1
|
Janev A, Ramuta TŽ, Jerman UD, Obradović H, Kamenšek U, Čemažar M, Kreft ME. Human amniotic membrane inhibits migration and invasion of muscle-invasive bladder cancer urothelial cells by downregulating the FAK/PI3K/Akt/mTOR signalling pathway. Sci Rep 2023; 13:19227. [PMID: 37932474 PMCID: PMC10628262 DOI: 10.1038/s41598-023-46091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Bladder cancer is the 10th most commonly diagnosed cancer with the highest lifetime treatment costs. The human amniotic membrane (hAM) is the innermost foetal membrane that possesses a wide range of biological properties, including anti-inflammatory, antimicrobial and anticancer properties. Despite the growing number of studies, the mechanisms associated with the anticancer effects of human amniotic membrane (hAM) are poorly understood. Here, we reported that hAM preparations (homogenate and extract) inhibited the expression of the epithelial-mesenchymal transition markers N-cadherin and MMP-2 in bladder cancer urothelial cells in a dose-dependent manner, while increasing the secretion of TIMP-2. Moreover, hAM homogenate exerted its antimigratory effect by downregulating the expression of FAK and proteins involved in actin cytoskeleton reorganisation, such as cortactin and small RhoGTPases. In muscle-invasive cancer urothelial cells, hAM homogenate downregulated the PI3K/Akt/mTOR signalling pathway, the key cascade involved in promoting bladder cancer. By using normal, non-invasive papilloma and muscle-invasive cancer urothelial models, new perspectives on the anticancer effects of hAM have emerged. The results identify new sites for therapeutic intervention and are prompt encouragement for ongoing anticancer drug development studies.
Collapse
Affiliation(s)
- Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Hristina Obradović
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Ge TJ, Roquero DM, Holton GH, Mach KE, Prado K, Lau H, Jensen K, Chang TC, Conti S, Sheth K, Wang SX, Liao JC. A magnetic hydrogel for the efficient retrieval of kidney stone fragments during ureteroscopy. Nat Commun 2023; 14:3711. [PMID: 37349287 PMCID: PMC10287666 DOI: 10.1038/s41467-023-38936-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Only 60-75% of conventional kidney stone surgeries achieve complete stone-free status. Up to 30% of patients with residual fragments <2 mm in size experience subsequent stone-related complications. Here we demonstrate a stone retrieval technology in which fragments are rendered magnetizable with a magnetic hydrogel so that they can be easily retrieved with a simple magnetic tool. The magnetic hydrogel facilitates robust in vitro capture of stone fragments of clinically relevant sizes and compositions. The hydrogel components exhibit no cytotoxicity in cell culture and only superficial effects on ex vivo human urothelium and in vivo mouse bladders. Furthermore, the hydrogel demonstrates antimicrobial activity against common uropathogens on par with that of common antibiotics. By enabling the efficient retrieval of kidney stone fragments, our method can lead to improved stone-free rates and patient outcomes.
Collapse
Affiliation(s)
- T Jessie Ge
- Department of Urology, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Daniel Massana Roquero
- Department of Urology, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Grace H Holton
- Department of Urology, Stanford University, Stanford, CA, 94305, USA
| | - Kathleen E Mach
- Department of Urology, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Kris Prado
- Department of Urology, Stanford University, Stanford, CA, 94305, USA
| | - Hubert Lau
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Kristin Jensen
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Timothy C Chang
- Department of Urology, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Simon Conti
- Department of Urology, Stanford University, Stanford, CA, 94305, USA
| | - Kunj Sheth
- Department of Urology, Stanford University, Stanford, CA, 94305, USA
| | - Shan X Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Joseph C Liao
- Department of Urology, Stanford University, Stanford, CA, 94305, USA.
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
3
|
Resnik N, Baraga D, Glažar P, Jokhadar Zemljič Š, Derganc J, Sepčić K, Veranič P, Kreft ME. Molecular, morphological and functional properties of tunnelling nanotubes between normal and cancer urothelial cells: New insights from the in vitro model mimicking the situation after surgical removal of the urothelial tumor. Front Cell Dev Biol 2022; 10:934684. [PMID: 36601539 PMCID: PMC9806176 DOI: 10.3389/fcell.2022.934684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Tunnelling nanotubes (TNTs) are membranous connections that represent a unique type of intercellular communication in different cell types. They are associated with cell physiology and cancer pathology. The possible existence of tunnelling nanotubes communication between urothelial cancer and normal cells has not yet been elucidated. Therefore, we analyzed TNTs formed by T24 cells (human invasive cancer urothelial cells) and normal porcine urothelial (NPU) cells, which serve as surrogate models for healthy human urothelial cells. Monocultures and cocultures of NPU and T24 cells were established and analyzed using live-cell imaging, optical tweezers, fluorescence microscopy, and scanning electron microscopy. TNTs of NPU cells differed significantly from tunnelling nanotubes of T24 cells in number, length, diameter, lipid composition, and elastic properties. Membrane domains enriched in cholesterol/sphingomyelin were present in tunnelling nanotubes of T24 cells but not in NPU cells. The tunnelling nanotubes in T24 cells were also easier to bend than the tunnelling nanotubes in NPU cells. The tunnelling nanotubes of both cell types were predominantly tricytoskeletal, and contained actin filaments, intermediate filaments, and microtubules, as well as the motor proteins myosin Va, dynein, and kinesin 5B. Mitochondria were transported within tunnelling nanotubes in living cells, and were colocalized with microtubules and the microtubule-associated protein dynamin 2. In cocultures, heterocellular tunnelling nanotubes were formed between NPU cells and T24 cells and vice versa. The presence of connexin 43 at the end of urothelial tunnelling nanotubes suggests a junctional connection and the involvement of tunnelling nanotube in signal transduction. In this study, we established a novel urothelial cancer-normal coculture model and showed cells in the minority tend to form tunnelling nanotubes with cells in the majority. The condition with cancer cells in the minority is an attractive model to mimic the situation after surgical resection with remaining cancer cells and may help to understand cancer progression and recurrence. Our results shed light on the biological activity of tunnelling nanotubes and have the potential to advance the search for anticancer drugs that target tunnelling nanotubes.
