1
|
Wang R, Yang S, Li Q, Zhong D. CytoGAN: Unpaired staining transfer by structure preservation for cytopathology image analysis. Comput Biol Med 2024; 180:108942. [PMID: 39096614 DOI: 10.1016/j.compbiomed.2024.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
With the development of digital pathology, deep learning is increasingly being applied to endometrial cell morphology analysis for cancer screening. And cytology images with different staining may degrade the performance of these analysis algorithms. To address the impact of staining patterns, many strategies have been proposed and hematoxylin and eosin (H&E) images have been transferred to other staining styles. However, none of the existing methods are able to generate realistic cytological images with preserved cellular layout, and many important clinical structural information is lost. To address the above issues, we propose a different staining transformation model, CytoGAN, which can quickly and realistically generate images with different staining styles. It includes a novel structure preservation module that preserves the cell structure well, even if the resolution or cell size between the source and target domains do not match. Meanwhile, a stain adaptive module is designed to help the model generate realistic and high-quality endometrial cytology images. We compared our model with ten state-of-the-art stain transformation models and evaluated by two pathologists. Furthermore, in the downstream endometrial cancer classification task, our algorithm improves the robustness of the classification model on multimodal datasets, with more than 20 % improvement in accuracy. We found that generating specified specific stains from existing H&E images improves the diagnosis of endometrial cancer. Our code will be available on github.
Collapse
Affiliation(s)
- Ruijie Wang
- School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China.
| | - Sicheng Yang
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China.
| | - Qiling Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China.
| | - Dexing Zhong
- School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China; Pazhou Laboratory, Guangzhou, 510335, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, 311215, PR China.
| |
Collapse
|
2
|
Zhou Y, Qi T, Yang Y, Li Z, Hou Z, Zhao X, Ge Q, Lu Z. Effect of Different Staining Methods on Brain Cryosections. ACS Chem Neurosci 2024; 15:2243-2252. [PMID: 38779816 DOI: 10.1021/acschemneuro.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Staining frozen sections is often required to distinguish cell types for spatial transcriptomic studies of the brain. The impact of the staining methods on the RNA integrity of the cells becomes one of the limitations of spatial transcriptome technology with microdissection. However, there is a lack of systematic comparisons of different staining modalities for the pretreatment of frozen sections of brain tissue as well as their effects on transcriptome sequencing results. In this study, four different staining methods were analyzed for their effect on RNA integrity in frozen sections of brain tissue. Subsequently, differences in RNA quality in frozen sections under different staining conditions and their impact on transcriptome sequencing results were assessed by RNA-seq. As one of the most commonly used methods for staining pathological sections, HE staining seriously affects the RNA quality of frozen sections of brain tissue. In contrast, the homemade cresyl violet staining method developed in this study has the advantages of short staining time, low cost, and less RNA degradation. The homemade cresyl violet staining proposed in this study can be applied instead of HE staining as an advance staining step for transcriptome studies in frozen sections of brain tissue. In the future, this staining method may be suitable for wide application in brain-related studies of frozen tissue sections. Moreover, it is expected to become a routine step for staining cells before sampling in brain science.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ting Qi
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuwei Yang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhihui Li
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhuoran Hou
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Zhao Y, Cai L, Zhang X, Zhang H, Cai L, Zhou L, Huang B, Qian J. Hematoxylin and Eosin Staining Helps Reduce Maternal Contamination in Short Tandem Repeat Genotyping for Hydatidiform Mole Diagnosis. Int J Gynecol Pathol 2024; 43:253-263. [PMID: 37566880 PMCID: PMC11022989 DOI: 10.1097/pgp.0000000000000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Short tandem repeat (STR) genotyping provides parental origin information about aneuploidy pregnancy loss and has become the current gold standard for hydatidiform mole diagnosis. STR genotyping diagnostic support most commonly relies on formalin-fixed paraffin-embedded samples, but maternal contamination is one of the most common issues based on traditional unstained sections. To evaluate the influence of hematoxylin and eosin (H&E) staining on DNA quality and STR genotyping, DNA was isolated from unstained, deparaffinized hydrated, and H&E-stained tissue sections (i.e. 3 groups) from each of 6 formalin-fixed paraffin-embedded placentas. The macrodissected view field, DNA quality, and polymerase chain reaction amplification efficiency were compared among groups. STR genotyping analysis was performed in both the test cohort (n = 6) and the validation cohort (n = 149). H&E staining not only did not interfere with molecular DNA testing of formalin-fixed paraffin-embedded tissue but also had a clearer macrodissected field of vision. In the test cohort, H&E-stained sections were the only group that did not exhibit maternal miscellaneous peaks in STR genotyping results. In the validation cohort, 138 (92.62%) cases yielded satisfactory amplification results without maternal contamination. Thus, H&E staining helped to reduce maternal contamination in STR genotyping for hydatidiform mole diagnosis, suggesting that H&E-stained sections can be incorporated into the hydatidiform mole molecular diagnostic workflow.
