1
|
Dłubała K, Wasiek S, Pilarska P, Szewczyk-Golec K, Mila-Kierzenkowska C, Łączkowski KZ, Sobiesiak M, Gackowski M, Tylkowski B, Hołyńska-Iwan I. The Influence of Retinol Ointment on Rabbit Skin ( Oryctolagus cuniculus) Ion Transport-An In Vitro Study. Int J Mol Sci 2024; 25:9670. [PMID: 39273618 PMCID: PMC11395161 DOI: 10.3390/ijms25179670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Retinoids are known to improve the condition of the skin. Transepithelial transport of sodium and chloride ions is important for proper skin function. So far, the effect of applying vitamin A preparations to the skin on ion transport has not been evaluated. In the study, electrophysiological parameters, including transepithelial electric potential (PD) and transepithelial resistance (R), of rabbit skin specimens after 24 h exposure to retinol ointment (800 mass units/g) were measured in a modified Ussing chamber. The R of the fragments incubated with retinol was significantly different than that of the control skin samples incubated in iso-osmotic Ringer solution. For the controls, the PD values were negative, whereas the retinol-treated specimens revealed positive PD values. Mechanical-chemical stimulation with the use of inhibitors of the transport of sodium (amiloride) or chloride (bumetanide) ions revealed specific changes in the maximal and minimal PD values measured for the retinol-treated samples. Retinol was shown to slightly modify the transport pathways of sodium and chloride ions. In particular, an intensification of the chloride ion secretion from keratinocytes was observed. The proposed action may contribute to deep hydration and increase skin tightness, limiting the action of other substances on its surface.
Collapse
Affiliation(s)
- Klaudia Dłubała
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Sandra Wasiek
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Patrycja Pilarska
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Krzysztof Z Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
| | - Marta Sobiesiak
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
| | - Marcin Gackowski
- Department of Toxicology and Bromatology, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
| | - Bartosz Tylkowski
- Eurecat, Technology Centre of Catalonia, Chemical Technology Unit, Marcelli Domingo 2, 43007 Tarragona, Spain
- Department of Clinical Neuropsychology, Faculty of Health Science, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| |
Collapse
|
2
|
Lu F, Li E, Yang X. Proprotein convertase subtilisin/kexin type 9 deficiency in extrahepatic tissues: emerging considerations. Front Pharmacol 2024; 15:1413123. [PMID: 39139638 PMCID: PMC11319175 DOI: 10.3389/fphar.2024.1413123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily secreted by hepatocytes. PCSK9 is critical in liver low-density lipoprotein receptors (LDLRs) metabolism. In addition to its hepatocellular presence, PCSK9 has also been detected in cardiac, cerebral, islet, renal, adipose, and other tissues. Once perceived primarily as a "harmful factor," PCSK9 has been a focal point for the targeted inhibition of both systemic circulation and localized tissues to treat diseases. However, PCSK9 also contributes to the maintenance of normal physiological functions in numerous extrahepatic tissues, encompassing both LDLR-dependent and -independent pathways. Consequently, PCSK9 deficiency may harm extrahepatic tissues in close association with several pathophysiological processes, such as lipid accumulation, mitochondrial impairment, insulin resistance, and abnormal neural differentiation. This review encapsulates the beneficial effects of PCSK9 on the physiological processes and potential disorders arising from PCSK9 deficiency in extrahepatic tissues. This review also provides a comprehensive analysis of the disparities between experimental and clinical research findings regarding the potential harm associated with PCSK9 deficiency. The aim is to improve the current understanding of the diverse effects of PCSK9 inhibition.
Collapse
Affiliation(s)
- Fengyuan Lu
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - En Li
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Yang
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Zhang Z, Li Z, Wei K, Cao Z, Zhu Z, Chen R. Sweat as a source of non-invasive biomarkers for clinical diagnosis: An overview. Talanta 2024; 273:125865. [PMID: 38452593 DOI: 10.1016/j.talanta.2024.125865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Sweat has excellent potential as one of the sources of non-invasive biomarkers for clinical diagnosis. It is relatively easy to collect and process and may contain different disease-specific markers and drug metabolites, making it ideal for various clinical applications. This article discusses the anatomy of sweat glands and their role in sweat production, as well as the history and development of multiple sweat sample collection and analysis techniques. Another primary focus of this article is the application of sweat detection in clinical disease diagnosis and other life scenarios. Finally, the limitations and prospects of sweat analysis are discussed.
Collapse
Affiliation(s)
- Zhiliang Zhang
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; Department of Plastic and Aesthetic Surgery, Ningbo Hangzhou Bay Hospital, Zhejiang, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Kunchen Wei
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zehui Cao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Rui Chen
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Zavyalova O, Dąbrowska-Wisłocka D, Misiura K, Hołyńska-Iwan I. Chitosan-Glycolic Acid Gel Modification of Chloride Ion Transport in Mammalian Skin: An In Vitro Study. Molecules 2023; 28:6581. [PMID: 37764357 PMCID: PMC10537562 DOI: 10.3390/molecules28186581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Chitosan, a polyaminosaccharide with high medical and cosmetic potential, can be combined with the beneficial properties of glycolic acid to form a gel that not only moisturizes the skin, but also has a regenerative effect. Its involvement in the activation of biochemical processes may be associated with the activity of skin ion channels. Therefore, the aim of the research was to evaluate the immediate (15 s) and long-term (24 h) effect of chitosan-glycolic acid gel (CGG) on the transepithelial electric potential and the transepithelial electric resistance (R) of skin specimens tested in vitro. Stimulation during immediate and prolonged application of CGG to skin specimens resulted in a significant decrease in the measured minimal transepithelial electric potential (PDmin). The absence of any change in the R after the CGG application indicates that it does not affect the skin transmission, or cause distortion, microdamage or changes in ion permeability. However, the reduction in potential may be due to the increased transport of chloride ions, and thus water, from outside the cell into the cell interior. Increased secretion of chloride ions is achieved by stimulating the action of the CFTR (cystic fibrosis transmembrane conductance). It can be assumed that chitosan gently stimulates the secretion of chlorides, while maintaining a tendency to reduce the transport of sodium ions, without causing deformation or tissue damage.
Collapse
Affiliation(s)
- Olga Zavyalova
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (O.Z.); (D.D.-W.)
| | - Dominika Dąbrowska-Wisłocka
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (O.Z.); (D.D.-W.)
| | - Konrad Misiura
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (O.Z.); (D.D.-W.)
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
5
|
Chiliquinga AJ, Acosta B, Ogonaga-Borja I, Villarruel-Melquiades F, de la Garza J, Gariglio P, Ocádiz-Delgado R, Ramírez A, Sánchez-Pérez Y, García-Cuellar CM, Bañuelos C, Camacho J. Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells 2023; 12:1376. [PMID: 37408210 PMCID: PMC10217072 DOI: 10.3390/cells12101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The human papilloma virus (HPV) group comprises approximately 200 genetic types that have a special affinity for epithelial tissues and can vary from producing benign symptoms to developing into complicated pathologies, such as cancer. The HPV replicative cycle affects various cellular and molecular processes, including DNA insertions and methylation and relevant pathways related to pRb and p53, as well as ion channel expression or function. Ion channels are responsible for the flow of ions across cell membranes and play very important roles in human physiology, including the regulation of ion homeostasis, electrical excitability, and cell signaling. However, when ion channel function or expression is altered, the channels can trigger a wide range of channelopathies, including cancer. In consequence, the up- or down-regulation of ion channels in cancer makes them attractive molecular markers for the diagnosis, prognosis, and treatment of the disease. Interestingly, the activity or expression of several ion channels is dysregulated in HPV-associated cancers. Here, we review the status of ion channels and their regulation in HPV-associated cancers and discuss the potential molecular mechanisms involved. Understanding the dynamics of ion channels in these cancers should help to improve early diagnosis, prognosis, and treatment in the benefit of HPV-associated cancer patients.