Collapse
Affiliation(s)
- Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Diana Baraga
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Polona Glažar
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Špela Jokhadar Zemljič
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jure Derganc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,*Correspondence: Mateja Erdani Kreft,
| |
Collapse
|
4
|
Kuret T, Peskar D, Kreft ME, Erman A, Veranič P. Comprehensive transcriptome profiling of urothelial cells following TNFα stimulation in an in vitro interstitial cystitis/bladder pain syndrome model. Front Immunol 2022; 13:960667. [PMID: 36045687 PMCID: PMC9421144 DOI: 10.3389/fimmu.2022.960667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/27/2022] [Indexed: 12/28/2022] Open
Abstract
Urothelial cells of the urinary bladder play a critical role in the development and progression of interstitial cystitis/bladder pain syndrome (IC/BPS), a chronic and debilitating inflammatory disease. Given the lack of data on the exact phenotype and function of urothelial cells in an inflammatory setting (as in IC/BPS), we performed the first in-depth characterization of these cells using RNA sequencing, qPCR, ELISA, Western blot, and immunofluorescence. After TNFα stimulation, urothelial cells in the in vitro model of IC/BPS showed marked upregulation of several proinflammatory mediators, such as SAA, C3, IFNGR1, IL1α, IL1β, IL8, IL23A, IL32, CXCL1, CXCL5, CXCL10, CXCL11, TNFAIPR, TNFRSF1B, and BIRC3, involved in processes and pathways of innate immunity, including granulocyte migration and chemotaxis, inflammatory response, and complement activation, as well as TLR-, NOD-like receptor- and NFkB-signaling pathways, suggesting their active role in shaping the local immune response of the bladder. Our study demonstrates that the TNFα-stimulated urothelial cells recapitulate key observations found in the bladders of patients with IC/BPS, underpinning their utility as a suitable in vitro model for understanding IC/BPS mechanisms and confirming the role of TNFα signaling as an important component of the associated pathology. The present study also identifies novel upregulated gene targets of TNFα in urothelial cells, including genes encoding the acute phase protein SAA, complement component C3, and the cytokine receptor IFNGR1, which could be exploited as therapeutic targets of IC/BPS. Altogether, our study provides a reference database of the phenotype of urothelial cells in an inflammatory environment that will not only increase our knowledge of their role in IC/BPS, but also advance our understanding of how urothelial cells shape tissue immunity in the bladder.
Collapse
|
5
|
A Biomimetic Porcine Urothelial Model for Assessing Escherichia coli Pathogenicity. Microorganisms 2022; 10:microorganisms10040783. [PMID: 35456833 PMCID: PMC9029248 DOI: 10.3390/microorganisms10040783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Urinary tract infections can be severe, sometimes fatal, diseases whose etiological pathogens are predominantly uropathogenic strains of E. coli (UPEC). To investigate the UPEC pathogenesis, several models have already been established with minor or major disadvantages. The aim was to develop a simple, fast, and inexpensive biomimetic in vitro model based on normal porcine urothelial (NPU) cells that are genetically and physiologically similar to human bladder urothelium and to perform basic studies of E. coli pathogenicity. Initially, the model was tested using a set of control E. coli strains and, subsequently, with human E. coli strains isolated either from patients with urinary infections or from the feces of healthy individuals. A drop in viability of NPU cells was used as a measure of the pathogenicity of the individual strain tested. To visualize the subcellular events, transmission and scanning electron microscopy was performed. The strains were tested for the presence of different virulence-associated genes, phylogroup, type of core lipid, O-serotype, and type of lipopolysaccharide and a statistical analysis of possible correlations between strains’ characteristics and the effect on the model was performed. Results showed that our model has the discriminatory power to distinguish pathogenic from non-pathogenic E. coli strains, and to identify new, potentially pathogenic strains.
