1
|
Li Z, Liu Y, Ma T, Lv C, Li Y, Duan H, Zhao X, Wang J, Zhang Y. Smart-seq2 Technology Reveals a Novel Mechanism That Zearalenone Inhibits the In Vitro Maturation of Ovine Oocytes by Influencing TNFAIP6 Expression. Toxins (Basel) 2023; 15:617. [PMID: 37888648 PMCID: PMC10611292 DOI: 10.3390/toxins15100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Zearalenone (ZEN), a non-steroidal estrogenic fungal toxin widely present in forage, food, and their ingredients, poses a serious threat to animal and human reproductive health. ZEN also threatens ovine, a major source of human food and breeding stock. However, the mechanisms underlying the impact of ZEN on the in vitro maturation (IVM) of ovine oocytes remain unclear. This study aimed to elucidate these mechanisms using the Smart-seq2 technology. A total of 146 differentially expressed genes were obtained, using Smart-seq2, from sheep oocytes cultured in vitro after ZEN treatment. ZEN treatment inhibited RUNX2 and SPP1 expression in the PI3K signaling pathway, leading to the downregulation of THBS1 and ultimately the downregulation of TNFAIP6; ZEN can also decrease TNFAIP6 by reducing PTPRC and ITGAM. Both inhibit in vitro maturation of ovine oocytes and proliferation of cumulus cells by downregulating TNFAIP6. These findings provide data and a theoretical basis for elucidating ZEN's toxicity mechanisms, screening therapeutic drugs, and reducing ZEN-related losses in the ovine industry.
Collapse
Affiliation(s)
- Zongshuai Li
- State Key Laboratory of Grassland Agro–Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Yali Liu
- Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Tian Ma
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Chen Lv
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Yina Li
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Hongwei Duan
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Xingxu Zhao
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Jianlin Wang
- State Key Laboratory of Grassland Agro–Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| |
Collapse
|
2
|
Fan Y, Jin L, He Z, Wei T, Luo T, Zhang J, Liu C, Dai C, A C, Liang Y, Tao X, Lv X, Gu Y, Li M. A cell transcriptomic profile provides insights into adipocytes of porcine mammary gland across development. J Anim Sci Biotechnol 2023; 14:126. [PMID: 37805503 PMCID: PMC10560433 DOI: 10.1186/s40104-023-00926-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/03/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Studying the composition and developmental mechanisms in mammary gland is crucial for healthy growth of newborns. The mammary gland is inherently heterogeneous, and its physiological function dependents on the gene expression of multiple cell types. Most studies focused on epithelial cells, disregarding the role of neighboring adipocytes. RESULTS Here, we constructed the largest transcriptomic dataset of porcine mammary gland cells thus far. The dataset captured 126,829 high-quality nuclei from physiological mammary glands across five developmental stages (d 90 of gestation, G90; d 0 after lactation, L0; d 20 after lactation, L20; 2 d post natural involution, PI2; 7 d post natural involution, PI7). Seven cell types were identified, including epithelial cells, adipocytes, endothelial cells, fibroblasts cells, immune cells, myoepithelial cells and precursor cells. Our data indicate that mammary glands at different developmental stages have distinct phenotypic and transcriptional signatures. During late gestation (G90), the differentiation and proliferation of adipocytes were inhibited. Meanwhile, partly epithelial cells were completely differentiated. Pseudo-time analysis showed that epithelial cells undergo three stages to achieve lactation, including cellular differentiation, hormone sensing, and metabolic activation. During lactation (L0 and L20), adipocytes area accounts for less than 0.5% of mammary glands. To maintain their own survival, the adipocyte exhibited a poorly differentiated state and a proliferative capacity. Epithelial cells initiate lactation upon hormonal stimulation. After fulfilling lactation mission, their undergo physiological death under high intensity lactation. Interestingly, the physiological dead cells seem to be actively cleared by immune cells via CCL21-ACKR4 pathway. This biological process may be an important mechanism for maintaining homeostasis of the mammary gland. During natural involution (PI2 and PI7), epithelial cell populations dedifferentiate into mesenchymal stem cells to maintain the lactation potential of mammary glands for the next lactation cycle. CONCLUSION The molecular mechanisms of dedifferentiation, proliferation and redifferentiation of adipocytes and epithelial cells were revealed from late pregnancy to natural involution. This cell transcriptomic profile constitutes an essential reference for future studies in the development and remodeling of the mammary gland at different stages.