Collapse
|
4
|
Zannini G, Tedesco I, Cozzolino I, Montella M, Clery E, Della Corte CM, Morgillo F, Accardo M, Franco R, Zito Marino F. A Critical Issue in Lung Cancer Cytology and Small Biopsies: DNA and RNA Extraction from Archival Stained Slides for Biomarker Detection through Real Time PCR and NGS-The Experience in Pathological Anatomy Unit. Diagnostics (Basel) 2023; 13:diagnostics13091637. [PMID: 37175028 PMCID: PMC10178763 DOI: 10.3390/diagnostics13091637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The handling of biomaterials is crucial for precision medicine in advanced-stage lung patients with only cytology or small biopsies available. The main purpose of the study was to evaluate the quantity and quality of nucleic acids extracted from mixed stained slides (MSSs), including H&E, IHC and FISH, compared to the extraction from unstained slides (USs). A series of 35 lung adenocarcinoma surgical samples was selected to set up the method and the technical approach was validated in a series of 15 small biopsies and 38 cytological samples. DNA extracted from MSSs was adequate in all samples and the Real Time PCR was successful in 30/35 surgical samples (86%), 14/15 small biopsies (93%), and 33/38 cytological samples (87%). NGS using DNA extracted from MSSs was successful in 18/35 surgical samples (51%), 11/15 small biopsies (73%), and 26/38 cytological samples (68%). RNA extracted from MSSs was unsatisfactory in all cases showing an inadequate degree of fragmentation. Our technical approach based on the recovery of stained slides could represent a strategic way forward for DNA-based biomarker testing in lung cancer cases without biomaterials. The RNA extracted from MSSs did not represent a successful approach.
Collapse
Affiliation(s)
- Giuseppa Zannini
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138 Naples, Italy
| | - Ilaria Tedesco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138 Naples, Italy
| | - Immacolata Cozzolino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138 Naples, Italy
| | - Marco Montella
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138 Naples, Italy
| | - Eduardo Clery
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138 Naples, Italy
| | - Carminia Maria Della Corte
- Medical Oncology, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131 Naples, Italy
| | - Floriana Morgillo
- Medical Oncology, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131 Naples, Italy
| | - Marina Accardo
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138 Naples, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138 Naples, Italy
| | - Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138 Naples, Italy
| |
Collapse
|
5
|
Chen T, Cao C, Zhang J, Streets A, Li T, Huang Y. Histologically resolved multiomics enables precise molecular profiling of human intratumor heterogeneity. PLoS Biol 2022; 20:e3001699. [PMID: 35776767 PMCID: PMC9282480 DOI: 10.1371/journal.pbio.3001699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/14/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
Both the composition of cell types and their spatial distribution in a tissue play a critical role in cellular function, organ development, and disease progression. For example, intratumor heterogeneity and the distribution of transcriptional and genetic events in single cells drive the genesis and development of cancer. However, it can be challenging to fully characterize the molecular profile of cells in a tissue with high spatial resolution because microscopy has limited ability to extract comprehensive genomic information, and the spatial resolution of genomic techniques tends to be limited by dissection. There is a growing need for tools that can be used to explore the relationship between histological features, gene expression patterns, and spatially correlated genomic alterations in healthy and diseased tissue samples. Here, we present a technique that combines label-free histology with spatially resolved multiomics in unfixed and unstained tissue sections. This approach leverages stimulated Raman scattering microscopy to provide chemical contrast that reveals histological tissue architecture, allowing for high-resolution in situ laser microdissection of regions of interests. These microtissue samples are then processed for DNA and RNA sequencing to identify unique genetic profiles that correspond to distinct anatomical regions. We demonstrate the capabilities of this technique by mapping gene expression and copy number alterations to histologically defined regions in human oral squamous cell carcinoma (OSCC). Our approach provides complementary insights in tumorigenesis and offers an integrative tool for macroscale cancer tissues with spatial multiomics assessments.
Collapse
Affiliation(s)
- Tao Chen
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- College of Engineering, Peking University, Beijing, China
| | - Chen Cao
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Beijing Key Laboratory of Digital Stomatology
| | - Aaron Streets
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Beijing Key Laboratory of Digital Stomatology
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- College of Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Guangdong, China
| |
Collapse
|
6
|
Zhu Z, Wang Q, Chen X, Wang Q, Yan C, Zhao X, Zhao W, Zhu WH. An Enzyme-Activatable Aggregation-Induced-Emission Probe: Intraoperative Pathological Fluorescent Diagnosis of Pancreatic Cancer via Specific Cathepsin E. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107444. [PMID: 34693566 DOI: 10.1002/adma.202107444] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Pancreatic cancer (PC) is one of the most devastating malignant tumors. However, fluorescence probes for early clinical diagnosis of PC often encounter difficulties in accuracy and penetrability. In this work, an enzyme-activated aggregation-induced-emission (AIE) probe, QM-HSP-CPP, for high-contrast fluorescence diagnosis of PC is developed by monitoring specific overexpressed enzyme Cathepsin E (CTSE). The probe is composed of an AIE fluorophore QM-COOH (QM = quinoline-malononitrile), CTSE-triggered hydrophobic peptide (HSP), and hydrophilic biocompatible cell penetrating peptide (CPP). The CPP unit can well-modulate the molecular dispersion properties, giving initial fluorescence-off state in the aqueous biosystem, thus endowing high signal-to-noise ratio, and finally overcoming the poor targeting selectivity of traditional AIE probes. CPP can ensure cell/tissue penetrating ability, thus allowing on-site monitoring of endogenous CTSE in PC cells, tissues, and living animal models. When the QM-HSP-CPP probe is specifically cleaved by CTSE, it can generate AIE signals in situ with high-specificity and long-term tracking ability, and successfully achieve intraoperative diagnosis of human PC sections, tracking PC in heterotopic nude mice models. The CTSE-enzyme-triggered AIEgens' liberation strategy improves accuracy and addresses the penetration problem simultaneously, which can expand the database of multitudinous biocompatible AIE-active probes, especially for establishing intraoperative pathological fluorescent diagnosis.
Collapse
Affiliation(s)
- Zhirong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qi Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoyan Chen
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Quan Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chengxu Yan
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaolei Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weijun Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei-Hong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
7
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2021; 154:1-5. [PMID: 32601749 DOI: 10.1007/s00418-020-01893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|