1
|
Pereira TTA, Mendes CE, Souza RF, Caetano MAF, Magalhães HIR, de Paulo CB, Watanabe IS, Castelucci P. Changes in the Pannexin Channel in Ileum Myenteric Plexus and Intestinal Motility Following Ischemia and Reperfusion. Neurogastroenterol Motil 2025:e14996. [PMID: 39758008 DOI: 10.1111/nmo.14996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/28/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Intestinal ischemia affects the functioning of the Enteric Nervous System (ENS). Pannexin-1 channel participates in cell communication and extracellular signaling. Probenecid (PB) is a pannexin-1 channel inhibitor, which can be a potential treatment for intestinal ischemia. AIM Study the effects of ileal ischemia and reperfusion (I/R) and PB treatment on myenteric neurons and in rats. METHODS Male Wistar rats were used for I/R induction, the ileal vessels were occluded for 45 min and reperfusion was performed after this time. The Sham groups underwent all surgical procedures without obstruction of the ileal vessels. Animals were euthanized 24 h or 14d post-I/R. The PB group received an injection of PB post-I/R. Ileal segments were collected for immunofluorescence analyses to identify neurons calretinin immunoreactive (-ir) and pannexin-1-ir. Neuronal density (cells/field), area (μm2), intestinal motility, and ultrastructural analyses were performed. KEY RESULTS The pannexin-1 channel was double-labeled with calretinin-ir neurons. Neuronal density reduced by 21% reduction in calretinin-ir neurons in the I/R 24 h group and recovered 26% in the PB 24 h group. In the 14d group, there was a 23% reduction in calretinin-ir neurons in the I/R 14d group and a recovery of 26% in the PB 14d group. The analysis of the contraction after electrical simulation was lower in the I/R 14 d group and recovered in the PB 14d. CONCLUSIONS AND INFERENCES Intestinal I/R affects myenteric neurons and causes morphological and functional changes. PB was able to attenuate the effects of I/R and could constitute a therapeutic tool for intestinal I/R.
Collapse
Affiliation(s)
| | - Cristina Eusébio Mendes
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberta Figueiroa Souza
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Caroline Bures de Paulo
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Ii Sei Watanabe
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Voss U. Enteric neuroprotection-A matter of balancing redox potentials, limiting inflammation, and boosting resilience. Neurogastroenterol Motil 2024:e14871. [PMID: 39038122 DOI: 10.1111/nmo.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The enteric nervous system (ENS) orchestrates intricate and autonomous functions throughout the gastrointestinal (GI) tract. Disruptions in ENS function are associated GI disorders. This mini review focuses on the past decade's research, utilizing rodent models, with an emphasis on protecting enteric neurons from loss. The review specifically looks at efforts to reduce oxidative stress, limit inflammation, and enhance neuronal resilience. Protective interventions including administration of antioxidants and compounds targeting cellular redox buffer systems, are evaluated for their effectiveness in preventing loss of enteric neurons in the ischemia-reperfusion model and streptozotocin-induced diabetes model. Interventions such as engrafting mesenchymal stem cells and targeting inflammatory signaling pathways in enteric neurons and glial cells are evaluated in inflammatory bowel disease models including the Winnie mouse, DSS-, and DNBS/TNBS-induced colitis models. The review also touches upon neuronal resilience, particularly in the context of Parkinson's disease models. Including estrogen's neuroprotective role, and the influence of metal ions on enteric neuronal protection. Understanding the dynamic interplay within the ENS and its role in disease pathogenesis holds promise for developing targeted therapies to effectively manage and treat various GI ailments.
