases in autonomic nervous functions. Auton Neurosci 2015; 191:25-38. [PMID: 26008223 DOI: 10.1016/j.autneu.2015.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
Adenine and uracil nucleotides play key functions in the autonomic nervous system (ANS). For instance, ATP acts as a neurotransmitter, co-transmitter and neuromodulator in the ANS. The purinergic system encompasses (1) receptors that respond to extracellular purines, which are designated as P1 and P2 purinoceptors, (2) purine release and uptake, and (3) a cascade of enzymes that regulate the concentration of purines near the cell surface. Ectonucleotidases and adenosine deaminase (ADA) are enzymes responsible for the hydrolysis of ATP (and other nucleotides such as ADP, UTP, UDP, AMP) and adenosine, respectively. Accordingly, these enzymes are expected to play an important role in the control of neuro-effector transmission in tissues innervated by both the sympathetic and parasympathetic divisions of the ANS. Indeed, ectonucleotidases have the ability to either terminate P2 receptor responses initiated by nucleoside triphosphates (ATP and UTP), and/or to favor the activation of ADP (e.g. P2Y1,12,13) and UDP (e.g. P2Y6) and/or adenosine (P1) specific receptors. In addition, ectonucleotidases can also importantly protect some P2 receptors from desensitization (e.g. P2X1, P2Y1). In this review, we present the (putative) roles of ectonucleotidases and ADA in the ANS with a focus on their regulatory activity at neuro-effector junctions in the following tissues: heart, vas deferens, urinary bladder, salivary glands, blood vessels and the intestine. We also present their implication in nociceptive transmission.
Collapse
Affiliation(s)
- Andréia Machado Cardoso
- Post-Graduation Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria Rio Grande do Sul, Brazil; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec G1V 4G2, Canada.
| | - Maria Rosa Chitolina Schetinger
- Post-Graduation Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria Rio Grande do Sul, Brazil
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, MedInUP, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), 4050-313 Porto, Portugal
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec G1V 4G2, Canada.
| |
Collapse
|
15
|
Ecto-nucleotidases activities in the contents of ovarian endometriomas: potential biomarkers of endometriosis. Mediators Inflamm 2014; 2014:120673. [PMID: 25276049 PMCID: PMC4168241 DOI: 10.1155/2014/120673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
Endometriosis, defined as the growth of endometrial tissue outside the uterus, is a common gynecologic condition affecting millions of women worldwide. It is an inflammatory, estrogen-dependent complex disorder, with broad symptomatic variability, pelvic pain, and infertility being the main characteristics. Ovarian endometriomas are frequently developed in women with endometriosis. Late diagnosis is one of the main problems of endometriosis; thus, it is important to identify biomarkers for early diagnosis. The aim of the present work is to evaluate the ecto-nucleotidases activities in the contents of endometriomas. These enzymes, through the regulation of extracellular ATP and adenosine levels, are key enzymes in inflammatory processes, and their expression has been previously characterized in human endometrium. To achieve our objective, the echo-guided aspirated fluids of endometriomas were analyzed by evaluating the ecto-nucleotidases activities and compared with simple cysts. Our results show that enzyme activities are quantifiable in the ovarian cysts aspirates and that endometriomas show significantly higher ecto-nucleotidases activities than simple cysts (5.5-fold increase for ATPase and 20-fold for ADPase), thus being possible candidates for new endometriosis biomarkers. Moreover, we demonstrate the presence of ecto-nucleotidases bearing exosomes in these fluids. These results add up to the knowledge of the physiopathologic mechanisms underlying endometriosis and, open up a promising new field of study.
