1
|
Zahn I, Garreis F, Schicht M, Rötzer V, Waschke J, Liu Y, Altersberger VL, Paulsen F, Dietrich J. A New Organotypic 3D Slice Culture of Mouse Meibomian Glands Reveals Impact of Melanocortins. Int J Mol Sci 2022; 23:ijms232314947. [PMID: 36499274 PMCID: PMC9737810 DOI: 10.3390/ijms232314947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
The meibomian glands (MGs) within the eyelids produce a lipid-rich secretion that forms the superficial layer of the tear film. Meibomian gland dysfunction (MGD) results in excessive evaporation of the tear film, which is the leading cause of dry eye disease (DED). To develop a research model similar to the physiological situation of MGs, we established a new 3D organotypic slice culture (OSC) of mouse MGs (mMGs) and investigated the effects of melanocortins on exocrine secretion. Tissue viability, lipid production and morphological changes were analyzed during a 21-day cultivation period. Subsequently, the effects on lipid production and gene expression were examined after stimulation with a melanocortin receptor (MCR) agonist, α-melanocyte-stimulating hormone (α-MSH), and/or an MCR antagonist, JNJ-10229570. The cultivation of mMGs OSCs was possible without impairment for at least seven days. Stimulation with the MCR agonists induced lipid production in a dose-dependent manner, whereas this effect was tapered with the simultaneous incubation of the MCR antagonist. The new 3D OSC model is a promising approach to study the (patho-) physiological properties of MG/MGD while reducing animal studies. Therefore, it may accelerate the search for new treatments for MGD/DED and lead to new insights, such as that melanocortins likely stimulate meibum production.
Collapse
Affiliation(s)
- Ingrid Zahn
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: (I.Z.); (F.P.); Tel.: +49-9131-85-26734 (I.Z.); +49-9131-85-22865 (F.P.)
| | - Fabian Garreis
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Vera Rötzer
- Department of Anatomy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Jens Waschke
- Department of Anatomy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Yuqiuhe Liu
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Valerian L. Altersberger
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Department of Anatomy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: (I.Z.); (F.P.); Tel.: +49-9131-85-26734 (I.Z.); +49-9131-85-22865 (F.P.)
| | - Jana Dietrich
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
2
|
Asiedu K. Candidate Molecular Compounds as Potential Indicators for Meibomian Gland Dysfunction. Front Med (Lausanne) 2022; 9:873538. [PMID: 35685417 PMCID: PMC9170961 DOI: 10.3389/fmed.2022.873538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
Meibomian gland dysfunction (MGD) is the leading cause of dry eye disease throughout the world. Studies have shown that several molecules in meibum, including but not limited to interleukins, amino acids, cadherins, eicosanoids, carbohydrates, and proteins, are altered in meibomian gland dysfunction compared with healthy normal controls. Some of these molecules such as antileukoproteinase, phospholipase A2, and lactoperoxidase also show differences in concentrations in tears between meibomian gland dysfunction and dry eye disease, further boosting hopes as candidate biomarkers. MGD is a complex condition, making it difficult to distinguish patients using single biomarkers. Therefore, multiple biomarkers forming a multiplex panel may be required. This review aims to describe molecules comprising lipids, proteins, and carbohydrates with the potential of serving various capacities as monitoring, predictive, diagnostic, and risk biomarkers for meibomian gland dysfunction.