Collapse
Affiliation(s)
- Yongliang Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, 610041 China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Zhiping He
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Tiantian Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Tingting Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Can Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Changjiu Dai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Chao A
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yan Liang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Xuan Tao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Xuebin Lv
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Yiren Gu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, 610041 China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
3
|
Liu Y, Ding H, Yang Y, Liu Y, Cao X, Feng T. Progesterone Induces Apoptosis and Steroidogenesis in Porcine Placental Trophoblasts. Animals (Basel) 2022; 12:ani12192704. [PMID: 36230445 PMCID: PMC9558511 DOI: 10.3390/ani12192704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022] Open
Abstract
Placentation and placental steroidogenesis are important for pregnancy and maternal−fetal health. As pregnancy progresses, the main site of progesterone (P4) synthesis changes from the corpus luteum to the placenta, in which placental trophoblasts are the main cell type for P4 synthesis. Therefore, this study investigated the effects of P4 on apoptosis and steroidogenesis in porcine placental trophoblasts and the underlying molecular mechanisms. Porcine placental trophoblasts were treated with different concentrations of P4 for 48 h in a serum-free medium in vitro. Cell number, steroidogenesis, and relevant gene and protein expression levels were detected. A high dose of P4 (10.0 μM) significantly increased P4 (p < 0.01), androstenedione (p < 0.05), testosterone (p < 0.05), and estradiol (p < 0.05) production in porcine placental trophoblasts compared with that in control cells, while a low dose of P4 (1 × 10−3 μΜ) had no marked impact on steroid production. The mRNA expression of apoptosis-related genes (CASP3, CASP8, and Bax) (p < 0.05) and steroidogenesis-related genes (CYP11A1, CYP19A1, and StAR) (p < 0.01) was upregulated, and the expression of HSD3B and HSD17B4 was inhibited (p < 0.05) in the porcine placental trophoblasts treated with high doses of P4. Low doses of P4 had a lighter effect on gene expression than high doses. The expression of apoptosis-related proteins CASP3 (p < 0.05), and Bax (p < 0.01) and steroidogenesis-related proteins CYP19A1 (p < 0.05) and StAR (p < 0.01) was raised, but the proliferation-related protein CCND2 (p < 0.01) was downregulated in the pTr cells treated with high dose of P4. In comparison, a low dose of P4 inhibited the expression of Bax, CYP11A1 (all p < 0.01), and CCND2 (p < 0.05), but the expression of CASP3 (p < 0.05) and StAR (p < 0.01) was upregulated. In summary, excessive P4 can induce the apoptosis of porcine placental trophoblasts and lead to abnormal steroidogenesis in the placenta and hormone imbalance.
Collapse
Affiliation(s)
- Yueshuai Liu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Hongxiang Ding
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Yuze Yang
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Xin Cao
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
- Correspondence: (X.C.); (T.F.)
| | - Tao Feng
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
- Correspondence: (X.C.); (T.F.)
| |
Collapse
|
4
|
Hatırnaz Ş, Hatırnaz ES, Ellibeş Kaya A, Hatırnaz K, Soyer Çalışkan C, Sezer Ö, Dokuzeylül Güngor N, Demirel C, Baltacı V, Tan S, Dahan M. Oocyte maturation abnormalities - A systematic review of the evidence and mechanisms in a rare but difficult to manage fertility pheneomina. Turk J Obstet Gynecol 2022; 19:60-80. [PMID: 35343221 PMCID: PMC8966321 DOI: 10.4274/tjod.galenos.2022.76329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A small proportion of infertile women experience repeated oocyte maturation abnormalities (OMAS). OMAS include degenerated and dysmorphic oocytes, empty follicle syndrome, oocyte maturation arrest (OMA), resistant ovary syndrome and maturation defects due to primary ovarian insufficiency. Genetic factors play an important role in OMAS but still need specifications. This review documents the spectrum of OMAS and to evaluate the multiple subtypes classified as OMAS. In this review, readers will be able to understand the oocyte maturation mechanism, gene expression and their regulation that lead to different subtypes of OMAs, and it will discuss the animal and human studies related to OMAS and lastly the treatment options for OMAs. Literature searches using PubMed, MEDLINE, Embase, National Institute for Health and Care Excellence were performed to identify articles written in English focusing on Oocyte Maturation Abnormalities by looking for the following relevant keywords. A search was made with the specified keywords and included books and documents, clinical trials, animal studies, human studies, meta-analysis, randomized controlled trials, reviews, systematic reviews and options written in english. The search detected 3,953 sources published from 1961 to 2021. After title and abstract screening for study type, duplicates and relevancy, 2,914 studies were excluded. The remaining 1,039 records were assessed for eligibility by full-text reading and 886 records were then excluded. Two hundred and twenty seven full-text articles and 0 book chapters from the database were selected for inclusion. Overall, 227 articles, one unpublished and one abstract paper were included in this final review. In this review study, OMAS were classified and extensively evaluatedand possible treatment options under the light of current information, present literature and ongoing studies. Either genetic studies or in vitro maturation studies that will be handled in the future will lead more informations to be reached and may make it possible to obtain pregnancies.
Collapse
Affiliation(s)
- Şafak Hatırnaz
- Medicana Samsun International Hospital, In Vitro Fertilization-In Vitro Maturation Unit, Samsun, Turkey
| | - Ebru Saynur Hatırnaz
- Medicana Samsun International Hospital, In Vitro Fertilization-In Vitro Maturation Unit, Samsun, Turkey
| | - Aşkı Ellibeş Kaya
- Private Office, Clinic of Obstetrics and Gynecology Specialist, Samsun, Turkey
| | - Kaan Hatırnaz
- Ondokuz Mayıs University Faculty of Medicine, Department of Molecular Biology and Genetics, Samsun, Turkey
| | - Canan Soyer Çalışkan
- University of Health Sciences Turkey, Samsun Training and Research Hospital, Clinic of Obstetrics and Gynecology, Samsun, Turkey
| | - Özlem Sezer
- University of Health Sciences Turkey, Samsun Training and Research Hospital, Clinic of Genetics, Samsun, Turkey
| | | | - Cem Demirel
- Memorial Ataşehir Hospital, In Vitro Fertilization Unit, İstanbul, Turkey
| | | | - Seang Tan
- James Edmund Dodds Chair in ObGyn, Department of ObGyn, McGill University, OriginElle Fertility Clinic and Women, QC, Canada
| | - Michael Dahan
- McGill Reproductive Centre, Department of ObGyn, McGill University Montreal, Quebec, Canada
| |
Collapse
|