Collapse
Affiliation(s)
- Ulrikke Voss
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Wan MM, Fu ZY, Jin T, Wang ZY, Sun XY, Gao WP. Electroacupuncture regulates the P2X 7R-NLRP3 inflammatory cascade to relieve decreased sensation on ocular surface of type 2 diabetic rats with dry eye. Purinergic Signal 2024:10.1007/s11302-024-09991-0. [PMID: 38467962 DOI: 10.1007/s11302-024-09991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Dry eye (DE) is a prevalent ocular surface disease in patients with type 2 diabetes (T2DM). However, current medications are ineffective against decreased sensation on the ocular surface. While electroacupuncture (EA) effectively alleviates decreased sensation on ocular surface of DE in patients with T2DM, the neuroprotective mechanism remains unclear. This study explored the pathogenesis and therapeutic targets of T2DM-associated DE through bioinformatics analysis. It further investigated the underlying mechanism by which EA improves decreased sensation on the ocular surface of DE in rats with T2DM. Bioinformatic analysis was applied to annotate the potential pathogenesis of T2DM DE. T2DM and DE was induced in male rats. Following treatment with EA and fluorometholone, comprehensive metrics were assessed. Additionally, the expression patterns of key markers were studied. Key targets such as NLRP3, Caspase-1, and NOD-like receptor signaling may be involved in the pathogenesis of T2DM DE. EA treatment improved ocular measures. Furthermore, EA potently downregulated P2X7R, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 expression within the trigeminal ganglion and spinal trigeminal nucleus caudalis. Targeted P2X7R antagonist (A-438079) and agonist (BzATP) employed as controls to decipher the biochemistry of the therapeutic effects of EA showed an anti-inflammatory effect with A-438079, while BzATP blocked the anti-inflammatory effect of EA. EA relieved DE symptoms and attenuated inflammatory damage to sensory nerve pathways in T2DM rats with DE. These findings suggest a crucial role of EA inhibition of the P2X7R-NLRP3 inflammatory cascade to provide these benefits.
Collapse
Affiliation(s)
- Mi-Mi Wan
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhang-Yitian Fu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tuo Jin
- Department of Ophthalmology, Kunshan Hospital of Chinese Medicine, Suzhou, China
| | - Zhuo-Yuan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin-Yi Sun
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wei-Ping Gao
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Tang H, Wei W, Luo Y, Lu X, Chen J, Yang S, Wu F, Zhou H, Ma W, Yang X. P2X7 receptors: a bibliometric review from 2002 to 2023. Purinergic Signal 2024:10.1007/s11302-024-09996-9. [PMID: 38421486 DOI: 10.1007/s11302-024-09996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
For many years, there has been ongoing research on the P2X7 receptor (P2X7R). A comprehensive, systematic, and objective evaluation of the scientific output and status of P2X7R will be instrumental in guiding future research directions. This study aims to present the status and trends of P2X7R research from 2002 to 2023. Publications related to P2X7R were retrieved from the Web of Science Core Collection database. Quantitative analysis and visualization tools were Microsoft Excel, VOSviewer, and CiteSpace software. The analysis content included publication trends, literature co-citation, and keywords. 3282 records were included in total, with the majority of papers published within the last 10 years. Based on literature co-citation and keyword analysis, neuroinflammation, neuropathic pain, gastrointestinal diseases, tumor microenvironment, rheumatoid arthritis, age-related macular degeneration, and P2X7R antagonists were considered to be the hotspots and frontiers of P2X7R research. Researchers will get a more intuitive understanding of the status and trends of P2X7R research from this study.