Collapse
|
6
|
Jerman UD, Veranič P, Cirman T, Kreft ME. Human Amniotic Membrane Enriched with Urinary Bladder Fibroblasts Promote the Re-Epithelization of Urothelial Injury. Cell Transplant 2021; 29:963689720946668. [PMID: 32841052 PMCID: PMC7563929 DOI: 10.1177/0963689720946668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Culturing cells in three-dimensional systems that include extracellular matrix
components and different cell types mimic the native tissue and as such provide
much more representative results than conventional two-dimensional cell
cultures. In order to develop biomimetic bladder tissue in vitro, we used human
amniotic membrane (AM) extracellular matrix as a scaffold for bladder
fibroblasts (BFs) and urothelial cells. Our aims were to evaluate the
integration of BFs into the AM stroma, to assess the differentiation of the
urothelium on BFs-enriched AM scaffolds, and to evaluate the AM as a urothelial
wound dressing. First, to achieve the optimal integration of BFs into AM stroma,
different intact and de- epithelialized AM (dAM) scaffolds were tested. BFs
secreted matrix metalloproteinase (MMP)-1 and MMP-2 and integrated into the
stroma of all types of AM scaffolds. Second, to establish urothelial tissue
equivalent, urothelial cells were seeded on dAM scaffolds enriched with BFs. The
BFs in the stroma of the AM scaffolds promoted (1) the proliferation of
urothelial cells, (2) the attachment of urothelial cells on AM basal lamina with
hemidesmosomes, and (3) development of multilayered urothelium with expressed
uroplakins and well-developed cell junctions. Third, we established an ex vivo
model of the injured bladder to evaluate the dAM as a wound dressing for
urothelial full-thickness injury. dAM acted as a promising wound dressing since
it enabled rapid re-epithelization of urothelial injury and integrated into the
bladder tissue. Herein, the developed urothelial tissue equivalents enable
further mechanistic studies of bladder epithelial–mesenchymal interactions, and
they could be applied as biomimetic models for preclinical testing of newly
developed drugs. Moreover, we could hypothesize that AM may be suitable as a
dressing of the wound that occurs during transurethral resection of bladder
tumor, since it could diminish the possibility of tumor recurrence, by promoting
the rapid re-epithelization of the urothelium.
Collapse
Affiliation(s)
- Urška Dragin Jerman
- Institute of Cell Biology, 37664Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, 37664Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Cirman
- 86684Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, 37664Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Janev A, Ramuta TŽ, Tratnjek L, Sardoč Ž, Obradović H, Mojsilović S, Taskovska M, Smrkolj T, Kreft ME. Detrimental Effect of Various Preparations of the Human Amniotic Membrane Homogenate on the 2D and 3D Bladder Cancer In vitro Models. Front Bioeng Biotechnol 2021; 9:690358. [PMID: 34249888 PMCID: PMC8267883 DOI: 10.3389/fbioe.2021.690358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Despite being among the ten most common cancers with high recurrence rates worldwide, there have been no major breakthroughs in the standard treatment options for bladder cancer in recent years. The use of a human amniotic membrane (hAM) to treat cancer is one of the promising ideas that have emerged in recent years. This study aimed to investigate the anticancer activity of hAM homogenate on 2D and 3D cancer models. We evaluated the effects of hAM homogenates on the human muscle invasive bladder cancer urothelial (T24) cells, papillary cancer urothelial (RT4) cells and normal porcine urothelial (NPU) cells as well as on human mammary gland non-tumorigenic (MCF10a) cells and low-metastatic breast cancer (MCF7) cells. After 24 h, we observed a gradual detachment of cancerous cells from the culture surface, while the hAM homogenate did not affect the normal cells. The most pronounced effect hAM homogenate had on bladder cancer cells; however, the potency of their detachment was dependent on the treatment protocol and the preparation of hAM homogenate. We demonstrated that hAM homogenate significantly decreased the adhesion, growth, and proliferation of human bladder invasive and papillary cancer urothelial cells and did not affect normal urothelial cells even in 7-day treatment. By using light and electron microscopy we showed that hAM homogenate disrupted the architecture of 2D and 3D bladder cancer models. The information provided by our study highlights the detrimental effect of hAM homogenate on bladder cancer cells and strengthens the idea of the potential clinical application of hAM for bladder cancer treatment.
Collapse
Affiliation(s)
- Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Sardoč
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Milena Taskovska
- Department of Urology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Chair of Surgery, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Smrkolj
- Department of Urology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Chair of Surgery, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Resnik N, Tratnjek L, Kreft ME, Kisovec M, Aden S, Bedina Zavec A, Anderluh G, Podobnik M, Veranič P. Cytotoxic Activity of LLO Y406A Is Targeted to the Plasma Membrane of Cancer Urothelial Cells. Int J Mol Sci 2021; 22:ijms22073305. [PMID: 33805017 PMCID: PMC8037347 DOI: 10.3390/ijms22073305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
Identification of novel agents for bladder cancer treatment is highly desirable due to the high incidence of tumor recurrence and the risk of progression to muscle-invasive disease. The key feature of the cholesterol-dependent toxin listeriolysin O mutant (LLO Y406A) is its preferential activity at pH 5.7, which could be exploited either directly for selective targeting of cancer cells or the release of accumulated therapeutics from acidic endosomes. Therefore, our goal was to compare the cytotoxic effect of LLO Y406A on cancer cells (RT4) and normal urothelial cells (NPU), and to identify which cell membranes are the primary target of LLO Y406A by viability assays, life-cell imaging, fluorescence, and electron microscopy. LLO Y406A decreased viability, altered cell morphology, provoked membrane blebbing, and induced apoptosis in RT4 cells, while it did not affect NPU cells. LLO Y406A did not cause endosomal escape in RT4 cells, while the plasma membrane of RT4 cells was revealed as the primary target of LLO Y406A. It has been concluded that LLO Y406A has the ability to selectively eliminate cancer urothelial cells through pore-forming activity at the plasma membrane, without cytotoxic effects on normal urothelial cells. This promising selective activity merits further testing as an anti-cancer agent.
