1
|
Sandoval D, Mella J, Ojeda J, Bermedo-García F, Low M, Marcellini S, Castro MA, Casas M, Jaimovich E, Henríquez JP. The sodium/ascorbic acid co-transporter SVCT2 distributes in a striated membrane-enriched domain at the M-band level in slow-twitch skeletal muscle fibers. Biol Res 2024; 57:79. [PMID: 39506870 PMCID: PMC11542426 DOI: 10.1186/s40659-024-00554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Vitamin C plays key roles in cellular homeostasis, functioning as a potent antioxidant and a positive regulator of cell differentiation. In skeletal muscle, the vitamin C/sodium co-transporter SVCT2 is preferentially expressed in oxidative slow fibers. SVCT2 is up-regulated during the early fusion of primary myoblasts and decreases during initial myotube growth, indicating the relevance of vitamin C uptake via SVCT2 for early skeletal muscle differentiation and fiber-type definition. However, our understanding of SVCT2 expression and function in adult skeletal muscles is still limited. RESULTS In this study, we demonstrate that SVCT2 exhibits an intracellular distribution in chicken slow skeletal muscles, following a highly organized striated pattern. A similar distribution was observed in human muscle samples, chicken cultured myotubes, and isolated mouse myofibers. Immunohistochemical analyses, combined with biochemical cell fractionation experiments, reveal a strong co-localization of SVCT2 with intracellular detergent-soluble membrane fractions at the central sarcomeric M-band, where it co-solubilizes with sarcoplasmic reticulum proteins. Remarkably, electrical stimulation of cultured myofibers induces the redistribution of SVCT2 into a vesicular pattern. CONCLUSIONS Our results provide novel insights into the dynamic roles of SVCT2 in different intracellular compartments in response to functional demands.
Collapse
Affiliation(s)
- Daniel Sandoval
- Neuromuscular Studies Lab (NeSt Lab), Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, 5110566, Chile
- Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, 3812120, Chile
| | - Jessica Mella
- Neuromuscular Studies Lab (NeSt Lab), Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, 5110566, Chile
| | - Jorge Ojeda
- Neuromuscular Studies Lab (NeSt Lab), Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, 5110566, Chile
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Concepción, Chile
| | - Francisca Bermedo-García
- Neuromuscular Studies Lab (NeSt Lab), Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, 5110566, Chile
| | - Marcela Low
- Carrera de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, 5090000, Chile
| | - Sylvain Marcellini
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, 4070386, Chile
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5110566, Chile
| | - Mariana Casas
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8320000, Chile
| | - Enrique Jaimovich
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8320000, Chile
| | - Juan Pablo Henríquez
- Neuromuscular Studies Lab (NeSt Lab), Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, 5110566, Chile.
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, 4070386, Chile.
| |
Collapse
|
2
|
Fiorani M, Scotti M, Guidarelli A, Burattini S, Falcieri E, Cantoni O. SVCT2-Dependent plasma and mitochondrial membrane transport of ascorbic acid in differentiating myoblasts. Pharmacol Res 2020; 159:105042. [PMID: 32580031 DOI: 10.1016/j.phrs.2020.105042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
The Na+-dependent Vitamin C transporter 2 (SVCT2) is expressed in the plasma and mitochondrial membranes of various cell types. This notion was also established in proliferating C2C12 myoblasts (Mb), in which the transporter was characterised by a high and low affinity in the plasma and mitochondrial membranes, respectively. In addition, the mitochondrial expression of SVCT2 appeared particularly elevated and, consistently, a brief pre-exposure to low concentrations of Ascorbic Acid (AA) abolished mitochondrial superoxide formation selectively induced by the cocktail arsenite/ATP. Early myotubes (Mt) derived from these cells after 4 days of differentiation presented evidence of slightly increased SVCT2 expression, and were characterised by kinetic parameters for plasma membrane transport of AA in line with those detected in Mb. Confocal microscopy studies indicated that the mitochondrial expression of SVCT2 is well preserved in Mt with one or two nuclei, but progressively reduced in Mt with three or more nuclei. Cellular and mitochondrial expression of SVCT2 was found reduced in day 7 Mt. While the uptake studies were compromised by the poor purity of the mitochondrial preparations obtained from day 4 Mt, we nevertheless obtained evidence of poor transport of the vitamin using the same functional studies successfully employed with Mb. Indeed, even greater concentrations of/longer pre-exposure to AA failed to induce scavenging of mitochondrial superoxide in Mt. These results are therefore indicative of a severely reduced mitochondrial uptake of the vitamin in early Mt, attributable to decreased expression as well as impaired activity of mitochondrial SVCT2.