Collapse
|
16
|
Kauffenstein G, Pelletier J, Lavoie EG, Kukulski F, Martín-Satué M, Dufresne SS, Frenette J, Ribas Fürstenau C, Sereda MJ, Toutain B, Henrion D, Sullivan R, Vial C, Sévigny J. Nucleoside triphosphate diphosphohydrolase-1 ectonucleotidase is required for normal vas deferens contraction and male fertility through maintaining P2X1 receptor function. J Biol Chem 2014; 289:28629-39. [PMID: 25160621 DOI: 10.1074/jbc.m114.604082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, we report that Entpd1(-/-) mice, deficient for the ectonucleotidase nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), produce smaller litters (27% reduction) compared with wild-type C57BL6 animals. This deficit is linked to reduced in vivo oocyte fertilization by Entpd1(-/-) males (61 ± 11% versus 88 ± 7% for Entpd1(+/+)). Normal epididymal sperm count, spermatozoa morphology, capacitation, and motility and reduced ejaculated sperm number (2.4 ± 0.5 versus 3.7 ± 0.4 million for Entpd1(+/+)) pointed to vas deferens dysfunction. NTPDase1 was localized by immunofluorescence in the tunica muscularis of the vas deferens. Its absence resulted in a major ATP hydrolysis deficiency, as observed in situ by histochemistry and in primary smooth muscle cell cultures. In vitro, Entpd1(-/-) vas deferens displayed an exacerbated contraction to ATP, a diminished response to its non-hydrolysable analog αβMeATP, and a reduced contraction to electrical field stimulation, suggesting altered P2X1 receptor function with a propensity to desensitize. This functional alteration was accompanied by a 3-fold decrease in P2X1 protein expression in Entpd1(-/-) vas deferens with no variation in mRNA levels. Accordingly, exogenous nucleotidase activity was required to fully preserve P2X1 receptor activation by ATP in vitro. Our study demonstrates that NTPDase1 is required to maintain normal P2X1 receptor functionality in the vas deferens and that its absence leads to impaired peristalsis, reduced spermatozoa concentration in the semen, and, eventually, reduced fertility. This suggests that alteration of NTPDase1 activity affects ejaculation efficacy and male fertility. This work may contribute to unveil a cause of infertility and open new therapeutic potentials.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- From the Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec G1V 0A6, Canada, the Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec G1V 4G2, Canada, the Unité mixte de recherche CNRS 6214 INSERM U1083, Université d'Angers, 49045 Angers, France,
| | - Julie Pelletier
- the Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec G1V 4G2, Canada
| | - Elise G Lavoie
- From the Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec G1V 0A6, Canada, the Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec G1V 4G2, Canada
| | - Filip Kukulski
- From the Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec G1V 0A6, Canada, the Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec G1V 4G2, Canada
| | - Mireia Martín-Satué
- From the Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec G1V 0A6, Canada, the Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec G1V 4G2, Canada, the Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, Universitat de Barcelona, 08907 Barcelona, Spain
| | - Sébastien S Dufresne
- the Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec G1V 4G2, Canada, the Département de Réadaptation, Faculté de Médecine, Université Laval, Québec G1V 0A6, Canada
| | - Jérôme Frenette
- the Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec G1V 4G2, Canada, the Département de Réadaptation, Faculté de Médecine, Université Laval, Québec G1V 0A6, Canada
| | - Cristina Ribas Fürstenau
- From the Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec G1V 0A6, Canada, the Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec G1V 4G2, Canada
| | - Michal J Sereda
- the Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom, and
| | - Bertrand Toutain
- the Unité mixte de recherche CNRS 6214 INSERM U1083, Université d'Angers, 49045 Angers, France
| | - Daniel Henrion
- the Unité mixte de recherche CNRS 6214 INSERM U1083, Université d'Angers, 49045 Angers, France
| | - Robert Sullivan
- the Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec G1V 4G2, Canada, the Department of Obstetrics, Gynecology, and Reproduction, Faculté de Médecine, Université Laval, Québec G1V 0A6, Canada
| | - Catherine Vial
- the Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom, and
| | - Jean Sévigny
- From the Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec G1V 0A6, Canada, the Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec G1V 4G2, Canada,
| |
Collapse
|
17
|
Fausther M, Lavoie EG, Goree JR, Baldini G, Dranoff JA. NT5E mutations that cause human disease are associated with intracellular mistrafficking of NT5E protein. PLoS One 2014; 9:e98568. [PMID: 24887587 PMCID: PMC4041762 DOI: 10.1371/journal.pone.0098568] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/05/2014] [Indexed: 11/21/2022] Open
Abstract