Collapse
Affiliation(s)
- Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.R.); (L.T.); (M.E.K.)
| | - Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.R.); (L.T.); (M.E.K.)
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.R.); (L.T.); (M.E.K.)
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (S.A.); (A.B.Z.); (G.A.); (M.P.)
| | - Saša Aden
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (S.A.); (A.B.Z.); (G.A.); (M.P.)
| | - Apolonija Bedina Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (S.A.); (A.B.Z.); (G.A.); (M.P.)
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (S.A.); (A.B.Z.); (G.A.); (M.P.)
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (S.A.); (A.B.Z.); (G.A.); (M.P.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.R.); (L.T.); (M.E.K.)
- Correspondence: ; Tel.: +386-1-543-7682
| |
Collapse
|
9
|
The Antibacterial Activity of Human Amniotic Membrane against Multidrug-Resistant Bacteria Associated with Urinary Tract Infections: New Insights from Normal and Cancerous Urothelial Models. Biomedicines 2021; 9:biomedicines9020218. [PMID: 33672670 PMCID: PMC7924402 DOI: 10.3390/biomedicines9020218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
Urinary tract infections (UTIs) represent a serious global health issue, especially due to emerging multidrug-resistant UTI-causing bacteria. Recently, we showed that the human amniotic membrane (hAM) could be a candidate for treatments and prevention of UPEC and Staphylococcus aureus infections. However, its role against multidrug-resistant bacteria, namely methicillin-resistant S. aureus (MRSA), extended-spectrum beta-lactamases (ESBL) producing Escherichia coli and Klebsiella pneumoniae, vancomycin-resistant Enterococci (VRE), carbapenem-resistant Acinetobacter baumannii, and Pseudomonas aeruginosa has not yet been thoroughly explored. Here, we demonstrate for the first time that the hAM homogenate had antibacterial activity against 7 out of 11 tested multidrug-resistant strains, the greatest effect was on MRSA. Using novel approaches, its activity against MRSA was further evaluated in a complex microenvironment of normal and cancerous urinary bladder urothelia. Even short-term incubation in hAM homogenate significantly decreased the number of bacteria in MRSA-infected urothelial models, while it did not affect the viability, number, and ultrastructure of urothelial cells. The hAM patches had no antibacterial activity against any of the tested strains, which further exposes the importance of the hAM preparation. Our study substantially contributes to basic knowledge on the antibacterial activity of hAM and reveals its potential to be used as an antibacterial agent against multidrug-resistant bacteria.
Collapse
|
10
|
Skočaj M, Bizjak M, Strojan K, Lojk J, Erdani Kreft M, Miš K, Pirkmajer S, Bregar VB, Veranič P, Pavlin M. Proposing Urothelial and Muscle In Vitro Cell Models as a Novel Approach for Assessment of Long-Term Toxicity of Nanoparticles. Int J Mol Sci 2020; 21:ijms21207545. [PMID: 33066271 PMCID: PMC7589566 DOI: 10.3390/ijms21207545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Many studies evaluated the short-term in vitro toxicity of nanoparticles (NPs); however, long-term effects are still not adequately understood. Here, we investigated the potential toxic effects of biomedical (polyacrylic acid and polyethylenimine coated magnetic NPs) and two industrial (SiO2 and TiO2) NPs following different short-term and long-term exposure protocols on two physiologically different in vitro models that are able to differentiate: L6 rat skeletal muscle cell line and biomimetic normal porcine urothelial (NPU) cells. We show that L6 cells are more sensitive to NP exposure then NPU cells. Transmission electron microscopy revealed an uptake of NPs into L6 cells but not NPU cells. In L6 cells, we obtained a dose-dependent reduction in cell viability and increased reactive oxygen species (ROS) formation after 24 h. Following continuous exposure, more stable TiO2 and polyacrylic acid (PAA) NPs increased levels of nuclear factor Nrf2 mRNA, suggesting an oxidative damage-associated response. Furthermore, internalized magnetic PAA and TiO2 NPs hindered the differentiation of L6 cells. We propose the use of L6 skeletal muscle cells and NPU cells as a novel approach for assessment of the potential long-term toxicity of relevant NPs that are found in the blood and/or can be secreted into the urine.
Collapse
Affiliation(s)
- Matej Skočaj
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.M.); (S.P.)
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Maruša Bizjak
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Klemen Strojan
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
| | - Jasna Lojk
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Katarina Miš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.M.); (S.P.)
