1
|
Seltmann A, Carravilla P, Reglinski K, Eggeling C, Waithe D. Neural network informed photon filtering reduces fluorescence correlation spectroscopy artifacts. Biophys J 2024; 123:745-755. [PMID: 38384131 PMCID: PMC10995453 DOI: 10.1016/j.bpj.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
Fluorescence correlation spectroscopy (FCS) techniques are well-established tools to investigate molecular dynamics in confocal and super-resolution microscopy. In practice, users often need to handle a variety of sample- or hardware-related artifacts, an example being peak artifacts created by bright, slow-moving clusters. Approaches to address peak artifacts exist, but measurements suffering from severe artifacts are typically nonanalyzable. Here, we trained a one-dimensional U-Net to automatically identify peak artifacts in fluorescence time series and then analyzed the purified, nonartifactual fluctuations by time-series editing. We show that, in samples with peak artifacts, the transit time and particle number distributions can be restored in simulations and validated the approach in two independent biological experiments. We propose that it is adaptable for other FCS artifacts, such as detector dropout, membrane movement, or photobleaching. In conclusion, this simulation-based, automated, open-source pipeline makes measurements analyzable that previously had to be discarded and extends every FCS user's experimental toolbox.
Collapse
Affiliation(s)
- Alexander Seltmann
- Institute for Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany.
| | | | - Katharina Reglinski
- Institute for Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany; Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Eggeling
- Institute for Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany; Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| | - Dominic Waithe
- MRC Centre for Computational Biology and Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Sankaran J, Wohland T. Current capabilities and future perspectives of FCS: super-resolution microscopy, machine learning, and in vivo applications. Commun Biol 2023; 6:699. [PMID: 37419967 PMCID: PMC10328937 DOI: 10.1038/s42003-023-05069-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is a single molecule sensitive tool for the quantitative measurement of biomolecular dynamics and interactions. Improvements in biology, computation, and detection technology enable real-time FCS experiments with multiplexed detection even in vivo. These new imaging modalities of FCS generate data at the rate of hundreds of MB/s requiring efficient data processing tools to extract information. Here, we briefly review FCS's capabilities and limitations before discussing recent directions that address these limitations with a focus on imaging modalities of FCS, their combinations with super-resolution microscopy, new evaluation strategies, especially machine learning, and applications in vivo.
Collapse
Affiliation(s)
- Jagadish Sankaran
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138632, Singapore.
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| |
Collapse
|
3
|
Roth J, Taatjes DJ. Histochemistry and Cell Biology-a glance into the past and a look ahead. Histochem Cell Biol 2023; 159:465-475. [PMID: 37195292 PMCID: PMC10247834 DOI: 10.1007/s00418-023-02195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2023] [Indexed: 05/18/2023]
Abstract
At the occasion of the 65th anniversary of Histochemistry and Cell Biology, we browse through its first ten years of publication and highlight a selection of papers from the early days of enzyme, protein, and carbohydrate histochemistry. In addition, we narrate recent progress to identify, quantify, and precisely determine the tissue localization of proteins and lipids, and small molecules by the combination of spectroscopic techniques and histology.
Collapse
Affiliation(s)
- Jürgen Roth
- University of Zurich, CH-8091, Zurich, Switzerland.
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
4
|
Liu Z, Zheng X, Wang J. Bioinspired Ice-Binding Materials for Tissue and Organ Cryopreservation. J Am Chem Soc 2022; 144:5685-5701. [PMID: 35324185 DOI: 10.1021/jacs.2c00203] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cryopreservation of tissues and organs can bring transformative changes to medicine and medical science. In the past decades, limited progress has been achieved, although cryopreservation of tissues and organs has long been intensively pursued. One key reason is that the cryoprotective agents (CPAs) currently used for cell cryopreservation cannot effectively preserve tissues and organs because of their cytotoxicity and tissue destructive effect as well as the low efficiency in controlling ice formation. In stark contrast, nature has its unique ways of controlling ice formation, and many living organisms can effectively prevent freezing damage. Ice-binding proteins (IBPs) are regarded as the essential materials identified in these living organisms for regulating ice nucleation and growth. Note that controversial results have been reported on the utilization of IBPs and their mimics for the cryopreservation of tissues and organs, that is, some groups revealed that IBPs and mimics exhibited unique superiorities in tissues cryopreservation, while other groups showed detrimental effects. In this perspective, we analyze possible reasons for the controversy and predict future research directions in the design and construction of IBP inspired ice-binding materials to be used as new CPAs for tissue cryopreservation after briefly introducing the cryo-injuries and the challenges of conventional CPAs in the cryopreservation of tissues and organs.