Collapse
Affiliation(s)
- Haiting Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Wei
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Luo
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaoqing Lu
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jun Chen
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shenqiao Yang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Wu
- School of Foreign Languages, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haiyan Zhou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenbin Ma
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin Yang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Abad C, Demeules M, Guillou C, Gondé H, Zoubairi R, Tan YV, Pinto-Espinoza C, Schäfer W, Mann AM, Vouret-Craviari V, Koch-Nolte F, Adriouch S. Administration of an AAV vector coding for a P2X7-blocking nanobody-based biologic ameliorates colitis in mice. J Nanobiotechnology 2024; 22:27. [PMID: 38212782 PMCID: PMC10785547 DOI: 10.1186/s12951-023-02285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The pro-inflammatory ATP-gated P2X7 receptor is widely expressed by immune and non-immune cells. Nanobodies targeting P2X7, with potentiating or antagonistic effects, have been developed. Adeno-associated virus (AAV)-mediated gene transfer represents an efficient approach to achieve long-term in vivo expression of selected nanobody-based biologics. This approach (AAVnano) was used to validate the relevance of P2X7 as a target in dextran sodium sulfate (DSS)-induced colitis in mice. RESULTS Mice received an intramuscular injection of AAV vectors coding for potentiating (14D5-dimHLE) or antagonistic (13A7-Fc) nanobody-based biologics targeting P2X7. Long-term modulation of P2X7 activity was evaluated ex vivo from blood samples. Colitis was induced with DSS in mice injected with AAV vectors coding for nanobody-based biologics. Severity of colitis, colon histopathology and expression of chemokines and cytokines were determined to evaluate the impact of P2X7 modulation. A single injection of an AAV vector coding for 13A7-Fc or 14D5-dimHLE efficiently modulated P2X7 function in vivo from day 15 up to day 120 post-injection in a dose-dependent manner. An AAV vector coding for 13A7-Fc significantly ameliorated DSS-induced colitis and significantly reduced immune cell infiltration and expression of chemokines and proinflammatory cytokines in colonic tissue. CONCLUSIONS We have demonstrated the validity of AAVnano methodology to modulate P2X7 functions in vivo. Applying this methodological approach to a DSS-induced colitis model, we have shown that P2X7 blockade reduces inflammation and disease severity. Hence, this study confirms the importance of P2X7 as a pharmacological target and suggests the use of nanobody-based biologics as potential therapeutics in inflammatory bowel disease.
Collapse
Affiliation(s)
- Catalina Abad
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Mélanie Demeules
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Charlotte Guillou
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Henri Gondé
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Rachid Zoubairi
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Yossan-Var Tan
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | | | - Waldemar Schäfer
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Marei Mann
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sahil Adriouch
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France.
- Faculty of Medicine and Pharmacy, INSERM U1234 - PANTHER Lab, 22 Boulevard Gambetta, CS 76183, University of Rouen, 76000, Rouen, France.
| |
Collapse
|
6
|
Machado FA, Souza RF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Effects of experimental ulcerative colitis on myenteric neurons in P2X7-knockout mice. Histochem Cell Biol 2023; 160:321-339. [PMID: 37306742 DOI: 10.1007/s00418-023-02208-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the distal colon myenteric plexus and enteric glial cells (EGCs) in P2X7 receptor-deficient (P2X7-/-) animals after the induction of experimental ulcerative colitis. 2,4,6-Trinitrobenzene sulfonic acid (TNBS) was injected into the distal colon of C57BL/6 (WT) and P2X7 receptor gene-deficient (P2X7-/-, KO) animals. Distal colon tissues in the WT and KO groups were analyzed 24 h and 4 days after administration. The tissues were analyzed by double immunofluorescence of the P2X7 receptor with neuronal nitric oxide synthase (nNOS)-immunoreactive (ir), choline acetyltransferase (ChAT)-ir, and PGP9.5 (pan neuronal)-ir, and their morphology was assessed by histology. The quantitative analysis revealed 13.9% and 7.1% decreases in the number of P2X7 receptor-immunoreactive (ir) per ganglion in the 24 h-WT/colitis and 4 day-WT/colitis groups, respectively. No reduction in the number of nNOS-ir, choline ChAT-ir, and PGP9.5-ir neurons per ganglion was observed in the 4 day-KO/colitis group. In addition, a reduction of 19.3% in the number of GFAP (glial fibrillary acidic protein)-expressing cells per ganglion was found in the 24 h-WT/colitis group, and a 19% increase in the number of these cells was detected in the 4 day-WT/colitis group. No profile area changes in neurons were observed in the 24 h-WT and 24 h-KO groups. The 4 day-WT/colitis and 4 day-KO/colitis groups showed increases in the profile neuronal areas of nNOS, ChAT, and PGP9.5. The histological analysis showed hyperemia, edema, or cellular infiltration in the 24 h-WT/colitis and 4 day-WT/colitis groups. Edema was observed in the 4 day-KO/colitis group, which showed no histological changes compared with the 24 h-KO/colitis group. We concluded that ulcerative colitis differentially affected the neuronal classes in the WT and KO animals, demonstrating the potential participation and neuroprotective effect of the P2X7 receptor in enteric neurons in inflammatory bowel disease.