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.M.); (S.P.)
| | - Vladimir Boštjan Bregar
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Correspondence: (P.V.); (M.P.)
| | - Mojca Pavlin
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Correspondence: (P.V.); (M.P.)
| |
Collapse
|
11
|
Yin K, Divakar P, Wegst UGK. Freeze-casting porous chitosan ureteral stents for improved drainage. Acta Biomater 2019; 84:231-241. [PMID: 30414484 PMCID: PMC6864386 DOI: 10.1016/j.actbio.2018.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 02/05/2023]
Abstract
As a new strategy for improved urinary drainage, in parallel to the potential for additional functions such as drug release and self-removal, highly porous chitosan stents are manufactured by radial, bi-directional freeze-casting. Inserting the porous stent in to a silicone tube to emulate its placement in the ureter shows that it is shape conforming and remains safely positioned in place, also during flow tests, including those performed in a peristaltic pump. Cyclic compression tests on fully-hydrated porous stents reveal high stent resilience and close to full elastic recovery upon unloading. The drainage performance of the chitosan stent is evaluated, using effective viscosity in addition to volumetric flow and flux; the porous stent's performance is compared to that of the straight portion of a commercial 8 Fr double-J stent which possesses, in its otherwise solid tube wall, regularly spaced holes along its length. Both the porous and the 8 Fr stent show higher effective viscosities, when tested in the silicone tube. The performance of the porous stent improves considerably more (47.5%) than that of the 8 Fr stent (30.6%) upon removal from the tube, illustrating the effectiveness of the radially aligned porosity for drainage. We conclude that the newly-developed porous chitosan ureteral stent merits further in vitro and in vivo assessment of its promise as an alternative and complement to currently available medical devices. STATEMENT OF SIGNIFICANCE: No papers, to date, report on porous ureteral stents, which we propose as a new strategy for improved urinary drainage. The highly porous chitosan stents of our study are manufactured by radial, bi-directional freeze casting. Cyclic compression tests on fully-hydrated porous stents revealed high stent resilience and close to full recovery upon unloading. The drainage performance of the chitosan is evaluated, using effective viscosity in addition to volumetric flow and flux, and compared to that of the straight portion of a commercial 8 Fr double-J stent. The performance of the porous stent improves considerably more (47.5%) than that of the 8 Fr stent (30.6%) upon removal from the tube, illustrating the effectiveness of the radially aligned porosity for drainage. While further studies are required to explore other potential benefits of the porous stent design such as antimicrobial behavior, drug release, and biodegradability, we conclude that the newly-developed porous chitosan ureteral stent has considerable potential as a medical device.
Collapse
Affiliation(s)
- Kaiyang Yin
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover, NH 03755, USA
| | - Prajan Divakar
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover, NH 03755, USA
| | - Ulrike G K Wegst
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover, NH 03755, USA.
| |
Collapse
|
12
|
Resnik N, Prezelj T, De Luca GMR, Manders E, Polishchuk R, Veranič P, Kreft ME. Helical organization of microtubules occurs in a minority of tunneling membrane nanotubes in normal and cancer urothelial cells. Sci Rep 2018; 8:17133. [PMID: 30459350 PMCID: PMC6244236 DOI: 10.1038/s41598-018-35370-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Tunneling membrane nanotubes (TnTs) are membrane protrusions connecting nearby or distant cells in vitro and in vivo. Functions of TnTs in cellular processes are various and rely on TnT structure, which also depends on cytoskeletal composition. In the present study, we focused on the organization of microtubules (MTs) and intermediate filaments (IFs) in TnTs of urothelial cells. We analysed TnTs of normal porcine urothelial cells, which morphologically and physiologically closely resemble normal human urothelial cells, and of cancer cells derived from invasive human urothelial neoplasm. Wide-field fluorescence, confocal and super-resolution microscopy techniques, together with image analyses and 3D reconstructions enlightened specific MT-IF organization in TnTs, and for the first time revealed that MTs and IFs co-occur in the majority of normal and cancer urothelial cell TnTs. Our findings show that in the initiation segment of TnTs, MTs are cross-linked with each other into filamentous network, however in the middle and the attaching segment of TnT, MTs can helically enwrap IFs, the phenomenon that has not been shown before within the TnTs. In this study, we assess MT-IF co-occurrence in TnTs and present evidence that such helical organization of MTs enwrapping IFs is only occurring in a minority of the TnTs. We also discuss the possible cell-biological and physiological reasons for helical organization of MTs in TnTs.
Collapse
Affiliation(s)
- Nataša Resnik
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Tim Prezelj
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | | | - Erik Manders
- University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Peter Veranič
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Zupančič D, Kreft ME, Grdadolnik M, Mitev D, Iglič A, Veranič P. Detonation nanodiamonds are promising nontoxic delivery system for urothelial cells. PROTOPLASMA 2018; 255:419-423. [PMID: 28741141 DOI: 10.1007/s00709-017-1146-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Detonation nanodiamonds (DNDs) are carbon-based nanomaterials that are among the most promising nanoparticles available for biomedical applications so far. This is due to their biocompatibility, which could be contributed to their inert core and conformable surface nature. However, DNDs cytotoxicity for urothelial cells and the routes of their internalization remains an open question in the aspect of nanodiamond surface. We therefore analyzed four types of DNDs for cytotoxicity and internalization with normal urothelial cells and two types of cancer urothelial cell lines in vitro. Viability of any of the cell types we used was not compromised with any of four DNDs we evaluated after 24-, 48- and 72-h incubation in three different concentrations of DNDs. Transmission electron microscopy revealed that all four types of DNDs were endocytosed into all three types of urothelial cells tested here. We observed DNDs in endosomes, as well as in multivesicular bodies and multilamellar bodies. These results propose using of DNDs as a delivery system for urological applications in human nanomedicine.