Collapse
Affiliation(s)
| | - Brenda Acosta
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ingrid Ogonaga-Borja
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Jaime de la Garza
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Rodolfo Ocádiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ana Ramírez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana 22390, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Cecilia Bañuelos
- Programa Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| |
Collapse
|
6
|
Chen J, Chew K, Mary S, Boder P, Bagordo D, Rossi G, Touyz R, Delles C, Rossitto G. Skin-specific mechanisms of body fluid regulation in hypertension. Clin Sci (Lond) 2023; 137:239-250. [PMID: 36648486 PMCID: PMC10621731 DOI: 10.1042/cs20220609] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Increasing evidence suggests excess skin Na+ accumulation in hypertension; however, the role of skin-specific mechanisms of local Na+/water regulation remains unclear. We investigated the association between measures of sweat and trans-epidermal water loss (TEWL) with Na+ content in the skin ([Na+]skin) and clinical characteristics in consecutive hypertensive patients. We obtained an iontophoretic pilocarpine-induced sweat sample, a skin punch biopsy for chemical analysis, and measures of TEWL from the upper limbs. Serum vascular endothelial growth factor-c (VEGF-c) and a reflectance measure of haemoglobin skin content served as surrogates of skin microvasculature. In our cohort (n = 90; age 21-86 years; females = 49%), sweat composition was independent of sex and BMI. Sweat Na+ concentration ([Na+]sweat) inversely correlated with [K+]sweat and was higher in patients on ACEIs/ARBs (P < 0.05). A positive association was found between [Na+]sweat and [Na+]skin, independent of sex, BMI, estimated Na+ intake and use of ACEi/ARBs (Padjusted = 0.025); both closely correlated with age (P < 0.01). Office DBP, but not SBP, inversely correlated with [Na+]sweat independent of other confounders (Padjusted = 0.03). Total sweat volume and Na+ loss were lower in patients with uncontrolled office BP (Padjusted < 0.005 for both); sweat volume also positively correlated with serum VEGF-c and TEWL. Lower TEWL was paralleled by lower skin haemoglobin content, which increased less after vasodilatory pilocarpine stimulation when BMI was higher (P = 0.010). In conclusion, measures of Na+ and water handling/regulation in the skin were associated with relevant clinical characteristics, systemic Na+ status and blood pressure values, suggesting a potential role of the skin in body-fluid homeostasis and therapeutic targeting of hypertension.
Collapse
Affiliation(s)
- Jun Yu Chen
- School of Cardiovascular & Metabolic Health, University of Glasgow, U.K
| | - Khai Syuen Chew
- School of Cardiovascular & Metabolic Health, University of Glasgow, U.K
| | - Sheon Mary
- School of Cardiovascular & Metabolic Health, University of Glasgow, U.K
| | - Philipp Boder
- School of Cardiovascular & Metabolic Health, University of Glasgow, U.K
| | - Domenico Bagordo
- Emergency Medicine and Hypertension, DIMED, Università degli Studi di Padova, Italy
| | - Gian Paolo Rossi
- Emergency Medicine and Hypertension, DIMED, Università degli Studi di Padova, Italy
| | - Rhian M. Touyz
- Research Institute of McGill University Health Centre, McGill University, Montreal, Canada
| | - Christian Delles
- School of Cardiovascular & Metabolic Health, University of Glasgow, U.K
| | - Giacomo Rossitto
- School of Cardiovascular & Metabolic Health, University of Glasgow, U.K
- Emergency Medicine and Hypertension, DIMED, Università degli Studi di Padova, Italy
| |
Collapse
|
7
|
Dobrzeniecka W, Daca M, Nowakowska B, Sobiesiak M, Szewczyk-Golec K, Woźniak A, Hołyńska-Iwan I. The Impact of Diclofenac Gel on Ion Transport in the Rabbit ( Oryctolagus cuniculus) Skin: An In Vitro Study. Molecules 2023; 28:molecules28031332. [PMID: 36770998 PMCID: PMC9920221 DOI: 10.3390/molecules28031332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Diclofenac belongs to the non-steroidal anti-inflammatory drugs with analgesic, antipyretic and anti-inflammatory effects. Diclofenac administration on the skin may be associated with the appearance of side effects. The study aimed to evaluate the impact of diclofenac gel on transepithelial electrophysiological parameters of the 55 rabbit abdomen skin specimens. The electric parameters were analyzed in a modified Ussing chamber. The resistance (R) of the skin specimens treated with diclofenac gel significantly increased, which could be related to the reduction in the water content in intercellular spaces and, consequently, tighter adhesion of the cells. Increased electric potential (PD) was also observed in the skin specimens treated with diclofenac gel. The increase in both R and PD measured under stationary conditions was most likely caused by a transient and reversible increase in sodium ion transport, as the R and PD values decreased after the diclofenac gel was washed away. However, diclofenac gel did not affect the maximum and minimum PDs measured during stimulations. Therefore, it seems that diclofenac gel does not affect the perception of stimuli in the model system used.
Collapse
Affiliation(s)
- Wioletta Dobrzeniecka
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Małgorzata Daca
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Barbara Nowakowska
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Marta Sobiesiak
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Correspondence: (A.W.); (I.H.-I.)
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Correspondence: (A.W.); (I.H.-I.)
| |
Collapse
|
8
|
Okroglic L, Sohier P, Martin C, Lheure C, Franck N, Honoré I, Kanaan R, Burgel PR, Carlotti A, Dupin N, Oulès B. Acneiform Eruption Following Elexacaftor-Tezacaftor-Ivacaftor Treatment in Patients With Cystic Fibrosis. JAMA Dermatol 2023; 159:68-72. [PMID: 36449298 PMCID: PMC9713678 DOI: 10.1001/jamadermatol.2022.5208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022]
Abstract
Importance A new treatment for cystic fibrosis combining 3 CFTR modulators-elexacaftor (ELX), tezacaftor (TEZ), and ivacaftor (IVA)-has recently been approved for cystic fibrosis treatment. The cutaneous adverse effects following treatment with this combination are poorly described in the literature. Objective To describe the clinicopathological features and treatment response of ELX-TEZ-IVA-associated acneiform eruptions in patients with cystic fibrosis. Design, Setting, and Participants This case series study was conducted in the Dermatology Department of Cochin Hospital, Paris, France, from July 2021 to June 2022 in collaboration with the Cochin Reference Center for Cystic Fibrosis. Referred patients were examined by senior dermatologists. All patients with cystic fibrosis treated with ELX-TEZ-IVA and referred for an acneiform rash were included. Exposures Treatment with ELX-TEZ-IVA. Main Outcomes and Measures Onset of acneiform rash, type of lesions, and degree of severity, as well as treatments initiated and response, were evaluated. When performed, skin biopsies were reviewed. Results This study included 16 patients (11 women [68.7%]) with a median (range) age of 27 (22-38) years. Six patients (37.5%) developed new-onset acneiform rashes, whereas 10 patients (62.5%) had a relapse (5 patients) or worsening (5 patients) of previous acne. The median (range) onset of acneiform rash was 45 (15-150) days. At inclusion, 11 patients (68.7%) had facial hyperseborrhea, 15 patients (93.7%) had noninflammatory lesions, and 14 (87.5%) had inflammatory lesions of seborrheic regions. Four patients (25.0%) had severe acne with deep inflammatory lesions and pitted scars. A specific pathological pattern of necrotizing infundibular crystalline folliculitis was observed in 4 patients. Topical acne treatments, antibiotics, and isotretinoin were used successfully in these patients, resulting in partial or complete remission in 12 patients (85.7% of patients reevaluated). Conclusions and Relevance This case series study found that acneiform eruption is an adverse event associated with ELX-TEZ-IVA treatment in patients with cystic fibrosis. Most patients developed mild lesions. However, isotretinoin treatment may be necessary in some patients. The mechanism of ELX-TEZ-IVA-associated acneiform eruption is currently unknown, but the observation of necrotizing infundibular crystalline folliculitis in biopsied patients may guide further exploration.