Ecto-5′-nucleotidase/CD73/NT5E, the product of the NT5E gene, is the dominant enzyme in the generation of adenosine from degradation of AMP in the extracellular environment. Nonsense (c.662C→A, p.S221X designated F1, c.1609dupA, p.V537fsX7 designated F3) and missense (c.1073G→A, p.C358Y designated F2) NT5E gene mutations in three distinct families have been shown recently to cause premature arterial calcification disease in human patients. However, the underlying mechanisms by which loss-of-function NT5E mutations cause human disease are unknown. We hypothesized that human NT5E gene mutations cause mistrafficking of the defective proteins within cells, ultimately blocking NT5E catalytic function. To test this hypothesis, plasmids encoding cDNAs of wild type and mutant human NT5E tagged with the fluorescent probe DsRed were generated and used for transfection and heterologous expression in immortalized monkey COS-7 kidney cells that lack native NT5E protein. Enzyme histochemistry and Malachite green assays were performed to assess the biochemical activities of wild type and mutant fusion NT5E proteins. Subcellular trafficking of fusion NT5E proteins was monitored by confocal microscopy and western blot analysis of fractionated cell constituents. All 3 F1, F2, and F3 mutations result in a protein with significantly reduced trafficking to the plasma membrane and reduced ER retention as compared to wild type protein. Confocal immunofluorescence demonstrates vesicles containing DsRed-tagged NT5E proteins (F1, F2 and F3) in the cell synthetic apparatus. All 3 mutations resulted in absent NT5E enzymatic activity at the cell surface. In conclusion, three familial NT5E mutations (F1, F2, F3) result in novel trafficking defects associated with human disease. These novel genetic causes of human disease suggest that the syndrome of premature arterial calcification due to NT5E mutations may also involve a novel “trafficking-opathy”.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, Arkansas, United States of America
| | - Elise G. Lavoie
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, Arkansas, United States of America
| | - Jessica R. Goree
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, Arkansas, United States of America
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jonathan A. Dranoff
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Burnstock G. Purinergic signalling in the reproductive system in health and disease. Purinergic Signal 2014; 10:157-87. [PMID: 24271059 PMCID: PMC3944041 DOI: 10.1007/s11302-013-9399-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/16/2022] Open
Abstract
There are multiple roles for purinergic signalling in both male and female reproductive organs. ATP, released as a cotransmitter with noradrenaline from sympathetic nerves, contracts smooth muscle via P2X1 receptors in vas deferens, seminal vesicles, prostate and uterus, as well as in blood vessels. Male infertility occurs in P2X1 receptor knockout mice. Both short- and long-term trophic purinergic signalling occurs in reproductive organs. Purinergic signalling is involved in hormone secretion, penile erection, sperm motility and capacitation, and mucous production. Changes in purinoceptor expression occur in pathophysiological conditions, including pre-eclampsia, cancer and pain.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
19
|
White CW, Short JL, Evans RJ, Ventura S. Development of a P2X1-purinoceptor mediated contractile response in the aged mouse prostate gland through slowing down of ATP breakdown. Neurourol Urodyn 2013; 34:292-8. [PMID: 24249481 DOI: 10.1002/nau.22519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/10/2013] [Indexed: 01/01/2023]
Abstract
AIMS An age-related increase in prostatic smooth muscle tone is partly responsible for the lower urinary tract symptoms associated with benign prostatic hyperplasia (BPH). Changes in the effectors of prostatic smooth muscle contraction with age may play a role in the development of these symptoms. Using a mouse model of prostate contractility, this study investigated the effect of age on the different components of contractility in the prostate gland. METHODS The isometric force developed in response to electrical field stimulation or exogenously applied agonists by mouse prostates mounted in organ baths, was evaluated to determine the effect of age on contractile mechanisms. Changes with age in the rate of ATP breakdown and levels of the P2rx1 gene and P2X1-purinoceptor expression in mouse prostate were measured by a modified luciferin-luciferase assay, RT-PCR and western blot, respectively. RESULTS Nerve mediated contractile responses containing a component elicited by P2X1-purinoceptors were observed in prostates taken from aged mice, but not in prostates taken from young adult mice. Furthermore, the potency of the endogenous purinoceptor agonist ATP was 50-fold greater in aged mice, whereas the potency of its stable analogue α,β-metATP was unchanged. An age-related decrease in ATP metabolism was also observed. CONCLUSIONS With age, a purinergic contractile response to nerve stimulation develops in the mouse prostate gland due to a decrease in the rate of ATP breakdown. This may contribute to the increase in muscular tone observed in BPH and suggests that P2X1-purinoceptors are an additional target for the treatment of BPH.