Collapse
Affiliation(s)
- Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Maja Grdadolnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Dimitar Mitev
- REGPOT-2012-2013-1 NMP INERA Project, Institute of Solid State Physics-BAS, 72 Tzarigradsko Chaussee Blvd, 1784, Sofia, Bulgaria
| | - Aleš Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
- Laboratory of Clinical Biophysics, Chair of Orthopaedics, Faculty of Medicine, Zaloška 9, 1000, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
14
|
Zupančič D, Mrak Poljšak K, Kreft ME. Co-culturing porcine normal urothelial cells, urinary bladder fibroblasts and smooth muscle cells for tissue engineering research. Cell Biol Int 2017; 42:411-424. [PMID: 29115705 DOI: 10.1002/cbin.10910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/05/2017] [Indexed: 12/27/2022]
Abstract
New strategies for culturing and co-culturing of the main types of urinary bladder cells are essential for successful establishment of biomimetic in vitro models, which could be applied for research into, and management of, diverse urological disorders. Porcine normal urothelial cells are available in nearly unlimited amounts and have many properties equivalent to human urothelial cells. In the present study, we established normal differentiated porcine urothelial cells in co-cultures with porcine urinary bladder normal fibroblasts and/or smooth muscle cells. The optimal culture medium for establishment of differentiated urothelial cells, demonstrated by positive immunofluorescence of uroplakins, cytokeratins (CK 7, CK 20), zonula occludens 1 (ZO-1), claudin 4, claudin 8, and E-cadherin, was the medium composed of equal parts of Advanced Dulbecco's modified Eagle's medium (A-DMEM) and MCDB 153 medium with physiological calcium concentration of 2.5 mM and without fetal bovine serum, named UroM (+Ca2+ - S). This medium was also proven to be suitable for culturing of bladder fibroblasts and smooth muscle cells and co-culturing of urothelial cells with these mesenchymal cells. Urothelial cell differentiation was optimal in UroM (+Ca2+ - S) medium in all co-culture conditions and when compared to all conditioned-media combinations. To summarize, these strategies for culturing and co-culturing of urinary bladder urothelial cells with mesenchymal cells could be used as new in vitro models for future basic and applicable research of the urinary bladder and thus potentially also for translational tissue engineering studies.
Collapse
Affiliation(s)
- Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Katjuša Mrak Poljšak
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Višnjar T, Chesi G, Iacobacci S, Polishchuk E, Resnik N, Robenek H, Kreft M, Romih R, Polishchuk R, Kreft ME. Uroplakin traffic through the Golgi apparatus induces its fragmentation: new insights from novel in vitro models. Sci Rep 2017; 7:12842. [PMID: 28993693 PMCID: PMC5634464 DOI: 10.1038/s41598-017-13103-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 09/20/2017] [Indexed: 11/10/2022] Open
Abstract
Uroplakins (UPs) play an essential role in maintaining an effective urothelial permeability barrier at the level of superficial urothelial cell (UC) layer. Although the organization of UPs in the apical plasma membrane (PM) of UCs is well known, their transport in UCs is only partially understood. Here, we dissected trafficking of UPs and its differentiation-dependent impact on Golgi apparatus (GA) architecture. We demonstrated that individual subunits UPIb and UPIIIa are capable of trafficking from the endoplasmic reticulum to the GA in UCs. Moreover, UPIb, UPIIIa or UPIb/UPIIIa expressing UCs revealed fragmentation and peripheral redistribution of Golgi-units. Notably, expression of UPIb or UPIb/UPIIIa triggered similar GA fragmentation in MDCK and HeLa cells that do not express UPs endogenously. The colocalization analysis of UPIb/UPIIIa-EGFP and COPI, COPII or clathrin suggested that UPs follow constitutively the post-Golgi route to the apical PM. Depolymerisation of microtubules leads to complete blockade of the UPIb/UPIIIa-EGFP post-Golgi transport, while disassembly of actin filaments shows significantly reduced delivery of UPIb/UPIIIa-EGFP to the PM. Our findings show the significant effect of the UPs expression on the GA fragmentation, which enables secretory Golgi-outpost to be distributed as close as possible to the sites of cargo delivery at the PM.
Collapse
Affiliation(s)
- Tanja Višnjar
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Giancarlo Chesi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Simona Iacobacci
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Horst Robenek
- Institute for experimental musculoskeletal medicine, University of Münster, Albert-Schweitzer-Campus 1, Domagkstrasse 3, 48149, Münster, Germany
| | - Marko Kreft
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia & LN-MCP, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana & Celica Biomedical Center, Ljubljana, Slovenia
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy.