Collapse
Affiliation(s)
- Léa Okroglic
- Department of Dermatology, Hôpital Cochin, AP-HP, AP-HP.Centre-Université Paris Cité, Paris, France
| | - Pierre Sohier
- Department of Pathology, Hôpital Cochin, AP-HP, AP-HP.Centre-Université Paris Cité, Paris, France
- Faculté de Médecine Paris Centre Santé, University Paris Cité, Paris, France
- Institut Cochin, INSERM U1016, UMR 8104, Paris, France
| | - Clémence Martin
- Faculté de Médecine Paris Centre Santé, University Paris Cité, Paris, France
- Institut Cochin, INSERM U1016, UMR 8104, Paris, France
- Department of Respiratory Medicine and National Cystic Fibrosis Reference Center, Hôpital Cochin, AP-HP, AP-HP.Centre-Université Paris Cité, Paris, France
| | - Coralie Lheure
- Department of Dermatology, Hôpital Cochin, AP-HP, AP-HP.Centre-Université Paris Cité, Paris, France
- Institut Cochin, INSERM U1016, UMR 8104, Paris, France
- Study Group on Facial Dermatoses of the French Society of Dermatology (DEFI), Paris, France
| | - Nathalie Franck
- Department of Dermatology, Hôpital Cochin, AP-HP, AP-HP.Centre-Université Paris Cité, Paris, France
| | - Isabelle Honoré
- Department of Respiratory Medicine and National Cystic Fibrosis Reference Center, Hôpital Cochin, AP-HP, AP-HP.Centre-Université Paris Cité, Paris, France
| | - Reem Kanaan
- Department of Respiratory Medicine and National Cystic Fibrosis Reference Center, Hôpital Cochin, AP-HP, AP-HP.Centre-Université Paris Cité, Paris, France
| | - Pierre-Régis Burgel
- Faculté de Médecine Paris Centre Santé, University Paris Cité, Paris, France
- Institut Cochin, INSERM U1016, UMR 8104, Paris, France
- Department of Respiratory Medicine and National Cystic Fibrosis Reference Center, Hôpital Cochin, AP-HP, AP-HP.Centre-Université Paris Cité, Paris, France
| | - Agnès Carlotti
- Department of Pathology, Hôpital Cochin, AP-HP, AP-HP.Centre-Université Paris Cité, Paris, France
| | - Nicolas Dupin
- Department of Dermatology, Hôpital Cochin, AP-HP, AP-HP.Centre-Université Paris Cité, Paris, France
- Faculté de Médecine Paris Centre Santé, University Paris Cité, Paris, France
- Institut Cochin, INSERM U1016, UMR 8104, Paris, France
- Study Group on Facial Dermatoses of the French Society of Dermatology (DEFI), Paris, France
| | - Bénédicte Oulès
- Department of Dermatology, Hôpital Cochin, AP-HP, AP-HP.Centre-Université Paris Cité, Paris, France
- Faculté de Médecine Paris Centre Santé, University Paris Cité, Paris, France
- Institut Cochin, INSERM U1016, UMR 8104, Paris, France
- Study Group on Facial Dermatoses of the French Society of Dermatology (DEFI), Paris, France
| |
Collapse
|
9
|
Gęgotek A, Skrzydlewska E. The Role of ABC Transporters in Skin Cells Exposed to UV Radiation. Int J Mol Sci 2022; 24:115. [PMID: 36613554 PMCID: PMC9820374 DOI: 10.3390/ijms24010115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
ABC transporters are expressed in skin cells to protect them against harmful xenobiotics. Moreover, these transmembrane proteins have a number of additional functions that ensure skin homeostasis. This review summarizes the current knowledge about the role of specific ABC proteins in the skin, including multi-drug resistance transporters (MDR1/3), the transporter associated with antigen processing 1/2 (TAP1/2), the cystic fibrosis transmembrane conductance regulator (CFTR), sulfonylurea receptors (SUR1/2), and the breast cancer resistance protein (BCRP). Additionally, the effect of UV radiation on ABC transporters is shown. The exposure of skin cells to UV radiation often leads to increased activity of ABC transporters-as has been observed in the case of MDRs, TAPs, CFTR, and BCRP. A different effect of oxidative stress has been observed in the case of mitochondrial SURs. However, the limited data in the literature-as indicated in this article-highlights the limited number of experimental studies dealing with the role of ABC transporters in the physiology and pathophysiology of skin cells and the skin as a whole. At the same time, the importance of such knowledge in relation to the possibility of daily exposure to UV radiation and xenobiotics, used for both skin care and the treatment of its diseases, is emphasized.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Białystok, Poland
| | | |
Collapse
|
10
|
Tsukui K, Kakiuchi T, Suzuki M, Sakurai H, Tokudome Y. The ion balance of Shotokuseki extract promotes filaggrin fragmentation and increases amino acid production and pyrrolidone carboxylic acid content in three-dimensional cultured human epidermis. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:37. [PMID: 36245006 PMCID: PMC9573832 DOI: 10.1007/s13659-022-00353-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 06/16/2023]
Abstract
Natural moisturizing factor (NMF) in the stratum corneum contributes to the retention of moisture there. The purpose of this study was to determine the penetration of ions in Shotokuseki extract (SE) into the three-dimensional cultured epidermis and the effect of NMF on the biosynthesis of amino acids and pyrrolidone carboxylic acid formation. Various ions, amino acids and pyrrolidone carboxylic acid were quantified by inductively coupled plasma mass spectrometry, fully automatic amino acid analyzer or high-performance liquid chromatography (HPLC) in three-dimensional cultured epidermis after application of SE. Gene expression levels of profilaggrin, calpain1, caspase14, and bleomycin hydrolase, which are involved in NMF production, were determined by reverse-transcription qPCR and bleomycin hydrolase activity was determined by aminopeptidase assay. The application of SE increased Na, K, Mg, Ca, Al, and Fe levels in three-dimensional cultured epidermis. The mRNA levels of the starting material of amino acid synthesis profilaggrin, and calpain1 and bleomycin hydrolase, which are involved in its fragmentation, increased. The activity of bleomycin hydrolase also increased. Furthermore, the levels of amino acids and pyrrolidone carboxylic acid increased in the three-dimensional cultured epidermis. This suggests that the ionic composition of SE may be involved in its moisturizing effect on the stratum corneum.
Collapse
Affiliation(s)
- Kei Tsukui
- Laboratory of Cosmetic Sciences, Graduate School of Advanced Health Sciences, Saga University, 1 Honjo, Saga, 840-8502, Japan
- Laboratory of Dermatological Physiology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Takuya Kakiuchi
- Zeria Pharmaceutical Co., Ltd., 10-11 Nihonbashi, Kobuna-cho, Chuo-ku, Tokyo, 103-8351, Japan
| | - Masamitsu Suzuki
- Zeria Pharmaceutical Co., Ltd., 10-11 Nihonbashi, Kobuna-cho, Chuo-ku, Tokyo, 103-8351, Japan
| | - Hidetomo Sakurai
- Zeria Pharmaceutical Co., Ltd., 10-11 Nihonbashi, Kobuna-cho, Chuo-ku, Tokyo, 103-8351, Japan
| | - Yoshihiro Tokudome
- Laboratory of Cosmetic Sciences, Graduate School of Advanced Health Sciences, Saga University, 1 Honjo, Saga, 840-8502, Japan.
- Laboratory of Dermatological Physiology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
- Laboratory of Cosmetic Sciences, Regional Innovation Center, Saga University, 1 Honjo, Saga, 840-8502, Japan.
| |
Collapse
|
11
|
Mandal R, Kaur S, Gupta VK, Joshi A. Heavy metals controlling cardiovascular diseases risk factors in myocardial infarction patients in critically environmentally heavy metal-polluted steel industrial town Mandi-Gobindgarh (India). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3215-3238. [PMID: 34455537 DOI: 10.1007/s10653-021-01068-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals (HMs) have a very significant clinical role in the pathogenesis, progression and management of cardiovascular diseases (CVDs). The prevalence of CVDs was reported to be higher in critically environmentally HM-polluted (EHMP) steel industrial town Mandi-Gobindgarh (India) for the last more than a decade. To ascertain the role of HMs in the onset of CVDs, the present study was chosen to investigate HMs content in myocardial infarction (MI) patients from EHMP steel industrial town Mandi-Gobindgarh. Total of 110 MI patients along with number- and age-matched healthy volunteers were recruited in the present investigation. The CVDs risk factors estimated in MI patients were overweight (higher body mass index), hypertension (higher systolic and diastolic blood pressures), dyslipidaemia (higher serum cholesterol, triglycerides and lower HDL cholesterol), inflammation (higher-serum C reactive protein and aldosterone) and elevated oxidative stress (higher urinary 8-hydroxydeoxyguanosine). An imbalance of serum electrolyte concentrations including Na (hypernatremia), Ca (hypercalcaemia) and K (hypokalaemia) was also observed in MI patients in which CVDs risk factors were found to correlate positively with serum Na and Ca and negatively with serum K, respectively. Hair HM analysis was used as a bio-indicator for monitoring body HM status from past environmental HM exposure in which CVDs risk factors were observed to correlate positively with higher hair concentrations of Zn, Fe, Mo, Pb, As, Ca and Na and negatively with lower hair concentrations of Cu, Mg, Mn and K in MI patients, respectively. Thus, higher hair concentrations of Zn and Pb indicate their higher environmental exposure and possible cause of higher CVDs risk factors in MI patients from Mandi-Gobindgarh.