Collapse
Affiliation(s)
- Zhang Liu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xia Zheng
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
5
|
Kamoshita M, Kumar R, Anteghini M, Kunze M, Islinger M, Martins dos Santos V, Schrader M. Insights Into the Peroxisomal Protein Inventory of Zebrafish. Front Physiol 2022; 13:822509. [PMID: 35295584 PMCID: PMC8919083 DOI: 10.3389/fphys.2022.822509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022] Open
Abstract
Peroxisomes are ubiquitous, oxidative subcellular organelles with important functions in cellular lipid metabolism and redox homeostasis. Loss of peroxisomal functions causes severe disorders with developmental and neurological abnormalities. Zebrafish are emerging as an attractive vertebrate model to study peroxisomal disorders as well as cellular lipid metabolism. Here, we combined bioinformatics analyses with molecular cell biology and reveal the first comprehensive inventory of Danio rerio peroxisomal proteins, which we systematically compared with those of human peroxisomes. Through bioinformatics analysis of all PTS1-carrying proteins, we demonstrate that D. rerio lacks two well-known mammalian peroxisomal proteins (BAAT and ZADH2/PTGR3), but possesses a putative peroxisomal malate synthase (Mlsl) and verified differences in the presence of purine degrading enzymes. Furthermore, we revealed novel candidate peroxisomal proteins in D. rerio, whose function and localisation is discussed. Our findings confirm the suitability of zebrafish as a vertebrate model for peroxisome research and open possibilities for the study of novel peroxisomal candidate proteins in zebrafish and humans.
Collapse
Affiliation(s)
- Maki Kamoshita
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rechal Kumar
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Marco Anteghini
- LifeGlimmer GmbH, Berlin, Germany
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Markus Kunze
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Markus Islinger
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vítor Martins dos Santos
- LifeGlimmer GmbH, Berlin, Germany
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
- *Correspondence: Michael Schrader,
| |
Collapse
|
6
|
Petrich A, Dunsing V, Bobone S, Chiantia S. Influenza A M2 recruits M1 to the plasma membrane: A fluorescence fluctuation microscopy study. Biophys J 2021; 120:5478-5490. [PMID: 34808098 PMCID: PMC8715234 DOI: 10.1016/j.bpj.2021.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/16/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) is a respiratory pathogen that causes seasonal epidemics with significant mortality. One of the most abundant proteins in IAV particles is the matrix protein 1 (M1), which is essential for the virus structural stability. M1 organizes virion assembly and budding at the plasma membrane (PM), where it interacts with other viral components. The recruitment of M1 to the PM as well as its interaction with the other viral envelope proteins (hemagglutinin [HA], neuraminidase, matrix protein 2 [M2]) is controversially discussed in previous studies. Therefore, we used fluorescence fluctuation microscopy techniques (i.e., scanning fluorescence cross-correlation spectroscopy and number and brightness) to quantify the oligomeric state of M1 and its interactions with other viral proteins in co-transfected as well as infected cells. Our results indicate that M1 is recruited to the PM by M2, as a consequence of the strong interaction between the two proteins. In contrast, only a weak interaction between M1 and HA was observed. M1-HA interaction occurred only in the event that M1 was already bound to the PM. We therefore conclude that M2 initiates the assembly of IAV by recruiting M1 to the PM, possibly allowing its further interaction with other viral proteins.
Collapse
Affiliation(s)
- Annett Petrich
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany
| | - Valentin Dunsing
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany
| | - Sara Bobone
- University of Rome Tor Vergata, Department of Chemical Science and Technologies, Roma, Italy
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany.
| |
Collapse
|
7
|
Applications of Solution NMR in Drug Discovery. Molecules 2021; 26:molecules26030576. [PMID: 33499337 PMCID: PMC7865596 DOI: 10.3390/molecules26030576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
During the past decades, solution nuclear magnetic resonance (NMR) spectroscopy has demonstrated itself as a promising tool in drug discovery. Especially, fragment-based drug discovery (FBDD) has benefited a lot from the NMR development. Multiple candidate compounds and FDA-approved drugs derived from FBDD have been developed with the assistance of NMR techniques. NMR has broad applications in different stages of the FBDD process, which includes fragment library construction, hit generation and validation, hit-to-lead optimization and working mechanism elucidation, etc. In this manuscript, we reviewed the current progresses of NMR applications in fragment-based drug discovery, which were illustrated by multiple reported cases. Moreover, the NMR applications in protein-protein interaction (PPI) modulators development and the progress of in-cell NMR for drug discovery were also briefly summarized.
Collapse
|
8
|
Affiliation(s)
- Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|