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Lojk J, Bregar VB, Strojan K, Hudoklin S, Veranič P, Pavlin M, Kreft ME. Increased endocytosis of magnetic nanoparticles into cancerous urothelial cells versus normal urothelial cells. Histochem Cell Biol 2017; 149:45-59. [PMID: 28821965 DOI: 10.1007/s00418-017-1605-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2017] [Indexed: 11/28/2022]
Abstract
The blood-urine barrier is the tightest and most impermeable barrier in the body and as such represents a problem for intravesical drug delivery applications. Differentiation-dependent low endocytotic rate of urothelial cells has already been noted; however, the differences in endocytosis of normal and cancer urothelial cells have not been exploited yet. Here we analysed the endocytosis of rhodamine B isothiocyanate-labelled polyacrylic acid-coated cobalt ferrite nanoparticles (NPs) in biomimetic urothelial in vitro models, i.e., in highly and partially differentiated normal urothelial cells, and in cancer cells of the papillary and invasive urothelial neoplasm. We demonstrated that NPs enter papillary and invasive urothelial neoplasm cells by ruffling of the plasma membrane and engulfment of NP aggregates by macropinocytotic mechanism. Transmission electron microscopy (TEM) and spectrophotometric analyses showed that the efficacy of NPs delivery into normal urothelial cells and intercellular space is largely restricted, while it is significantly higher in cancer urothelial cells. Moreover, we showed that the quantification of fluorescent NP internalization in cells or tissues based on fluorescence detection could be misleading and overestimated without TEM analysis. Our findings contribute to the understanding of endocytosis-mediated cellular uptake of NPs in cancer urothelial cells and reveal a highly selective mechanism to distinguish cancer and normal urothelial cells.
Collapse
Affiliation(s)
- Jasna Lojk
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Vladimir Boštjan Bregar
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia
| | - Klemen Strojan
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia
| | - Samo Hudoklin
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Peter Veranič
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Mojca Pavlin
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia. .,Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia.
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Višnjar T, Jerman UD, Veranič P, Kreft ME. Chitosan hydrochloride has no detrimental effect on bladder urothelial cancer cells. Toxicol In Vitro 2017; 44:403-413. [PMID: 28807631 DOI: 10.1016/j.tiv.2017.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 07/27/2017] [Accepted: 08/10/2017] [Indexed: 12/24/2022]
Abstract
Bladder cancer is among the most common and aggressive human malignant carcinomas, thus targeting and removal of bladder cancer cells is still a challenge. Although it is well known that chitosan hydrochloride (CH-HCl) causes desquamation of normal urothelial cells, its effect on cancer urothelial cells has not been recognized yet. In this in vitro study, we analyzed the cytotoxicity of 0.05% CH-HCl on three urothelial models: two cancer urothelial models, i.e. invasive and papillary urothelial neoplasms, and a normal urothelial model. The cytotoxicity of CH-HCl was evaluated with viability tests, transepithelial resistance (TER) measurements, and electron microscopy. TER measurements showed that 15-minute treatment with CH-HCl caused no reduction in TER of the cancer models, whereas the TER of the normal urothelial model significantly decreased. Furthermore, after CH-HCl treatment, the viability of cancer cells was reduced by only 5%, whereas the viability of normal cells was reduced by 30%. Ultrastructural analysis revealed necrotic cell death in all cases. We have demonstrated that although CH-HCl increases the mortality of cancer urothelial cells, it increases the mortality of normal urothelial cells even more so. However, shorter 2-minute CH-HCl treatment only temporarily increases the permeability of normal urothelial model, i.e. disrupts tight junctions and reduces TER without comprising cell viability, and enables the complete recovery of the permeability barrier after 24h. Overall, our results suggest that CH-HCl cannot be used as a self-sufficient anticancer agent for urothelial bladder cancer treatment; nevertheless a possibility of its use as an enhancer of cytostatic treatment is discussed.
Collapse
Affiliation(s)
- Tanja Višnjar
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
18
|
Tratnjek L, Romih R, Kreft ME. Differentiation-dependent rearrangements of actin filaments and microtubules hinder apical endocytosis in urothelial cells. Histochem Cell Biol 2017; 148:143-156. [DOI: 10.1007/s00418-017-1566-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2017] [Indexed: 01/08/2023]
|
19
|
Imani R, Pazoki M, Zupančič D, Kreft ME, Kralj-Iglič V, Veranič P, Iglič A. Biocompatibility of different nanostructured TiO 2 scaffolds and their potential for urologic applications. PROTOPLASMA 2016; 253:1439-1447. [PMID: 26497540 DOI: 10.1007/s00709-015-0896-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
Despite great efforts in tissue engineering of the ureter, urinary bladder, and urethra, further research is needed in order to improve the patient's quality of life and minimize the economic burden of different lower urinary tract disorders. The nanostructured titanium dioxide (TiO2) scaffolds have a wide range of clinical applications and are already widely used in orthopedic or dental medicine. The current study was conducted to synthesize TiO2 nanotubes by the anodization method and TiO2 nanowires and nanospheres by the chemical vapor deposition method. These scaffolds were characterized with scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. In order to test the urologic applicability of generated TiO2 scaffolds, we seeded the normal porcine urothelial (NPU) cells on TiO2 nanotubes, TiO2 nanowires, TiO2 nanospheres, and on the standard porous membrane. The viability and growth of the cells were monitored everyday, and after 3 weeks of culturing, the analysis with scanning electron microscope (SEM) was performed. Our results showed that the NPU cells were attached on all scaffolds; they were viable and formed a multilayered epithelium, i.e., urothelium. The apical plasma membrane of the majority of superficial NPU cells, grown on all three different TiO2 scaffolds and on the porous membrane, exhibited microvilli; thus, indicating that they were at a similar differentiation stage. The maximal caliper diameter measurements of superficial NPU cells revealed significant alterations, with the largest cells being observed on nanowires and the smallest ones on the porous membrane. Our findings indicate that different nanostructured TiO2 scaffolds, especially nanowires, have a great potential for tissue engineering and should be further investigated for various urologic applications.
