1
|
Shiroma R, Niyonzima YB, Kadokawa H. Denatured collagen in keratin layers and smooth muscles of teats with low or high teat apex scores in Holstein dairy cows. Anim Sci J 2024; 95:e13969. [PMID: 38923230 DOI: 10.1111/asj.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
We hypothesized that teats with a teat apex score (TAS) of 4 on a 4-point scale would exhibit elevated levels of denatured collagen compared with teats with lower TAS. We procured keratin layer and smooth muscle samples from Holsteins with TAS ranging from 1 to 4, as well as from crossbred heifers (Japanese Black male and Holstein female) with TAS of 1. Teats with a TAS of 4 demonstrated increased total collagen content, higher amounts of type I collagen (the harder, thicker variant), and reduced amounts of type III collagen (the softer, thinner variant) compared with teats with lower TAS. Teats with TAS of 3 and 4 exhibited evidence of damaged collagen in smooth muscle layers compared with teats with TAS of 1. Additionally, we identified 47-kDa heat shock protein-positive fibroblasts in the smooth muscles of teats with TAS of 3 and 4. Therefore, the smooth muscle of teats with a TAS of 4 exhibited increased amounts of denatured collagen in comparison to teats with lower TAS.
Collapse
Affiliation(s)
- Ritsuki Shiroma
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken, Japan
| | - Yvan Bienvenu Niyonzima
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken, Japan
| | - Hiroya Kadokawa
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken, Japan
| |
Collapse
|
2
|
Takahashi C, Oishi M, Iwata Y, Maekawa K, Matsumura T. Impact of the TRPV2 Inhibitor on Advanced Heart Failure in Patients with Muscular Dystrophy: Exploratory Study of Biomarkers Related to the Efficacy of Tranilast. Int J Mol Sci 2023; 24:ijms24032167. [PMID: 36768491 PMCID: PMC9917168 DOI: 10.3390/ijms24032167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Cardiomyopathy is the leading cause of death in patients with muscular dystrophy (MD). Tranilast, a widely used anti-allergic drug, has displayed inhibitory activity against the transient receptor potential cation channel subfamily V member 2 and improved cardiac function in MD patients. To identify urinary biomarkers that assess improved cardiac function after tranilast administration, we performed a urinary metabolomic study focused on oxidative fatty acids. Accompanying the clinical trial of tranilast, urine specimens were collected over 24 weeks from MD patients with advanced heart failure. Urinary levels of tetranor-PGDM (tetranor-prostaglandin D metabolite), a metabolite of prostaglandin D2, significantly decreased 12 weeks after tranilast administration and were correlated with BNP. These results suggest that prostaglandin-mediated inflammation, which increases with the pathological progression of heart failure in MD patients, was attenuated. Urinary prostaglandin E3 (PGE3) levels significantly increased 4 weeks after tranilast administration. There were positive correlations between the urinary levels of PGE3 and 8-hydroxy-2'-deoxyguanosine, an oxidative stress marker. High PGE3 levels may have a protective effect against cardiomyopathy in MD patients with high oxidative stress. Although further validation studies are necessary, urinary tetranor-PGDM and PGE3 levels may help the current understanding of the extent of advanced heart failure in patients with MD after tranilast administration.
Collapse
Affiliation(s)
- Chisato Takahashi
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Kyoto, Japan
| | - Mariko Oishi
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Kyoto, Japan
| | - Yuko Iwata
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita 564-8565, Osaka, Japan
| | - Keiko Maekawa
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Kyoto, Japan
- Correspondence: (K.M.); (T.M.)
| | - Tsuyoshi Matsumura
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8551, Osaka, Japan
- Correspondence: (K.M.); (T.M.)