Collapse
Affiliation(s)
- Reshu Mandal
- Department of Zoology, Sri Guru Gobind Singh College, Sector-26, Chandigarh, UT, India.
| | - Sukhbir Kaur
- Department of Zoology, Panjab University, Chandigarh, UT, India
| | - Vinod Kumar Gupta
- Civil Hospital, Mandi-Gobindgarh, Fatehgarh Sahib District, Punjab, India
| | - Amit Joshi
- Department of Biotechnology and Microbial Biotechnology, Sri Guru Gobind Singh College, Sector-26, Chandigarh, UT, India
| |
Collapse
|
12
|
McPhetres J, Zickfeld JH. The physiological study of emotional piloerection: A systematic review and guide for future research. Int J Psychophysiol 2022; 179:6-20. [PMID: 35764195 DOI: 10.1016/j.ijpsycho.2022.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
This paper provides an accessible review of the biological and psychological evidence to guide new and experienced researchers in the study of emotional piloerection in humans. A limited number of studies have attempted to examine the physiological and emotional correlates of piloerection in humans. However, no review has attempted to collate this evidence to guide the field as it moves forward. We first discuss the mechanisms and function of non-emotional and emotional piloerection in humans and animals. We discuss the biological foundations of piloerection as a means to understand the similarities and differences between emotional and non-emotional piloerection. We then present a systematic qualitative review (k = 24) in which we examine the physiological correlates of emotional piloerection. The analysis revealed that indices of sympathetic activation are abundant, suggesting emotional piloerection occurs with increased (phasic) skin conductance and heart rate. Measures of parasympathetic activation are lacking and no definite conclusions can be drawn. Additionally, several studies examined self-reported emotional correlates, and these correlates are discussed in light of several possible theoretical explanations for emotional piloerection. Finally, we provide an overview of the methodological possibilities available for the study of piloerection and we highlight some pressing questions researchers may wish to answer in future studies.
Collapse
|
13
|
Abstract
Fluid secretion by exocrine glandular organs is essential to the survival of mammals. Each glandular unit within the body is uniquely organized to carry out its own specific functions, with failure to establish these specialized structures resulting in impaired organ function. Here, we review glandular organs in terms of shared and divergent architecture. We first describe the structural organization of the diverse glandular secretory units (the end-pieces) and their fluid transporting systems (the ducts) within the mammalian system, focusing on how tissue architecture corresponds to functional output. We then highlight how defects in development of end-piece and ductal architecture impacts secretory function. Finally, we discuss how knowledge of exocrine gland structure-function relationships can be applied to the development of new diagnostics, regenerative approaches and tissue regeneration.
Collapse
Affiliation(s)
- Sameed Khan
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Fitch
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Ripla Arora
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Roy Choudhury A, Großhans J, Kong D. Ion Channels in Epithelial Dynamics and Morphogenesis. Cells 2021; 10:cells10092280. [PMID: 34571929 PMCID: PMC8465836 DOI: 10.3390/cells10092280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 01/21/2023] Open
Abstract
Mechanosensitive ion channels mediate the neuronal sensation of mechanical signals such as sound, touch, and pain. Recent studies point to a function of these channel proteins in cell types and tissues in addition to the nervous system, such as epithelia, where they have been little studied, and their role has remained elusive. Dynamic epithelia are intrinsically exposed to mechanical forces. A response to pull and push is assumed to constitute an essential part of morphogenetic movements of epithelial tissues, for example. Mechano-gated channels may participate in sensing and responding to such forces. In this review, focusing on Drosophila, we highlight recent results that will guide further investigations concerned with the mechanistic role of these ion channels in epithelial cells.
Collapse
|
15
|
Hołyńska-Iwan I, Smyk P, Chrustek A, Olszewska-Słonina D, Szewczyk-Golec K. The influence of hydration status on ion transport in the rabbit (Oryctolagus cuniculus) skin-An in vitro study. PLoS One 2021; 16:e0255825. [PMID: 34383789 PMCID: PMC8360594 DOI: 10.1371/journal.pone.0255825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/25/2021] [Indexed: 11/18/2022] Open
Abstract
The preservation of physiological transport of ions and water content is particularly important for maintaining the skin barrier, touch and pain stimuli, as well as the initiation of skin regeneration processes, especially after treatments associated with breaking skin continuity and wound healing difficulties. The aim of the study was to assess changes in ion transport, measured as values of transepithelial electric resistance and potential difference in stationary conditions and during mechanical-chemical stimulations, depending on the hydration status of isolated rabbit skin specimens. The specimens were divided into five groups: control (n = 22), dehydrated in 10% NaCl (n = 30), rehydrated after dehydration (n = 26), dried at 37°C (n = 26), and rehydrated after drying (n = 25). Dehydrated tissue samples showed altered resistance compared to the control; this change was maintained regardless of rehydration. In the dehydrated samples, changes in the measured electric potential were also noted, which returned to values comparable with the control after rehydration. Dehydrated skin, regardless of the cause of dehydration, responds with changes in the transport of sodium and chloride ions and the altered cellular microenvironment. It could influence the perception of stimuli, particularly pain, and slow down the regeneration processes.
Collapse
Affiliation(s)
- Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- * E-mail:
| | - Paulina Smyk
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- Department of Pediatric Nursing, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Agnieszka Chrustek
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Dorota Olszewska-Słonina
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
16
|
Munekata PE, Pérez-Álvarez JÁ, Pateiro M, Viuda-Matos M, Fernández-López J, Lorenzo JM. Satiety from healthier and functional foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Dobson L, Zeke A, Tusnády GE. PolarProtPred: Predicting apical and basolateral localization of transmembrane proteins using putative short linear motifs and deep learning. Bioinformatics 2021; 37:4328-4335. [PMID: 34185052 PMCID: PMC8384406 DOI: 10.1093/bioinformatics/btab480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Motivation Cell polarity refers to the asymmetric organization of cellular components in various cells. Epithelial cells are the best-known examples of polarized cells, featuring apical and basolateral membrane domains. Mounting evidence suggests that short linear motifs play a major role in protein trafficking to these domains, although the exact rules governing them are still elusive. Results In this study we prepared neural networks that capture recurrent patterns to classify transmembrane proteins localizing into apical and basolateral membranes. Asymmetric expression of drug transporters results in vectorial drug transport, governing the pharmacokinetics of numerous substances, yet the data on how proteins are sorted in epithelial cells is very scattered. The provided method may offer help to experimentalists to identify or better characterize molecular networks regulating the distribution of transporters or surface receptors (including viral entry receptors like that of COVID-19). Availability The prediction server PolarProtPred is available at http://polarprotpred.ttk.hu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Laszlo Dobson
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | - András Zeke
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary
| | - Gábor E Tusnády
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary
| |
Collapse
|
18
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Ilami M, Bagheri H, Ahmed R, Skowronek EO, Marvi H. Materials, Actuators, and Sensors for Soft Bioinspired Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003139. [PMID: 33346386 DOI: 10.1002/adma.202003139] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/15/2020] [Indexed: 05/23/2023]
Abstract
Biological systems can perform complex tasks with high compliance levels. This makes them a great source of inspiration for soft robotics. Indeed, the union of these fields has brought about bioinspired soft robotics, with hundreds of publications on novel research each year. This review aims to survey fundamental advances in bioinspired soft actuators and sensors with a focus on the progress between 2017 and 2020, providing a primer for the materials used in their design.