Collapse
Affiliation(s)
- Carl W White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | | | | |
Collapse
|
20
|
Cochran SD, Cole JB, Null DJ, Hansen PJ. Single Nucleotide Polymorphisms in Candidate Genes Associated with Fertilizing Ability of Sperm and Subsequent Embryonic Development in Cattle1. Biol Reprod 2013; 89:69. [DOI: 10.1095/biolreprod.113.111260] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
21
|
Pujianto DA, Loanda E, Sari P, Midoen YH, Soeharso P. Sperm-associated antigen 11A is expressed exclusively in the principal cells of the mouse caput epididymis in an androgen-dependent manner. Reprod Biol Endocrinol 2013; 11:59. [PMID: 23815807 PMCID: PMC3710511 DOI: 10.1186/1477-7827-11-59] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 06/26/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Epididymal sperm maturation occurs via interactions between sperm and proteins secreted by the epididymal epithelium. Although this is an important process, the genes that encode the involved proteins remain largely uncharacterized. Previous studies have demonstrated that the genes involved in sperm maturation are regulated by androgen. Spag11a is an epididymal gene that is influenced by androgen. However, little is known about the putative role of this gene in the sperm maturation process. The objective of this study was to characterize Spag11a in the mouse epididymis. METHODS In silico analyses were performed to predict signal peptides and functional domains. Spag11a expression was measured by quantitative real-time RT-PCR. Western blots and immunocytochemistry were performed to determine protein expression. RESULTS SPAG11A is a member of the beta defensin protein family and constitutes a secretory protein. Spag11a was expressed exclusively in the epididymis. Moreover, it exhibited region-specific expression in the caput, which is typical for genes that are involved in creating a suitable microenvironment for sperm maturation. Mouse Spag11a was regulated by androgen. A significant decrease of Spag11a expression was observed at third day following a gonadectomy (P < 0.001). Interestingly, testosterone replacement therapy was able to maintain the expression almost at the normal level, indicating a dependency on androgen. Besides androgen, testicular factors influenced Spag11a expression in a different way. This was revealed by efferent duct ligation in which Spag11a was transiently up-regulated at the third day following the ligation before returning to the normal level at day 5. Spag11a regional expression was also observed at protein level detected by western immunoblotting which revealed a clear band in the caput but not in other regions. The prediction that SPAG11A is a secretory protein was confirmed by immunocytochemical analyses indicating cell-specific expression mainly in the caput principal cells and detection of the protein in epididymal luminal fluid and spermatozoa. CONCLUSIONS Based on the characteristics of Spag11a, it is likely that this gene has a specific role in epididymal sperm maturation. Further studies using functional assays are necessary to confirm this finding.
Collapse
Affiliation(s)
- Dwi A Pujianto
- Department of Biology, Faculty of Medicine, University of Indonesia, Jl. Salemba Raya 6, Jakarta 10430, Indonesia
| | - Evelyn Loanda
- Master Program for Biomedical Sciences, Faculty of Medicine, University of Indonesia, Jl. Salemba Raya 6, Jakarta 10430, Indonesia
- Department of Biochemistry, Faculty of Medicine, Atma Jaya Catholic University, Jl. Pluit Raya 2, Jakarta 14440, Indonesia
| | - Puji Sari
- Department of Biology, Faculty of Medicine, University of Indonesia, Jl. Salemba Raya 6, Jakarta 10430, Indonesia
| | - Yurnadi H Midoen
- Department of Biology, Faculty of Medicine, University of Indonesia, Jl. Salemba Raya 6, Jakarta 10430, Indonesia
| | - Purnomo Soeharso
- Department of Biology, Faculty of Medicine, University of Indonesia, Jl. Salemba Raya 6, Jakarta 10430, Indonesia
| |
Collapse
|
22
|
Aliagas E, Vidal A, Torrejón-Escribano B, Taco MDR, Ponce J, de Aranda IG, Sévigny J, Condom E, Martín-Satué M. Ecto-nucleotidases distribution in human cyclic and postmenopausic endometrium. Purinergic Signal 2012; 9:227-37. [PMID: 23225236 DOI: 10.1007/s11302-012-9345-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/20/2012] [Indexed: 01/10/2023] Open
Abstract