| |
Collapse
|
3
|
Mayer WP, Baptista JDS, De Oliveira F, Mori M, Liberti EA. Consequences of ankle joint immobilisation: insights from a morphometric analysis about fibre typification, intramuscular connective tissue, and muscle spindle in rats. Histochem Cell Biol 2021; 156:583-594. [PMID: 34476549 DOI: 10.1007/s00418-021-02027-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/26/2022]
Abstract
Orthosis immobilisations are routinely used in orthopaedic procedures. This intervention is applicable in bone fractures, ligament injuries, and tendonitis, among other disorders of the musculoskeletal system. We aimed to evaluate the effects of ankle joint functional immobilisation on muscle fibre morphology, connective tissue, muscle spindle and fibre typification triggered by a novel metallic orthosis. We developed a rodent-proof experimental orthosis able to hold the tibiotalar joint in a functional position for short and long terms. The tibialis anterior muscles of free and immobilised legs were collected and stained by histology and histochemistry techniques to investigate general muscle morphology, connective tissue and muscle fibre typification. Morphometric analysis of muscle cross-section area, fibre type cross-section area, fibre type density, percentage of intramuscular connective tissue, and thickness of the muscle spindle capsule were obtained to gain insights into the experimental protocol. We found that short- and long-term immobilisation decreased the cross-section area of the muscles and induced centralisation of myonuclei. The connective tissue of immobilised muscle increased after 2 and 4 weeks mainly by deposition of type III and type I collagen fibres in the perimysium and endomysium, respectively, in addition to muscle spindle capsule thickening. Type IIB muscle fibre was severely affected in our study; the profile assumed odd shapes, and our data suggest interconversion of these fibre types within long-term immobilisation. In conclusion, our protocol has produced structural and histochemical changes in muscle biology. This method might be applied to various rodent models that enable genetic manipulation for the investigation of muscle degeneration/regeneration processes.
Collapse
Affiliation(s)
- William P Mayer
- Department of Medical Neuroscience, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, NB, Canada.
| | | | - Flavia De Oliveira
- Department of Biosciences, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Matsuyoshi Mori
- Department of Prothesis, School of Dentistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Edson A Liberti
- Department of Anatomy, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
4
|
Jelinkova S, Sleiman Y, Fojtík P, Aimond F, Finan A, Hugon G, Scheuermann V, Beckerová D, Cazorla O, Vincenti M, Amedro P, Richard S, Jaros J, Dvorak P, Lacampagne A, Carnac G, Rotrekl V, Meli AC. Dystrophin Deficiency Causes Progressive Depletion of Cardiovascular Progenitor Cells in the Heart. Int J Mol Sci 2021; 22:ijms22095025. [PMID: 34068508 PMCID: PMC8125982 DOI: 10.3390/ijms22095025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating condition shortening the lifespan of young men. DMD patients suffer from age-related dilated cardiomyopathy (DCM) that leads to heart failure. Several molecular mechanisms leading to cardiomyocyte death in DMD have been described. However, the pathological progression of DMD-associated DCM remains unclear. In skeletal muscle, a dramatic decrease in stem cells, so-called satellite cells, has been shown in DMD patients. Whether similar dysfunction occurs with cardiac muscle cardiovascular progenitor cells (CVPCs) in DMD remains to be explored. We hypothesized that the number of CVPCs decreases in the dystrophin-deficient heart with age and disease state, contributing to DCM progression. We used the dystrophin-deficient mouse model (mdx) to investigate age-dependent CVPC properties. Using quantitative PCR, flow cytometry, speckle tracking echocardiography, and immunofluorescence, we revealed that young mdx mice exhibit elevated CVPCs. We observed a rapid age-related CVPC depletion, coinciding with the progressive onset of cardiac dysfunction. Moreover, mdx CVPCs displayed increased DNA damage, suggesting impaired cardiac muscle homeostasis. Overall, our results identify the early recruitment of CVPCs in dystrophic hearts and their fast depletion with ageing. This latter depletion may participate in the fibrosis development and the acceleration onset of the cardiomyopathy.
Collapse
MESH Headings
- Aging/genetics
- Aging/pathology
- Animals
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiovascular System/metabolism
- Cardiovascular System/pathology
- DNA Damage/genetics
- Disease Models, Animal
- Dystrophin/deficiency
- Dystrophin/genetics
- Gene Expression Regulation/genetics
- Humans
- Mice
- Mice, Inbred mdx/genetics
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Proto-Oncogene Proteins c-kit/genetics
- Stem Cells/metabolism
- Stem Cells/pathology
Collapse
Affiliation(s)
- Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Yvonne Sleiman
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Petr Fojtík
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Franck Aimond
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Amanda Finan
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Gerald Hugon
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Valerie Scheuermann
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Deborah Beckerová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Olivier Cazorla
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Marie Vincenti
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Pediatric and Adult Congenital Cardiology Department, M3C Regional Reference CHD Center, CHU Montpellier, 371 Avenue du Doyen Giraud, 34295 Montpellier, France
| | - Pascal Amedro
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Pediatric and Adult Congenital Cardiology Department, M3C Regional Reference CHD Center, CHU Montpellier, 371 Avenue du Doyen Giraud, 34295 Montpellier, France
| | - Sylvain Richard
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Josef Jaros
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5/A1, 62500 Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Gilles Carnac
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
- Correspondence: (V.R.); (A.C.M.); Tel.: +420-549-498-002 (V.R.); +33-4-67-41-52-44 (A.C.M.); Fax: +420-549-491-327 (V.R.); +33-4-67-41-52-42 (A.C.M.)