Collapse
Affiliation(s)
- Mahdi Ilami
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Hosain Bagheri
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Reza Ahmed
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - E Olga Skowronek
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Hamid Marvi
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
20
|
Zhang X, Zhao L, Jin R, Li M, Li MS, Li R, Liang X. CRISPR/Cas9-Mediated α-ENaC Knockout in a Murine Pancreatic β-Cell Line. Front Genet 2021; 12:664799. [PMID: 33868391 PMCID: PMC8047203 DOI: 10.3389/fgene.2021.664799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Many ion channels participate in controlling insulin synthesis and secretion of pancreatic β-cells. Epithelial sodium channel (ENaC) expressed in human pancreatic tissue, but the biological role of ENaC in pancreatic β-cells is still unclear. Here, we applied the CRISPR/Cas9 gene editing technique to knockout α-ENaC gene in a murine pancreatic β-cell line (MIN6 cell). Four single-guide RNA (sgRNA) sites were designed for the exons of α-ENaC. The sgRNA1 and sgRNA3 with the higher activity were constructed and co-transfected into MIN6 cells. Through processing a series of experiment flow included drug screening, cloning, and sequencing, the α-ENaC gene-knockout (α-ENaC−/−) in MIN6 cells were obtained. Compared with the wild-type MIN6 cells, the cell viability and insulin content were significantly increased in α-ENaC−/− MIN6 cells. Therefore, α-ENaC−/− MIN6 cells generated by CRISPR/Cas9 technology added an effective tool to study the biological function of α-ENaC in pancreatic β-cells.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Runbing Jin
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mei-Shuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Department of Nephrology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Tarnowska M, Briançon S, Resende de Azevedo J, Chevalier Y, Bolzinger MA. Inorganic ions in the skin: Allies or enemies? Int J Pharm 2020; 591:119991. [PMID: 33091552 DOI: 10.1016/j.ijpharm.2020.119991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Skin constitutes a barrier protecting the organism against physical and chemical factors. Therefore, it is constantly exposed to the xenobiotics, including inorganic ions that are ubiquitous in the environment. Some of them play important roles in homeostasis and regulatory functions of the body, also in the skin, while others can be considered dangerous. Many authors have shown that inorganic ions could penetrate inside the skin and possibly induce local effects. In this review, we give an account of the current knowledge on the effects of skin exposure to inorganic ions. Beneficial effects on skin conditions related to the use of thermal spring waters are discussed together with the application of aluminium in underarm hygiene products and silver salts in treatment of difficult wounds. Finally, the potential consequences of dermal exposure to topical sensitizers and harmful heavy ions including radionuclides are discussed.
Collapse
Affiliation(s)
- Małgorzata Tarnowska
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Stéphanie Briançon
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Jacqueline Resende de Azevedo
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Yves Chevalier
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Marie-Alexandrine Bolzinger
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France.
| |
Collapse
|
22
|
Short-term changes in dietary sodium intake influence sweat sodium concentration and muscle sodium content in healthy individuals. J Hypertens 2020; 38:159-166. [PMID: 31503134 DOI: 10.1097/hjh.0000000000002234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE There is increasing evidence that sodium can be stored in the skin and muscles without being osmotically active, yet whether acute changes in dietary sodium intake alter sweat and muscle sodium content has not been investigated previously. METHODS In a cross-over design, we assessed muscle sodium content by Na-MRI in 38 healthy normotensive volunteers (aged 33.5 ± 11.1 years, 76.3% women) after 5 days of high-sodium diet (6 g of salt added to their normal diet) and 5 days of a low-sodium diet. In a subgroup of 18 participants (72.2% women) we conducted quantitative pilocarpine iontophoretic sweat collections and measured the sodium concentration in sweat. Plasma aldosterone and plasma renin activity levels were measured in all participants. RESULTS Under high-sodium diet conditions urinary sodium excretion, muscle sodium content and sweat sodium concentration all increased significantly. Muscle sodium content (rm = 0.47, P = 0.03) and sodium sweat concentration (rm = 0.72, P < 0.001) correlated positively with salt intake as estimated by 24-h urine sodium excretion. Age, sex or the phase of the menstrual cycle did not influence muscle or sweat sodium concentrations or their changes. In contrast, plasma aldosterone levels were negatively associated with both muscle sodium (rs = -0.42, P = 0.0001) and sweat sodium content (rs = -0.52, P = 0.002). Plasma renin activity correlated negatively with sweat sodium (rs = -0.43, P = 0.012) and muscle sodium levels (rs = -0.42, P < 0.001). CONCLUSION Muscle and sweat sodium concentrations are significantly higher on a high-salt intake in healthy male and female individuals, suggesting that muscle and sweat play a role in regulating sodium balance in humans.
Collapse
|
23
|
Hanukoglu A, Vargas-Poussou R, Landau Z, Yosovich K, Hureaux M, Zennaro MC. Renin-aldosterone system evaluation over four decades in an extended family with autosomal dominant pseudohypoaldosteronism due to a deletion in the NR3C2 gene. J Steroid Biochem Mol Biol 2020; 204:105755. [PMID: 33017655 DOI: 10.1016/j.jsbmb.2020.105755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Renal pseudohypoaldosteronism (PHA1) is a mild form of an aldosterone-resistance syndrome caused by mutations in the NR3C2 gene that codes for the mineralocorticoid receptor (MR). The disease is inherited as an autosomal dominant trait characterized by signs and symptoms of salt-losing in infancy. Disease manifestations could be severe in infancy but improve after the age of 1-3 years. Some affected members are asymptomatic and remain so life-long. In this study, we report the identification of a large deletion in the NR3C2 gene (c.1897+1_1898-1)_(c.*2955+?)del in renal PHA1 patients from an extended family spanning four generations. We prospectively evaluated the plasma renin activity and serum aldosterone profiles over four decades in symptomatic and asymptomatic affected family members. The benefits of early diagnosis on the clinical outcome were assessed as well. The long-term follow-up showed an age-dependent decrease in both plasma renin activity and serum aldosterone levels over the years. However, aldosterone levels remain high life-long. Thus, levels of aldosterone are a reliable marker to detect asymptomatic family members. The diagnosis of the proposita led to early diagnosis and therapy in other affected family members, significantly mitigating the clinical course. Despite the extremely elevated serum aldosterone levels during pregnancy, affected pregnant women did not experience any ill effects. However, this should be verified by observations in other adult patients.
Collapse
Affiliation(s)
- Aaron Hanukoglu
- Division of Pediatric Endocrinology, E. Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Rosa Vargas-Poussou
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France; Centre de Références de Maladies Rénales Rares de l'Enfant et d'Adulte (MARHEA)
| | - Zohar Landau
- Division of Pediatric Endocrinology, E. Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Keren Yosovich
- Molecular Genetics Lab, Wolfson Medical Center, Holon, Israel
| | - Marguerite Hureaux
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France; Inserm, PARCC, Université de Paris, F-75015 Paris, France
| | - Maria-Christina Zennaro
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France; Inserm, PARCC, Université de Paris, F-75015 Paris, France
| |
Collapse
|
24
|
Hołyńska-Iwan I, Szewczyk-Golec K. Analysis of changes in sodium and chloride ion transport in the skin. Sci Rep 2020; 10:18094. [PMID: 33093644 PMCID: PMC7581804 DOI: 10.1038/s41598-020-75275-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
The measurement of electric potential and resistance reflect the transport of sodium and chloride ions which take place in keratinocytes and is associated with skin response to stimuli arising from external and internal environment. The aim of the study was to assess changes in electrical resistance and the transport of chloride and sodium ions, under iso-osmotic conditions and following the use of inhibitors affecting these ions' transport, namely amiloride (A) and bumetanide (B). The experiment was performed on 104 fragments of rabbit skin, divided into three groups: control (n = 35), A-inhibited sodium transport (n = 33) and B-inhibited chloride transport (n = 36). Measurement of electrical resistance (R) and electrical potential (PD) confirmed tissue viability during the experiment, no statistically significant differences in relation to control conditions were noted. The minimal and maximal PD measured during stimulation confirmed the repeatability of the recorded reactions to the mechanical and mechanical-chemical stimulus for all examined groups. Measurement of PD during stimulation showed differences in the transport of sodium and chloride ions in each of the analyzed groups relative to the control. The statistical analysis of the PD measured in stationary conditions and during mechanical and/or mechanical-chemical stimulation proved that changes in sodium and chloride ion transport constitute the physiological response of keratinocytes to changes in environmental conditions for all applied experimental conditions. Assessment of transdermal ion transport changes may be a useful tool for assessing the skin condition with tendency to pain hyperactivity and hypersensitivity to xenobiotics.