Collapse
Affiliation(s)
- Felipe Alexandre Machado
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | - Roberta Figueiroa Souza
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | | | | | - Patricia Castelucci
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil.
| |
Collapse
|
7
|
Caetano MAF, Magalhães HIR, Duarte JRL, Conceição LB, Castelucci P. Butyrate Protects Myenteric Neurons Loss in Mice Following Experimental Ulcerative Colitis. Cells 2023; 12:1672. [PMID: 37443707 PMCID: PMC10340616 DOI: 10.3390/cells12131672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The enteric nervous system is affected by inflammatory bowel diseases (IBD). Gut microbiota ferments dietary fibers and produces short-chain fatty acids, such as Butyrate, which bind to G protein-coupled receptors, such as GPR41, and contribute to maintaining intestinal health. This work aimed to study the GPR41 in myenteric neurons and analyze the effect of Butyrate in mice submitted to experimental ulcerative colitis. The 2, 4, 6 trinitrobenzene sulfonic acid (TNBS) was injected intrarectally in C57BL/6 mice (Colitis). Sham group received ethanol (vehicle). One group was treated with 100 mg/kg of Sodium Butyrate (Butyrate), and the other groups received saline. Animals were euthanized 7 days after colitis induction. Analyzes demonstrated colocalization of GPR41 with neurons immunoreactive (-ir) to nNOS and ChAT-ir and absence of colocalization of the GPR41 with GFAP-ir glia. Quantitative results demonstrated losses of nNOS-ir, ChAT-ir, and GPR41-ir neurons in the Colitis group and Butyrate treatment attenuated neuronal loss. The number of GFAP-ir glia increased in the Colitis group, whereas Butyrate reduced the number of these cells. In addition, morphological alterations observed in the Colitis group were attenuated in the Butyrate group. The presence of GPR41 in myenteric neurons was identified, and the treatment with Butyrate attenuated the damage caused by experimental ulcerative colitis.
Collapse
Affiliation(s)
- Marcos A. F. Caetano
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.A.F.C.); (J.R.L.D.); (L.B.C.)
| | - Henrique I. R. Magalhães
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, Brazil;
| | - Jheniffer R. L. Duarte
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.A.F.C.); (J.R.L.D.); (L.B.C.)
| | - Laura B. Conceição
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.A.F.C.); (J.R.L.D.); (L.B.C.)
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.A.F.C.); (J.R.L.D.); (L.B.C.)
| |
Collapse
|
8
|
Magalhães HIR, Machado FA, Souza RF, Caetano MAF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Study of the roles of caspase-3 and nuclear factor kappa B in myenteric neurons in a P2X7 receptor knockout mouse model of ulcerative colitis. World J Gastroenterol 2023; 29:3440-3468. [PMID: 37389242 PMCID: PMC10303518 DOI: 10.3748/wjg.v29.i22.3440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND The literature indicates that the enteric nervous system is affected in inflammatory bowel diseases (IBDs) and that the P2X7 receptor triggers neuronal death. However, the mechanism by which enteric neurons are lost in IBDs is unknown.
AIM To study the role of the caspase-3 and nuclear factor kappa B (NF-κB) pathways in myenteric neurons in a P2X7 receptor knockout (KO) mouse model of IBDs.
METHODS Forty male wild-type (WT) C57BL/6 and P2X7 receptor KO mice were euthanized 24 h or 4 d after colitis induction by 2,4,6-trinitrobenzene sulfonic acid (colitis group). Mice in the sham groups were injected with vehicle. The mice were divided into eight groups (n = 5): The WT sham 24 h and 4 d groups, the WT colitis 24 h and 4 d groups, the KO sham 24 h and 4 d groups, and the KO colitis 24 h and 4 d groups. The disease activity index (DAI) was analyzed, the distal colon was collected for immunohistochemistry analyses, and immunofluorescence was performed to identify neurons immunoreactive (ir) for calretinin, P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, and total NF-κB. We analyzed the number of calretinin-ir and P2X7 receptor-ir neurons per ganglion, the neuronal profile area (µm²), and corrected total cell fluorescence (CTCF).