Extracellular ATP and its hydrolysis product, adenosine, acting through specific receptors collectively named purinergic receptors, regulate female fertility by influencing the endometrial fluid microenvironment. There are four major groups of ecto-nucleotidases that control the levels of extracellular ATP and adenosine and thus their availability at purinergic receptors: ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-nucleotide pyrophosphatase/phospho-diesterases (E-NPPs), ecto-5'-nucleotidase (5'NT), and alkaline phosphatases (APs). The aim of the present work is to characterize the expression and distribution of ecto-nucleotidases in human endometrium along the menstrual cycle and after menopause, to evaluate their potential utility as fertility markers. We examined proliferative, secretory and atrophic endometria from women without endometrial pathology undergoing hysterectomy. We show that the ecto-nucleotidases are mainly present at endometrial epithelia, both luminal and glandular, and that their expression fluctuates along the cycle and also changes after menopause. An important result was identifying NPP3 as a new biological marker of tubal metaplasia. Our results emphasize the relevance of the study of purinergic signaling in human fertility.
Collapse
Affiliation(s)
- Elisabet Aliagas
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ectonucleotidases in solid organ and allogeneic hematopoietic cell transplantation. J Biomed Biotechnol 2012; 2012:208204. [PMID: 23125523 PMCID: PMC3482062 DOI: 10.1155/2012/208204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/10/2012] [Indexed: 01/27/2023] Open
Abstract
Extracellular nucleotides are ubiquitous signalling molecules which modulate distinct physiological and pathological processes. Nucleotide concentrations in the extracellular space are strictly regulated by cell surface enzymes, called ectonucleotidases, which hydrolyze nucleotides to the respective nucleosides. Recent studies suggest that ectonucleotidases play a significant role in inflammation by adjusting the balance between ATP, a widely distributed proinflammatory danger signal, and the anti-inflammatory mediator adenosine. There is increasing evidence for a central role of adenosine in alloantigen-mediated diseases such as solid organ graft rejection and acute graft-versus-host disease (GvHD). Solid organ and hematopoietic cell transplantation are established treatment modalities for a broad spectrum of benign and malignant diseases. Immunological complications based on the recognition of nonself-antigens between donor and recipient like transplant rejection and GvHD are still major challenges which limit the long-term success of transplantation. Studies in the past two decades indicate that purinergic signalling influences the severity of alloimmune responses. This paper focuses on the impact of ectonucleotidases, in particular, NTPDase1/CD39 and ecto-5'-nucleotidase/CD73, on allograft rejection, acute GvHD, and graft-versus-leukemia effect, and on possible clinical implications for the modulation of purinergic signalling after transplantation.
Collapse
|
24
|
Differential macrophage activation alters the expression profile of NTPDase and ecto-5'-nucleotidase. PLoS One 2012; 7:e31205. [PMID: 22348056 PMCID: PMC3278434 DOI: 10.1371/journal.pone.0031205] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 01/03/2012] [Indexed: 12/20/2022] Open
Abstract
Macrophages are key elements in the inflammatory process, whereas depending on the micro-environmental stimulation they exhibit a pro-inflammatory (classical/M1) or an anti-inflammatory/reparatory (alternative/M2) phenotype. Extracellular ATP can act as a danger signal whereas adenosine generally serves as a negative feedback mechanism to limit inflammation. The local increase in nucleotides communication is controlled by ectonucleotidases, such as members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family and ecto-5′-nucleotidase/CD73 (ecto-5′-NT). In the present work we evaluated the presence of these enzymes in resident mice M1 (macrophages stimulated with LPS), and M2 (macrophages stimulated with IL-4) macrophages. Macrophages were collected by a lavage of the mice (6–8 weeks) peritoneal cavity and treated for 24 h with IL-4 (10 ng/mL) or LPS (10 ng/mL). Nitrite concentrations were measured using the Greiss reaction. Supernatants were harvested to determine cytokines and the ATPase, ADPase and AMPase activities were determined by the malachite green method and HPLC analysis. The expression of selected surface proteins was evaluated by flow cytometry. The results reveal that M1 macrophages presented a decreased ATP and AMP hydrolysis in agreement with a decrease in NTPDase1, -3 and ecto-5′-nucleotidase expression compared to M2. In contrast, M2 macrophages showed a higher ATP and AMP hydrolysis and increased NTPDase1, -3 and ecto-5′-nucleotidase expression compared to M1 macrophages. Therefore, macrophages of the M1 phenotype lead to an accumulation of ATP while macrophages of the M2 phenotype may rapidly convert ATP to adenosine. The results also showed that P1 and P2 purinoreceptors present the same mRNA profile in both phenotypes. In addition, M2 macrophages, which have a higher ATPase activity, were less sensitive to cell death. In conclusion, these changes in ectoenzyme activities might allow macrophages to adjust the outcome of the extracellular purinergic cascade in order to fine-tune their functions during the inflammatory set.