Collapse
Affiliation(s)
- Iga Hołyńska-Iwan
- Laboratory of Electrophysiology of Epithelial Tissue and Skin, Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Skłodowskiej-Curie 9, 85-094, Bydgoszcz, Poland.
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| |
Collapse
|
25
|
Cisplatin influences the skin ion transport - An in vitro study. Biomed Pharmacother 2020; 129:110502. [PMID: 32768977 DOI: 10.1016/j.biopha.2020.110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022] Open
Abstract
Platinum-based drugs, used in treating tumors, cause numerous undesirable effects in patients, like neuropathic pain, hypersensitivity, reddening, pruritus and rash. Changes in Na+ transport modify local osmolality and contribute to the initiation of hypersensitivity and allergy. They are also associated with stimulation of C-fibres and hyperalgesia. Cl- transport is essential for regulation of sweat composition and the migration of immunocompetent cells. The aim of the conducted study was to assess the effect of a cisplatin solution on the electrophysiological parameters of the isolated rabbit skin specimens. The difference in transepithelial electrical potential (PD) and resistance (R) in stationary conditions and during 15 s mechanical-chemical stimulation (PDmin and PDmax), were measured. Measurement of R revealed that tissue samples were live, and their permeability to ions were stable. Control specimens had PD -0.22 mV (median). The PD of specimens treated by cisplatin was -0.55 mV (median), to for cisplatin and bumetanide 0 mV (median). Treatment with cisplatin did not change the continuous transport of Na+ and K+ ions, but did change that of Cl- ions. Stimulation of samples with the transport blockers of Cl-, Na+ and both induced repeatable and measurable reactions in the transport of the appropriate ions. It was shown that absorption of Na+ ions and release of Cl- ions was intensified than in the untreated specimens. It was proven in the study that cisplatin influences the Na+ and Cl- transport in the skin cells. Restoring the balance in ion flow can prevent side effects of use cisplatin-based drugs.
Collapse
|
26
|
Jaques R, Shakeel A, Hoyle C. Novel therapeutic approaches for the management of cystic fibrosis. Multidiscip Respir Med 2020; 15:690. [PMID: 33282281 PMCID: PMC7706361 DOI: 10.4081/mrm.2020.690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic condition characterised by the build-up of thick, sticky mucus that can damage many of the body's organs. It is a life-long disease that results in a shortened life expectancy, often due to the progression of advanced lung disease. Treatment has previously targeted the downstream symptoms such as diminished mucus clearance and recurrent infection. More recently, significant advances have been made in treating the cause of the disease by targeting the faulty gene responsible. Hope for the development of potential therapies lies with ongoing research into new pharmacological agents and gene therapy. This review gives an overview of CF, and summarises the current evidence regarding the disease management and upcoming strategies aimed at treating or potentially curing this condition.
Collapse
Affiliation(s)
- Ryan Jaques
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, UK
| | | | | |
Collapse
|
27
|
Sharma S, Kumaran GK, Hanukoglu I. High-resolution imaging of the actin cytoskeleton and epithelial sodium channel, CFTR, and aquaporin-9 localization in the vas deferens. Mol Reprod Dev 2020; 87:305-319. [PMID: 31950584 DOI: 10.1002/mrd.23317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/05/2020] [Indexed: 12/30/2022]
Abstract
Vas deferens is a conduit for sperm and fluid from the epididymis to the urethra. The duct is surrounded by a thick smooth muscle layer. To map the actin cytoskeleton of the duct and its epithelium, we reacted sections of the proximal and distal regions with fluorescent phalloidin. Confocal microscopic imaging showed that the cylinder-shaped epithelium of the proximal region has a thick apical border of actin filaments that form microvilli. The epithelium of the distal region is covered with tall stereocilia (13-18 µm) that extend from the apical border into the lumen. In both regions, the lateral and basal cell borders showed a thin lining of actin cytoskeleton. The vas deferens epithelium contains various channels to regulate the fluid composition in the lumen. We mapped the localization of the epithelial sodium channel (ENaC), aquaporin-9 (AQP9), and cystic fibrosis transmembrane conductance regulator (CFTR) in the rat and mouse vas deferens. ENaC and AQP9 immunofluorescence were localized on the luminal surface and stereocilia and also in the basal and smooth muscle layers. CFTR immunofluorescence appeared only on the luminal surface and in smooth muscle layers. The localization of all three channels on the apical surface of the columnar epithelial cells provides clear evidence that these channels are involved concurrently in the regulation of fluid and electrolyte balance in the lumen of the vas deferens. ENaC allows the flow of Na+ ions from the lumen into the cytoplasm, and the osmotic gradient generated provides the driving force for the passive flow of water through AQP channels.
Collapse
Affiliation(s)
- Sachin Sharma
- Laboratory of Cell Biology, Ariel University, Ariel, Israel
| | | | | |
Collapse
|
28
|
Adachi M, Tajima T, Muroya K. Dietary potassium restriction attenuates urinary sodium wasting in the generalized form of pseudohypoaldosteronism type 1. CEN Case Rep 2020; 9:133-137. [PMID: 31900739 DOI: 10.1007/s13730-019-00441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/15/2019] [Indexed: 10/25/2022] Open
Abstract
Owing to its rarity and severe nature, the treatment for generalized pseudohypoaldosteronism type 1 (PHA1), a genetic disorder in the epithelial sodium channel (ENaC), is exclusively experience-based. In particular, the usefulness of dietary potassium restriction in PHA1 remains unclear with the absence of theoretical background to elucidate its utility. First, we demonstrated the effect of potassium restriction in a 13-month-old patient with ENaC γ-subunit gene mutations via a retrospective chart review; reduction of daily dietary potassium intake from 40 to 20 mEq induced rapid restoration of volume depletion, as evidenced by weight gain, elevation of the serum sodium level from 133 to 141 mEq/L, decreased urinary sodium excretion, and normalized renin activity. The serum potassium level decreased from 5.6 to 4.5 mEq/L. Next, we attempted to elucidate the pathophysiological basis of the usefulness of potassium restriction, leveraged by the increased knowledge regarding the roles of with-no-lysine kinases (WNKs) in the distal nephron. When potassium is restricted, the WNK signal will turn "on" in the distal nephron via reduction in the intracellular chloride level. Consequently, the sodium reabsorption from the Na+Cl- cotransporter (NCC) in the distal convoluted tubule and possibly from pendrin in the β-intercalated cell will increase. Thus, potassium restriction causes NCC and pendrin to compensate for the non-functional ENaC in the collecting duct. In conclusion, dietary potassium restriction is one of the indispensable treatments for generalized PHA1.