RESULTS Cells double labeled for calretinin and P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, or total NF-κB were observed in the WT colitis 24 h and 4 d groups. The number of calretinin-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (2.10 ± 0.13 vs 3.33 ± 0.17, P < 0.001; 2.92 ± 0.12 vs 3.70 ± 0.11, P < 0.05), but was not significantly different between the KO groups. The calretinin-ir neuronal profile area was increased in the WT colitis 24 h group compared to the WT sham 24 h group (312.60 ± 7.85 vs 278.41 ± 6.65, P < 0.05), and the nuclear profile area was decreased in the WT colitis 4 d group compared to the WT sham 4 d group (104.63 ± 2.49 vs 117.41 ± 1.14, P < 0.01). The number of P2X7 receptor-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (19.49 ± 0.35 vs 22.21 ± 0.18, P < 0.001; 20.35 ± 0.14 vs 22.75 ± 0.51, P < 0.001), and no P2X7 receptor-ir neurons were observed in the KO groups. Myenteric neurons showed ultrastructural changes in the WT colitis 24 h and 4 d groups and in the KO colitis 24 h group. The cleaved caspase-3 CTCF was increased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (485949 ± 14140 vs 371371 ± 16426, P < 0.001; 480381 ± 11336 vs 378365 ± 4053, P < 0.001), but was not significantly different between the KO groups. The total caspase-3 CTCF, phospho-NF-κB CTCF, and total NF-κB CTCF were not significantly different among the groups. The DAI was recovered in the KO groups. Furthermore, we demonstrated that the absence of the P2X7 receptor attenuated inflammatory infiltration, tissue damage, collagen deposition, and the decrease in the number of goblet cells in the distal colon.
CONCLUSION Ulcerative colitis affects myenteric neurons in WT mice but has a weaker effect in P2X7 receptor KO mice, and neuronal death may be associated with P2X7 receptor-mediated caspase-3 activation. The P2X7 receptor can be a therapeutic target for IBDs.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Ribeiro Figliuolo
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Robson Coutinho-Silva
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | |
Collapse
|
9
|
Souza RF, Caetano MAF, Magalhães HIR, Castelucci P. Study of tumor necrosis factor receptor in the inflammatory bowel disease. World J Gastroenterol 2023; 29:2733-2746. [PMID: 37274062 PMCID: PMC10237104 DOI: 10.3748/wjg.v29.i18.2733] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023] Open
Abstract
Ulcerative colitis (UC) and Crohn’s disease (CD) are part of Inflammatory Bowel Diseases (IBD) and have pathophysiological processes such as bowel necrosis and enteric neurons and enteric glial cells. In addition, the main inflammatory mediator is related to the tumor necrosis factor-alpha (TNF-α). TNF-α is a me-diator of the intestinal inflammatory processes, thus being one of the main cytokines involved in the pathogenesis of IBD, however, its levels, when measured, are present in the serum of patients with IBD. In addition, TNF-α plays an important role in promoting inflammation, such as the production of interleukins (IL), for instance IL-1β and IL-6. There are two receptors for TNF as following: The tumor necrosis factor 1 receptor (TNFR1); and the tumor necrosis factor 2 receptor (TNFR2). They are involved in the pathogenesis of IBD and their receptors have been detected in IBD and their expression is correlated with disease activity. The soluble TNF form binds to the TNFR1 receptor with, and its activation results in a signaling cascade effects such as apoptosis, cell proliferation and cytokine secretion. In contrast, the transmembrane TNF form can bind both to TNFR1 and TNFR2. Recent studies have suggested that TNF-α is one of the main pro-inflammatory cytokines involved in the pathogenesis of IBD, since TNF levels are present in the serum of both patients with UC and CD. Intravenous and subcutaneous biologics targeting TNF-α have revolutionized the treatment of IBD, thus becoming the best available agents to induce and maintain IBD remission. The application of antibodies aimed at neutralizing TNF-α in patients with IBD that induce a satisfactory clinical response in up to 60% of patients, and also induced long-term maintenance of disease remission in most patients. It has been suggested that anti-TNF-α agents inactivate the pro-inflammatory cytokine TNF-α by direct neutralization, i.e., resulting in suppression of inflammation. However, anti-TNF-α antibodies perform more complex functions than a simple blockade.