| | - Albano C. Meli
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Correspondence: (V.R.); (A.C.M.); Tel.: +420-549-498-002 (V.R.); +33-4-67-41-52-44 (A.C.M.); Fax: +420-549-491-327 (V.R.); +33-4-67-41-52-42 (A.C.M.)
| |
Collapse
|
5
|
Burn injury induces skeletal muscle degeneration, inflammatory host response, and oxidative stress in wistar rats. J Burn Care Res 2016; 36:428-33. [PMID: 25933049 DOI: 10.1097/bcr.0000000000000122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Burn injuries (BIs) result in both local and systemic responses distant from the site of thermal injury, such as skeletal muscle. The purpose of this study was to investigate the expression of cyclooxygenase-2 (COX-2) and hydroxy-2'-deoxyguanosine (8-OHdG) as a result of inflammation and reactive oxygen species production, respectively. A total of 16 male rats were distributed into two groups: control (C) and submitted to BI. The medial part of gastrocnemius muscle formed the specimens, which were stained with hematoxylin and eosin and were evaluated. COX-2 and 8-OHdG expressions were assessed by immunohistochemistry, and cell profile area and density of muscle fibers (number of fibers per square millimeter) were evaluated by morphometric methods. The results revealed inflammatory infiltrate associated with COX-2 immunoexpression in BI-gastrocnemius muscle. Furthermore, a substantial decrease in the muscle cell profile area of BI group was noticed when compared with the control group, whereas the density of muscle fibers was higher in the BI group. 8-OHdG expression in numerous skeletal muscle nuclei was detected in the BI group. In conclusion, the BI group is able to induce skeletal muscle degeneration as a result of systemic host response closely related to reactive oxygen species production and inflammatory process.
Collapse
|
7
|
Smith SA, Downey RM, Williamson JW, Mizuno M. Autonomic dysfunction in muscular dystrophy: a theoretical framework for muscle reflex involvement. Front Physiol 2014; 5:47. [PMID: 24600397 PMCID: PMC3927082 DOI: 10.3389/fphys.2014.00047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/24/2014] [Indexed: 01/16/2023] Open
Abstract
Muscular dystrophies are a heterogeneous group of genetically inherited disorders whose most prominent clinical feature is progressive degeneration of skeletal muscle. In several forms of the disease, the function of cardiac muscle is likewise affected. The primary defect in this group of diseases is caused by mutations in myocyte proteins important to cellular structure and/or performance. That being stated, a growing body of evidence suggests that the development of autonomic dysfunction may secondarily contribute to the generation of skeletal and cardio-myopathy in muscular dystrophy. Indeed, abnormalities in the regulation of both sympathetic and parasympathetic nerve activity have been reported in a number of muscular dystrophy variants. However, the mechanisms mediating this autonomic dysfunction remain relatively unknown. An autonomic reflex originating in skeletal muscle, the exercise pressor reflex, is known to contribute significantly to the control of sympathetic and parasympathetic activity when stimulated. Given the skeletal myopathy that develops with muscular dystrophy, it is logical to suggest that the function of this reflex might also be abnormal with the pathogenesis of disease. As such, it may contribute to or exacerbate the autonomic dysfunction that manifests. This possibility along with a basic description of exercise pressor reflex function in health and disease are reviewed. A better understanding of the mechanisms that possibly underlie autonomic dysfunction in muscular dystrophy may not only facilitate further research but could also lead to the identification of new therapeutic targets for the treatment of muscular dystrophy.
Collapse
Affiliation(s)
- Scott A Smith
- Department of Health Care Sciences, University of Texas Southwestern Medical Center Dallas, TX, USA ; Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Ryan M Downey
- Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Jon W Williamson
- Department of Health Care Sciences, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Masaki Mizuno
- Department of Health Care Sciences, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|