Collapse
Affiliation(s)
- Masanori Adachi
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Mutsukawa, 2-138-4, Minami-ku, Yokohama, 232-8555, Japan.
| | - Toshihiro Tajima
- Department of Pediatrics, Jichi Children's Hospital Medical Center Tochigi, Tochigi, Japan
| | - Koji Muroya
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Mutsukawa, 2-138-4, Minami-ku, Yokohama, 232-8555, Japan
| |
Collapse
|
29
|
|
30
|
Kumaran GK, Hanukoglu I. Identification and classification of epithelial cells in nephron segments by actin cytoskeleton patterns. FEBS J 2019; 287:1176-1194. [PMID: 31605441 PMCID: PMC7384063 DOI: 10.1111/febs.15088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
The basic functional unit in a kidney is the nephron, which is a long and morphologically segmented tubule. The nephron begins with a cluster of capillaries called glomerulus through which the blood is filtered into the Bowman's space. The filtrate flows through the nephron segments. During this flow, electrolytes and solutes are reabsorbed by channels and transport systems into the capillaries wrapped around the nephron. Many questions related to renal function focus on identifying the sites of expression of these systems. In this study, we mapped whole kidney sections by confocal microscopic imaging of fluorescent phalloidin, which binds to actin filaments. In tile scans (composed of hundreds of images) of these sections, the cortex and the medullary regions (outer and inner stripes of the outer medulla, and inner medulla) could be easily identified by their cytoskeletal patterns. At a higher resolution, we identified distinct features of the actin cytoskeleton in the apical, basal, and lateral borders of the cells. These features could be used to identify segments of a nephron (the proximal tubule, thin and thick segments of Henle's loop, and distal tubule), the collecting duct system, the papillary ducts in the papilla, and the urothelium that covers the pelvis. To verify our findings, we used additional markers, including aquaporin isoforms, cytokeratin 8‐18, and WGA lectin. This study highlights the power of high‐resolution confocal microscopy for identifying specific cell types using the simple probe of F‐actin‐binding phalloidin.
Collapse
|
31
|
Polychronopoulou E, Braconnier P, Burnier M. New Insights on the Role of Sodium in the Physiological Regulation of Blood Pressure and Development of Hypertension. Front Cardiovasc Med 2019; 6:136. [PMID: 31608291 PMCID: PMC6756190 DOI: 10.3389/fcvm.2019.00136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023] Open
Abstract
A precise maintenance of sodium and fluid balance is an essential step in the regulation of blood pressure and alterations of this balance may lead to the development of hypertension. In recent years, several new advances were made in our understanding of the interaction between sodium and blood pressure regulation. The first is the discovery made possible with by new technology, such as 23Na-MRI, that sodium can be stored non-osmotically in tissues including the skin and muscles particularly when subjects are on a high sodium diet or have a reduced renal capacity to excrete sodium. These observations prompted the refinement of the original model of regulation of sodium balance from a two-compartment model comprising the extracellular fluid within the intravascular and interstitial spaces to a three-compartment model that includes the intracellular space of some tissues, most prominently the skin. In this new model, the immune system plays a role, thereby supporting many previous studies indicating that the immune system is a crucial co-contributor to the maintenance of hypertension through pro-hypertensive effects in the kidney, vasculature, and brain. Lastly, there is now evidence that sodium can affect the gut microbiome, and induce pro-inflammatory and immune responses, which might contribute to the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Erietta Polychronopoulou
- Service of Nephrology and Hypertension, Department of Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Philippe Braconnier
- Service of Nephrology and Hypertension, Department of Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Michel Burnier
- Service of Nephrology and Hypertension, Department of Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
32
|
Choi HI, Ko HJ, Kim AS, Moon H. The Association between Mineral and Trace Element Concentrations in Hair and the 10-Year Risk of Atherosclerotic Cardiovascular Disease in Healthy Community-Dwelling Elderly Individuals. Nutrients 2019; 11:E637. [PMID: 30884739 PMCID: PMC6471722 DOI: 10.3390/nu11030637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 12/25/2022] Open
Abstract
This cross-sectional analysis included 137 Korean subjects aged 60⁻79 years. All subjects underwent anthropometric measurements and laboratory tests. Scalp hair samples were obtained from each individual, the concentrations of 36 minerals and trace elements were analyzed, and 16 ratios of elements were calculated. ASCVD risk was estimated using pooled cohort ASCVD risk assessment equations for 10-year risk profiles. The 137 subjects were divided into three risk groups: low (<5%, n = 28), intermediate (5% to <7.5%, n = 21), and high (≥7.5%, n = 88) risk groups. After adjusting for obesity (BMI ≥ 25 kg/m²) and sex, Na concentration (mg%) in hair was significantly lower in the low-risk (13.91 ± 7.02) than in the intermediate-risk (47.18 ± 8.08) and high-risk (36.76 ± 3.95) groups (p for trend = 0.024). The concentration of K (mg%) in hair was also positively associated with the severity of ASCVD risk (10.50 ± 8.37, 23.62 ± 9.63, 33.31 ± 4.71, respectively; p for trend = 0.017), but their differences were not statistically significant (p = 0.059). By contrast, the levels of Co, U, and Hg, and the Ca/P and Ca/Mg ratios, were negatively correlated with the severity of ASCVD risk (p for trend < 0.05). Mean Na concentration in hair was significantly lower in the low-risk than in the other risk groups. By contrast, Co, U, and Hg concentrations showed significant negative associations with risk severity. Further studies are needed to assess whether dietary modification for trace elements could lower the risk of ASCVD.
Collapse
Affiliation(s)
- Hye-In Choi
- Department of Family Medicine, Kyungpook National University Hospital, Daegu 41944, Korea.
| | - Hae-Jin Ko
- Department of Family Medicine, Kyungpook National University Hospital, Daegu 41944, Korea.
- Department of Family Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
| | - A-Sol Kim
- Department of Family Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
- Department of Family Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea.
| | - Hana Moon
- Department of Family Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea.
| |
Collapse
|
33
|
Tóth KF, Ádám D, Bíró T, Oláh A. Cannabinoid Signaling in the Skin: Therapeutic Potential of the "C(ut)annabinoid" System. Molecules 2019; 24:E918. [PMID: 30845666 PMCID: PMC6429381 DOI: 10.3390/molecules24050918] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS) has lately been proven to be an important, multifaceted homeostatic regulator, which influences a wide-variety of physiological processes all over the body. Its members, the endocannabinoids (eCBs; e.g., anandamide), the eCB-responsive receptors (e.g., CB₁, CB₂), as well as the complex enzyme and transporter apparatus involved in the metabolism of the ligands were shown to be expressed in several tissues, including the skin. Although the best studied functions over the ECS are related to the central nervous system and to immune processes, experimental efforts over the last two decades have unambiguously confirmed that cutaneous cannabinoid ("c[ut]annabinoid") signaling is deeply involved in the maintenance of skin homeostasis, barrier formation and regeneration, and its dysregulation was implicated to contribute to several highly prevalent diseases and disorders, e.g., atopic dermatitis, psoriasis, scleroderma, acne, hair growth and pigmentation disorders, keratin diseases, various tumors, and itch. The current review aims to give an overview of the available skin-relevant endo- and phytocannabinoid literature with a special emphasis on the putative translational potential, and to highlight promising future research directions as well as existing challenges.
Collapse
Affiliation(s)
- Kinga Fanni Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Dorottya Ádám
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- HCEMM Nonprofit Ltd., 6720 Szeged, Hungary.
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
34
|
Sharma S, Hanukoglu I. Mapping the sites of localization of epithelial sodium channel (ENaC) and CFTR in segments of the mammalian epididymis. J Mol Histol 2019; 50:141-154. [PMID: 30659401 DOI: 10.1007/s10735-019-09813-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023]
Abstract
The sperm produced in the seminiferous tubules pass through the rete testis, efferent ducts, and epididymis. The epididymis has three distinct regions known as caput, corpus, and cauda. The transit through the epididymis is an essential process in sperm maturation. The lumen of each epididymal region has a unique fluid composition regulated by many ion channels and transporters in the epithelial cells. The objective of this study was to map the sites of localization of ion channels ENaC and CFTR along the length of the mouse and rat epididymis using confocal microscopic imaging. The integrity of the fine structure of the tissues was verified by fluorescent phalloidin staining of actin filaments visualized by high-resolution confocal microscopy. The 2D and 3D images showed preservation of the stereocilia. Based on these images we determined morphometric parameters of the epithelial cells and ducts. ENaC and CFTR immunofluorescence appeared almost continuously on the apical membrane of caput and in smooth muscle myoid cells. In cauda, CFTR expression was observed continuously in long stretches of epithelium interrupted by clusters of cells that showed no CFTR expression. Similar patterns of localization were observed in both mouse and rat samples. Mutations in the CFTR gene are known to result in male infertility. Based on the widespread presence of ENaC along the epididymis we suggest that mutations in ENaC subunits may also be associated with male infertility. The diverse phenotypes associated with CFTR mutations may be due to malfunction of CFTR at specific subcellular locations in the male reproductive system.