Collapse
Affiliation(s)
- Roghayeh Imani
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana, Slovenia
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, Ljubljana, Slovenia
| | - Meysam Pazoki
- Department of Chemistry, Ångström Laboratory, Physical Chemistry, Uppsala University, Box 523, SE 75120, Uppsala, Sweden
| | - Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana, Slovenia.
| |
Collapse
|
20
|
Taatjes DJ, Roth J. The Histochemistry and Cell Biology omnium-gatherum: the year 2015 in review. Histochem Cell Biol 2016; 145:239-74. [PMID: 26878854 DOI: 10.1007/s00418-016-1417-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
|
21
|
Imani R, Veranič P, Iglič A, Kreft ME, Pazoki M, Hudoklin S. Combined cytotoxic effect of UV-irradiation and TiO2 microbeads in normal urothelial cells, low-grade and high-grade urothelial cancer cells. Photochem Photobiol Sci 2015; 14:583-90. [PMID: 25385056 DOI: 10.1039/c4pp00272e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The differentiation of urothelial cells results in normal terminally differentiated cells or by alternative pathways in low-grade or high-grade urothelial carcinomas. Treatments with traditional surgical and chemotherapeutical approaches are still inadequate and expensive, as bladder tumours are generally highly recurrent. In such situations, alternative approaches, using irradiation of the cells and nanoparticles, are promising. The ways in which urothelial cells, at different differentiation levels, respond to UV-irradiation (photolytic treatment) or to the combination of UV-irradiation and nanoparticles (photocatalytic treatment), are unknown. Here we tested cytotoxicity of UV-irradiation on (i) normal porcine urothelial cells (NPU), (ii) human low-grade urothelial cancer cells (RT4), and (iii) human high-grade urothelial cancer cells (T24). The results have shown that 1 minute of UV-irradiation is enough to kill 90% of the cells in NPU and RT4 cultures, as determined by the live/dead viability assay. On the other hand, the majority of T24 cells survived 1 minute of UV-irradiation. Moreover, even a prolonged UV-irradiation for 30 minutes killed <50% of T24 cells. When T24 cells were pre-supplemented with mesoporous TiO2 microbeads and then UV-irradiated, the viability of these high-grade urothelial cancer cells was reduced to <10%, which points to the highly efficient cytotoxic effects of TiO2 photocatalysis. Using electron microscopy, we confirmed that the mesoporous TiO2 microbeads were internalized into T24 cells, and that the cell's ultrastructure was heavily compromised after UV-irradiation. In conclusion, our results show major differences in the sensitivity to UV-irradiation among the urothelial cells with respect to cell differentiation. To achieve an increased cytotoxicity of urothelial cancer cells, the photocatalytic approach is recommended.
Collapse
Affiliation(s)
- Roghayeh Imani
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
22
|
Resnik N, Repnik U, Kreft ME, Sepčić K, Maček P, Turk B, Veranič P. Highly Selective Anti-Cancer Activity of Cholesterol-Interacting Agents Methyl-β-Cyclodextrin and Ostreolysin A/Pleurotolysin B Protein Complex on Urothelial Cancer Cells. PLoS One 2015; 10:e0137878. [PMID: 26361392 PMCID: PMC4567298 DOI: 10.1371/journal.pone.0137878] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 08/24/2015] [Indexed: 11/21/2022] Open
Abstract
Cholesterol content can vary distinctly between normal and cancer cells, with elevated levels in cancer cells. Here, we investigated cholesterol sequestration with methyl-β-cyclodextrin (MCD), and pore-formation with the ostreolysin A/pleurotolysin B (OlyA/PlyB) protein complex that binds to cholesterol/sphingomyelin-rich membrane domains. We evaluated the effects on viability of T24 invasive and RT4 noninvasive human urothelial cancer cells and normal porcine urothelial (NPU) cells. Cholesterol content strongly correlated with cancerous transformation, as highest in the T24 high-grade invasive urothelial cancer cells, and lowest in NPU cells. MCD treatment induced prominent cell death of T24 cells, whereas OlyA/PlyB treatment resulted in greatly decreased viability of the RT4 low-grade noninvasive carcinoma cells. Biochemical and transmission electron microscopy analyses revealed that MCD and OlyA/PlyB induce necrotic cell death in these cancer cells, while viability of NPU cells was not significantly affected by either treatment. We conclude that MCD is more toxic for T24 high-grade invasive urothelial cancer cells, and OlyA/PlyB for RT4 low-grade noninvasive urothelial cancer cells, and neither is toxic for NPU cells. The cholesterol and cholesterol/sphingomyelin-rich membrane domains in urothelial cancer cells thus constitute a selective therapeutic target for elimination of urothelial cancer cells.
Collapse
Affiliation(s)
- Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Urška Repnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
23
|
Lasič E, Višnjar T, Kreft ME. Properties of the Urothelium that Establish the Blood–Urine Barrier and Their Implications for Drug Delivery. Rev Physiol Biochem Pharmacol 2015; 168:1-29. [DOI: 10.1007/112_2015_22] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|