Collapse
|
3
|
Yang F, Hayashi I, Sato S, Saijo-Ban Y, Yamane M, Fukui M, Shimizu E, He J, Shibata S, Mukai S, Asai K, Ogawa M, Lan Y, Zeng Q, Hirakata A, Tsubota K, Ogawa Y. Eyelid blood vessel and meibomian gland changes in a sclerodermatous chronic GVHD mouse model. Ocul Surf 2021; 26:328-341. [PMID: 34715372 DOI: 10.1016/j.jtos.2021.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE To investigate pathological changes in blood vessels and meibomian glands (MGs) in the eyelids of sclerodermatous chronic graft-versus-host disease (cGVHD) model mice. METHODS We used an established major histocompatibility complex compatible, multiple minor histocompatibility antigen-mismatched sclerodermatous cGVHD mouse model. Blood vessels and MGs of eyelids from allogeneic bone marrow transplantation (allo-BMT) recipient mice and syngeneic bone marrow transplantation (syn-BMT) recipient mice were assessed by histopathology, immunohistochemistry and transmission electron microscopy. Peripheral blood samples from the recipients were examined by flow cytometry. RESULTS Allo-BMT samples showed dilating, tortuous and branching vessels and shrunk MGs in the eyelids; showed significantly higher expression of VEGFR2 (p = 0.029), CD133 (p = 0.016), GFP (p = 0.006), and α-SMA (p = 0.029) in the peripheral MG area; showed endothelial damage and activation, fibrotic change, and immune cell infiltration into MGs compared with syn-BMT samples. Fewer Ki-67+ cells were observed in allo- and syn-BMT samples than in wild-type samples (p = 0.030). Ultrastructural changes including endothelial injury and activation, fibroblast activation, granulocyte degranulation, immune cell infiltration into MGs, and necrosis, apoptosis of MG basal cells were found in allo-BMT samples compared with syn-BMT samples. CONCLUSION A series of our studies indicated that cGVHD can cause eyelid vessel and MGs changes, including endothelial injury and activation, neovascularization, early fibrotic changes, immune cell infiltration, MG basal cell necrosis and apoptosis, and resultant MG atrophy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan; Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Aier School of Ophthalmology, Central South University, Changsha, China
| | - Isami Hayashi
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan; Department of Ophthalmology, Kyorin University, School of Medicine, Tokyo, Japan
| | - Shinri Sato
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Yumiko Saijo-Ban
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Mio Yamane
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Masaki Fukui
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Jingliang He
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Shin Mukai
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Massachusetts, USA
| | - Kazuki Asai
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Mamoru Ogawa
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Yuqing Lan
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingyan Zeng
- Aier Eye Hosoital of Wuhan University, Wuhan, Hubei province, China
| | - Akito Hirakata
- Department of Ophthalmology, Kyorin University, School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan; Tsubota Laboratory, Inc., Tokyo, Japan.
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan.
| |
Collapse
|
4
|
Abstract
Purpose: The meibomian glands are located in the tarsal plate of the upper and lower eyelid and are responsible for the production of a lipid-rich secretion, the meibum, which forms the outer component of the tear film. Meibomian gland dysfunction results in excessive evaporation of the tear film and is the leading cause of dry eye disease (DED). Despite the high prevalence of DED, the etiology of meibomian gland dysfunction is only basically understood. In addition, the molecular mechanisms of meibomian gland maturation and physiological function are currently the focus of research.Methods: A systematic literature search was performed using the main scientific databases, including all relevant published articles up to September 2020.Results: This article provides an overview of the current state of knowledge about meibomian gland stem cells, cell surface marker expression and PPARγ signaling, as well as the pathological causes of meibomian gland dysfunction.Conclusion: Androgen deficiency, hyperkeratinization, PPARγ signaling and inflammatory reactions including neutrophil extracellular traps (NETs) seem to be key factors within the pathological processes of the meibomian gland.
Collapse
Affiliation(s)
- Jana Dietrich
- Institute of Anatomy, Department of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Fabian Garreis
- Institute of Anatomy, Department of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Anatomy, Department of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Topographic Anatomy and Operative Surgery, Sechenov University, Moscow, Russia
| |
Collapse
|
5
|
E-Cadherin Is Important for Meibomian Gland Function as Revealed by a New Human ex Vivo Slice Culture Model. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1559-1568. [DOI: 10.1016/j.ajpath.2019.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/31/2022]
|
6
|
An S, Raju I, Surenkhuu B, Kwon JE, Gulati S, Karaman M, Pradeep A, Sinha S, Mun C, Jain S. Neutrophil extracellular traps (NETs) contribute to pathological changes of ocular graft-vs.-host disease (oGVHD) dry eye: Implications for novel biomarkers and therapeutic strategies. Ocul Surf 2019; 17:589-614. [PMID: 30965123 PMCID: PMC6721977 DOI: 10.1016/j.jtos.2019.03.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate the role of neutrophil extracellular traps (NETs) and NET-associated proteins in the pathogenesis of oGVHD and whether dismantling of NETs with heparin reduces those changes. METHODS Ocular surface washings from oGVHD patients and healthy subjects were analyzed. Isolated peripheral blood human neutrophils were stimulated to generate NETs and heparinized NETs. We performed in vitro experiments using cell lines (corneal epithelial, conjunctival fibroblast, meibomian gland (MG) epithelial and T cells), and in vivo experiments using murine models, and compared the effects of NETs, heparinized NETs, NET-associated proteins and neutralizing antibodies to NET-associated proteins. RESULTS Neutrophils, exfoliated epithelial cells, NETs and NET-associated proteins (extracellular DNA, Neutrophil Elastase, Myeloperoxidase, Oncostatin M (OSM), Neutrophil gelatinase-associated lipocalin (NGAL) and LIGHT/TNFSF14) are present in ocular surface washings (OSW) and mucocellular aggregates (MCA). Eyes with high number of neutrophils in OSW have more severe signs and symptoms of oGVHD. NETs (and OSM) cause epitheliopathy in murine corneas. NETs (and LIGHT/TNFSF14) increase proliferation of T cells. NETs (and NGAL) inhibit proliferation and differentiation of MG epithelial cells. NETs enhance proliferation and myofibroblast transformation of conjunctival fibroblasts. Sub-anticoagulant dose Heparin (100 IU/mL) dismantles NETs and reduces epithelial, fibroblast, T cell and MG cell changes induced by NETs. CONCLUSION NETs and NET-associated proteins contribute to the pathological changes of oGVHD (corneal epitheliopathy, conjunctival cicatrization, ocular surface inflammation and meibomian gland disease). Our data points to the potential of NET-associated proteins (OSM or LIGHT/TNFSF14) to serve as biomarkers and NET-dismantling biologics (heparin eye drops) as treatment for oGVHD.