Collapse
Affiliation(s)
- Mara Fiorani
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Maddalena Scotti
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Andrea Guidarelli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Sabrina Burattini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Elisabetta Falcieri
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Orazio Cantoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| |
Collapse
|
3
|
Avilés EC, Pinto C, Hanna P, Ojeda J, Pérez V, De Ferrari GV, Zamorano P, Albistur M, Sandoval D, Henríquez JP. Frizzled-9 impairs acetylcholine receptor clustering in skeletal muscle cells. Front Cell Neurosci 2014; 8:110. [PMID: 24860427 PMCID: PMC4029016 DOI: 10.3389/fncel.2014.00110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 03/28/2014] [Indexed: 11/13/2022] Open
Abstract
Cumulative evidence indicates that Wnt pathways play crucial and diverse roles to assemble the neuromuscular junction (NMJ), a peripheral synapse characterized by the clustering of acetylcholine receptors (AChR) on postsynaptic densities. The molecular determinants of Wnt effects at the NMJ are still to be fully elucidated. We report here that the Wnt receptor Frizzled-9 (Fzd9) is expressed in developing skeletal muscles during NMJ synaptogenesis. In cultured myotubes, gain- and loss-of-function experiments revealed that Fzd9-mediated signaling impairs the AChR-clustering activity of agrin, an organizer of postsynaptic differentiation. Overexpression of Fzd9 induced the cytosolic accumulation of β-catenin, a key regulator of Wnt signaling. Consistently, Fzd9 and β-catenin localize in the postsynaptic domain of embryonic NMJs in vivo. Our findings represent the first evidence pointing to a crucial role of a Fzd-mediated, β-catenin-dependent signaling on the assembly of the vertebrate NMJ.
Collapse
Affiliation(s)
- Evelyn C Avilés
- Laboratory of Developmental Neurobiology, Department of Cell Biology, Faculty of Biological Sciences, Millennium Nucleus of Regenerative Biology, Center for Advanced Microscopy, Universidad de Concepción Concepción, Chile
| | - Cristina Pinto
- Laboratory of Developmental Neurobiology, Department of Cell Biology, Faculty of Biological Sciences, Millennium Nucleus of Regenerative Biology, Center for Advanced Microscopy, Universidad de Concepción Concepción, Chile
| | - Patricia Hanna
- Laboratory of Developmental Neurobiology, Department of Cell Biology, Faculty of Biological Sciences, Millennium Nucleus of Regenerative Biology, Center for Advanced Microscopy, Universidad de Concepción Concepción, Chile
| | - Jorge Ojeda
- Laboratory of Developmental Neurobiology, Department of Cell Biology, Faculty of Biological Sciences, Millennium Nucleus of Regenerative Biology, Center for Advanced Microscopy, Universidad de Concepción Concepción, Chile
| | - Viviana Pérez
- Laboratory of Developmental Neurobiology, Department of Cell Biology, Faculty of Biological Sciences, Millennium Nucleus of Regenerative Biology, Center for Advanced Microscopy, Universidad de Concepción Concepción, Chile
| | - Giancarlo V De Ferrari
- Faculty of Biological Sciences, Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andres Bello Santiago, Chile
| | - Pedro Zamorano
- Department of Biomedicine, Universidad de Antofagasta Antofagasta, Chile
| | - Miguel Albistur
- Laboratory of Developmental Neurobiology, Department of Cell Biology, Faculty of Biological Sciences, Millennium Nucleus of Regenerative Biology, Center for Advanced Microscopy, Universidad de Concepción Concepción, Chile
| | - Daniel Sandoval
- Laboratory of Developmental Neurobiology, Department of Cell Biology, Faculty of Biological Sciences, Millennium Nucleus of Regenerative Biology, Center for Advanced Microscopy, Universidad de Concepción Concepción, Chile
| | - Juan P Henríquez
- Laboratory of Developmental Neurobiology, Department of Cell Biology, Faculty of Biological Sciences, Millennium Nucleus of Regenerative Biology, Center for Advanced Microscopy, Universidad de Concepción Concepción, Chile
| |
Collapse
|
4
|
The Histochem Cell Biol conspectus: the year 2013 in review. Histochem Cell Biol 2014; 141:337-63. [PMID: 24610091 PMCID: PMC7087837 DOI: 10.1007/s00418-014-1207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2014] [Indexed: 11/29/2022]
Abstract
Herein, we provide a brief synopsis of all manuscripts published in Histochem Cell Biol in the year 2013. For ease of reference, we have divided the manuscripts into the following categories: Advances in Methodologies; Molecules in Health and Disease; Organelles, Subcellular Structures and Compartments; Golgi Apparatus; Intermediate Filaments and Cytoskeleton; Connective Tissue and Extracellular Matrix; Autophagy; Stem Cells; Musculoskeletal System; Respiratory and Cardiovascular Systems; Gastrointestinal Tract; Central Nervous System; Peripheral Nervous System; Excretory Glands; Kidney and Urinary Bladder; and Male and Female Reproductive Systems. We hope that the readership will find this annual journal synopsis of value and serve as a quick, categorized reference guide for “state-of-the-art” manuscripts in the areas of histochemistry, immunohistochemistry, and cell biology.
Collapse
|