Collapse
|
25
|
Kukulski F, Lévesque SA, Sévigny J. Impact of ectoenzymes on p2 and p1 receptor signaling. ADVANCES IN PHARMACOLOGY 2011; 61:263-99. [PMID: 21586362 DOI: 10.1016/b978-0-12-385526-8.00009-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2 receptors that are activated by extracellular nucleotides (e.g., ATP, ADP, UTP, UDP, Ap(n)A) and P1 receptors activated by adenosine control a diversity of biological processes. The activation of these receptors is tightly regulated by ectoenzymes that metabolize their ligands. This review presents these enzymes as well as their roles in the regulation of P2 and P1 receptor activation. We focus specifically on the role of ectoenzymes in processes of our interest, that is, inflammation, vascular tone, and neurotransmission. An update on the development of ectonucleotidase inhibitors is also presented.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | |
Collapse
|
26
|
Membrane-initiated actions of thyroid hormones on the male reproductive system. Life Sci 2011; 89:507-14. [PMID: 21557952 DOI: 10.1016/j.lfs.2011.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/18/2011] [Accepted: 04/04/2011] [Indexed: 11/22/2022]
Abstract
The presence of specific nuclear receptors to thyroid hormones, described in prepubertal Sertoli cells, implies the existence of an early and critical influence of these hormones on testis development. Although the mechanism of action thyroid hormones has been classically established as a genomic action regulating testis development, our research group has demonstrated that these hormones exert several effects in Sertoli cells lacking nuclear receptor activation. These findings led to the identification of non-classical thyroid hormone binding elements in the plasma membrane of testicular cells. Through binding to these sites, thyroid hormones could exert nongenomic effects, including those on ion fluxes at the plasma membrane, on signal transduction via kinase pathways, on amino acid accumulation, on modulation of extracellular nucleotide levels and on vimentin cytoskeleton. The evidence of the participation of different K(+), Ca(2+) and Cl(-) channels in the mechanism of action of thyroid hormones, characterizes the plasma membrane as an important microenvironment able to coordinate strategic signal transduction pathways in rat testis. The physiological responses of the Sertoli cells to hormones are dependent on continuous cross-talking of different signal transduction pathways. Apparently, the choice of the signaling pathways to be activated after the interaction of the hormone with cell surface binding sites is directly related to the physiological action to be accomplished. Yet, the enormous complexity of the nongenomic actions of thyroid hormones implies that different specific binding sites located on the plasma membrane or in the cytosol are believed to initiate specific cell responses.
Collapse
|
27
|
Hübner S, Efthymiadis A. Histochemistry and cell biology: the annual review 2010. Histochem Cell Biol 2011; 135:111-40. [PMID: 21279376 DOI: 10.1007/s00418-011-0781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
This review summarizes recent advances in histochemistry and cell biology which complement and extend our knowledge regarding various aspects of protein functions, cell and tissue biology, employing appropriate in vivo model systems in conjunction with established and novel approaches. In this context several non-expected results and discoveries were obtained which paved the way of research into new directions. Once the reader embarks on reading this review, it quickly becomes quite obvious that the studies contribute not only to a better understanding of fundamental biological processes but also provide use-oriented aspects that can be derived therefrom.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany.
| | | |
Collapse
|