Collapse
Affiliation(s)
- Seungwon An
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ilangovan Raju
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bayasgalan Surenkhuu
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ji-Eun Kwon
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shilpa Gulati
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Muge Karaman
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Anubhav Pradeep
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | - Christine Mun
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sandeep Jain
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
Egu DT, Walter E, Spindler V, Waschke J. Inhibition of p38MAPK signalling prevents epidermal blistering and alterations of desmosome structure induced by pemphigus autoantibodies in human epidermis. Br J Dermatol 2017; 177:1612-1618. [PMID: 28600798 DOI: 10.1111/bjd.15721] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Pemphigus vulgaris (PV) is a skin blistering disease caused by autoantibodies targeting the desmosomal adhesion proteins desmoglein (Dsg) 3 and 1. The mechanisms underlying pemphigus skin blistering are not fully elucidated but p38 mitogen-activated protein kinase (p38MAPK) activation is one of the signalling events necessary for full loss of cell cohesion. However, it is unclear whether ultrastructural hallmarks of desmosome morphology as observed in patients' lesions are mediated by p38MAPK signalling. OBJECTIVES In this study, we tested the relevance of p38MAPK for blister formation and the ultrastructural changes induced by PV autoantibodies in human skin. METHODS Human skin samples were injected with IgG fractions of one patient suffering from mucocutaneous PV (mcPV-IgG), one from mucosal-dominant PV (mdPV-IgG) or AK23, a pathogenic monoclonal Dsg3 antibody derived from a pemphigus mouse model. Samples were processed for histological and electron microscopy analyses. RESULTS mcPV-IgG and AK23 but not mdPV-IgG reduced desmosome size, caused interdesmosomal widening and formation of split desmosomes, and altered keratin filament insertion. In contrast, full epidermal blister formation and lower desmosome number were evident in tissue samples exposed to mcPV-IgG only. Pharmacological inhibition of p38MAPK blunted the reduction of desmosome number and size, ameliorated interdesmosomal widening and loss of keratin insertion and prevented mcPV-IgG-induced blister formation. CONCLUSIONS Our data demonstrate that blistering can be prevented by inhibition of p38MAPK in the human epidermis. Moreover, typical morphological alterations induced by mcPV-IgG such as interdesmosomal widening and the reduction of desmosome size at least in part require p38MAPK signalling.
Collapse
Affiliation(s)
- D T Egu
- Department I, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität (LMU), München, D-80336, Germany
| | - E Walter
- Department I, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität (LMU), München, D-80336, Germany
| | - V Spindler
- Department I, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität (LMU), München, D-80336, Germany
| | - J Waschke
- Department I, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität (LMU), München, D-80336, Germany
| |
Collapse
|
8
|
The human meibomian gland epithelial cell line as a model to study meibomian gland dysfunction. Exp Eye Res 2017; 163:46-52. [DOI: 10.1016/j.exer.2017.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/17/2017] [Accepted: 03/23/2017] [Indexed: 01/05/2023]
|
9
|
In focus in HCB: from cell biology to tissue structure and function. Histochem Cell Biol 2016; 146:645-646. [PMID: 27796529 DOI: 10.1007/s00418-016-1511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
|