Collapse
Affiliation(s)
- Sachin Sharma
- Laboratory of Cell Biology, Ariel University, 40700, Ariel, Israel
| | - Israel Hanukoglu
- Laboratory of Cell Biology, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
35
|
Boggula VR, Hanukoglu I, Sagiv R, Enuka Y, Hanukoglu A. Expression of the epithelial sodium channel (ENaC) in the endometrium - Implications for fertility in a patient with pseudohypoaldosteronism. J Steroid Biochem Mol Biol 2018; 183:137-141. [PMID: 29885352 DOI: 10.1016/j.jsbmb.2018.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/21/2023]
Abstract
Pseudohypoaldosteronism type 1 (PHA) is a syndrome of unresponsiveness to aldosterone. The severe form of this disease results from mutations in the genes that encode for the epithelial sodium channel subunits, SCNN1A, SCNN1B, and SCNN1G. A PHA patient under our care failed to conceive after many years and IVF trials. Our earlier studies had shown that ENaC is expressed in the female reproductive tract. We hypothesized that a defective ENaC expression may be responsible for the infertility of the patient. To test this hypothesis we examined ENaC expression in endometrial Pipelle biopsy samples from three healthy women and the PHA patient with an Arg508X mutation in the SCNN1A gene. The formalin fixed samples were reacted with anti-ENaCA (alpha subunit) antisera, followed by secondary antibodies to visualize ENaC expression by immunofluorescence. Confocal microscopy imaging of the samples showed strong ENaC immunofluorescence along the luminal border (apical membrane) of the epithelial cells in Pipelle samples from healthy women. In contrast, none of the samples from the PHA patient showed ENaC immunofluorescence. The Arg508X mutation interrupts the transport of ENaC subunits to the cell surface, yet it would not be expected to disrupt ENaC localization in the cytoplasm. In contrast to endometrium where ENaC is localized in the apical membrane of the epithelial cells, in keratinocytes ENaC is expressed in cytoplasmic pools. Therefore, we examined ENaC immunofluorescence in plucked hair follicles. As expected, ENaC immunofluorescence was detected in the cytoplasm of keratinocytes of both normal and PHA samples. Our results support the hypothesis that lack of expression of ENaC on the endometrial surface may be responsible for the infertility of the PHA patient.
Collapse
Affiliation(s)
| | | | - Ron Sagiv
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Department of Obstetrics & Gynecology, E. Wolfson Medical Center, Holon, Israel
| | - Yehoshua Enuka
- Laboratory of Cell Biology, Ariel University, Ariel, Israel
| | - Aaron Hanukoglu
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Division of Pediatric Endocrinology, E. Wolfson Medical Center, Holon, Israel.
| |
Collapse
|
36
|
Hanukoglu A, Hanukoglu I. In systemic pseudohypoaldosteronism type 1 skin manifestations are not rare and the disease is not transient. Clin Endocrinol (Oxf) 2018; 89:240-241. [PMID: 29702750 DOI: 10.1111/cen.13730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aaron Hanukoglu
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Division of Pediatric Endocrinology, E. Wolfson Medical Center, Holon, Israel
| | | |
Collapse
|
37
|
Elias SO, Sofola OA, Jaja SI. Epithelial sodium channel blockade and new β-ENaC polymorphisms among normotensive and hypertensive adult Nigerians. Clin Exp Hypertens 2018; 41:144-151. [PMID: 29580127 DOI: 10.1080/10641963.2018.1451538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We sought to determine the effect of amiloride on blood pressure (BP) and the presence of polymorphisms of the β-subunit of the epithelial sodium channel (ENaC) among normotensive (NT) and hypertensive (HT) Nigerians. Healthy volunteers-47 NT and 53 age-matched HT were recruited after giving informed consent. Subjects were salt-loaded with 200 mmol of NaCl daily for 5 days. Following a week washout period, salt-loading was repeated in addition to the administration of 5 mg amiloride daily for five days. Blood pressure, plasma and urine electrolytes were measured at baseline, after salt-loading and after salt-loading plus amiloride. PCR amplicons were sequenced for β-ENaC polymorphisms. Salt-loading led to a significant increase (p < 0.05) in SBP among NT and HT and in DBP (p < 0.001) only among HT. Amiloride reduced SBP and DBP to below baseline levels in NT (p < 0.05) and HT (p < 0.001) subjects. Five of the subjects had the β-T594M polymorphism, HT 3/53; NT 2/47 (p = 0.75). Four previously unreported β-ENaC mutations were recorded: E632V and E636V, respectively, among two HT subjects, D638Y in another HT and L628Q in one NT subject. We showed the presence of β-ENaC polymorphisms among our populace and the possible usefulness of amiloride as a single antihypertensive among Nigerians.
Collapse
Affiliation(s)
- Simiat O Elias
- Department of Physiology, Lagos State University College of Medicine, Lagos, Nigeria
| | - Olusoga A Sofola
- Department of Physiology, College of Medicine University of Lagos, Lagos, Nigeria
| | - Smith I Jaja
- Department of Physiology, College of Medicine University of Lagos, Lagos, Nigeria
| |
Collapse
|
38
|
Localization of epithelial sodium channel (ENaC) and CFTR in the germinal epithelium of the testis, Sertoli cells, and spermatozoa. J Mol Histol 2018; 49:195-208. [PMID: 29453757 DOI: 10.1007/s10735-018-9759-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/05/2018] [Indexed: 12/23/2022]
Abstract
Spermatogenesis starts within the seminiferous tubules of the testis by mitotic division of spermatogonia that produces spermatocytes. Meiotic division of these spermatocytes produces haploid spermatids that differentiate into spermatozoa. In this study, we examined the expression of ENaC and CFTR (a Cl- channel) in rat testicular sections using confocal microscopic immunofluorescence. The structural integrity of the seminiferous tubule sections was verified by precise phalloidin staining of the actin fibers located abundantly at both basal and adluminal tight junctions. The acrosome forming regions in the round spermatids were stained using an FITC coupled lectin (wheat germ agglutinin). In all phases of the germ cells (spermatogonia, spermatocytes, and spermatids) ENaC was localized in cytoplasmic pools. Prior to spermiation, ENaC immunofluorescence appeared along the tails of the spermatids. In spermatozoa isolated from the epididymis, ENaC was localized at the acrosome and a central region of the sperm flagellum. The mature sperm are transcriptionally silent. Hence, we suggest that ENaC subunits in cytoplasmic pools in germ cells serve as the source of ENaC subunits located along the tail of spermatozoa. The locations of ENaC is compatible with a possible role in the acrosomal reaction and sperm mobility. In contrast to ENaC, CFTR immunofluorescence was most strongly observed specifically within the Sertoli cell nuclei. Based on the nuclear localization of CFTR we suggest that, in addition to its role as an ion channel, CFTR may have an independent role in gene regulation within the nuclei.
Collapse
|
39
|
Hendricks AJ, Vaughn AR, Clark AK, Yosipovitch G, Shi VY. Sweat mechanisms and dysfunctions in atopic dermatitis. J Dermatol Sci 2018; 89:105-111. [DOI: 10.1016/j.jdermsci.2017.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/14/2017] [Indexed: 11/17/2022]
|
40
|
Systemic Pseudohypoaldosteronism Type I: A Case Report and Review of the Literature. Case Rep Pediatr 2017; 2017:7939854. [PMID: 28484659 PMCID: PMC5412170 DOI: 10.1155/2017/7939854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/15/2017] [Accepted: 03/19/2017] [Indexed: 12/12/2022] Open
Abstract
Systemic pseudohypoaldosteronism (PHA) type I is a rare genetic disorder resulting from mutations in the subunits of the epithelial sodium channel that manifests as severe salt wasting, hyperkalemia, and metabolic acidosis in infancy. In this article we report a patient with systemic PHA type I presenting with severe dehydration due to salt wasting at 6 days of life. She was found to have a known mutation in the SCNN1A gene and subsequently required treatment with sodium supplementation. We also review the clinical presentation, differential diagnosis, and treatment of systemic PHA type I and summarize data from 27 cases with follow-up data.
Collapse
|