Collapse
Affiliation(s)
- Roberta Figueiroa Souza
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | | | | | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
10
|
de Oliveira K, Severo J, da Silva A, dos Santos B, Mendes P, Sabino J, Filho A, Correia-de-Sá P, dos Santos A, da Silva M. P2X7 receptor antagonist improves gastrointestinal disorders in spontaneously hypertensive rats. Braz J Med Biol Res 2023; 56:e12569. [PMID: 36856255 PMCID: PMC9974071 DOI: 10.1590/1414-431x2023e12569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/05/2023] [Indexed: 03/02/2023] Open
Abstract
The purinergic system participates in the control of blood pressure. Hypertension promotes the occurrence of gastrointestinal disorders such as intestinal inflammation and gastric emptying delay. This study aimed i) to investigate the participation of the P2X7 receptor blocker Brilliant Blue G (BBG) on gastric emptying of solids and changes in oxidative stress in the gastric fundus, duodenum, and colon of spontaneously hypertensive rats (SHR) and ii) to study the putative relationship of this effect with the renin-angiotensin system. Rats were divided into five groups: Control, SHR, SHR+BBG, SHR+BBG+ATP, and SHR+BBG+ANG II. In the gastrointestinal tract, we assessed gastric emptying (GE) and oxidative stress markers (NOx, MPO, GSH, SOD). We observed a decrease in the GE rate (P<0.05) in SHR vs control rats (21.8±2.0% vs 42.8±3.5%). The decrease in GE was returned (P<0.05) to control levels by BBG in SHR rats (21.8±2.0% vs 41.6±3.2%). Co-administration of ATP or ANG II together with BBG bypassed the effect of the P2X7 antagonist on GE in SHR (P<0.05) (21.9±5.0% vs 25.6±3.0% vs 41.6±3.2%). The MPO activity increased (P<0.05) in the gastric fundus of SHR compared to control rats (6.12±2.26 vs 0.077±0.02 UMPO/mg tissue); this effect was prevented (P<0.05) by BBG (0.55±0.15 vs 6.12±2.26 UMPO/mg tissue). Data demonstrated that blockage of P2X7 receptors with BBG can improve the GE delay and oxidative stress biomarkers in SHR animals. This preventive effect of BBG on GE delay was abrogated by ANG II and ATP, thus prompting crosstalk between renin-angiotensin and the purinergic signaling systems underlying this phenomenon.
Collapse
Affiliation(s)
- K.B.V. de Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal do Piauí, Teresina, PI, Brasil,Departamento de Educação Física, Laboratório de Exercício e Trato Gastrointestinal, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - J.S. Severo
- Programa de Pós-Graduação em Alimentação e Nutrição, Universidade Federal do Piauí, Teresina, PI, Brasil,Departamento de Educação Física, Laboratório de Exercício e Trato Gastrointestinal, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - A.C.A. da Silva
- Programa de Pós-Graduação em Farmacologia, Universidade Federal do Piauí, Teresina, PI, Brasil,Departamento de Educação Física, Laboratório de Exercício e Trato Gastrointestinal, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - B.L.B. dos Santos
- Departamento de Educação Física, Laboratório de Exercício e Trato Gastrointestinal, Universidade Federal do Piauí, Teresina, PI, Brasil,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - P.H.M. Mendes
- Departamento de Educação Física, Laboratório de Exercício e Trato Gastrointestinal, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - J.P.J. Sabino
- Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina, PI, Brasil,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - A.L.M.M. Filho
- Centro de Ciências da Saúde, Universidade Estadual do Piauí, Teresina, PI, Brasil
| | - P. Correia-de-Sá
- Departamento de Imuno-Fisiologia e Farmacologia, Laboratório de Farmacologia e Neurobiologia, Centro de Descoberta de Fármacos e Medicamentos Inovadores, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - A.A. dos Santos
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M.T.B. da Silva
- Programa de Pós-Graduação em Farmacologia, Universidade Federal do Piauí, Teresina, PI, Brasil,Programa de Pós-Graduação em Alimentação e Nutrição, Universidade Federal do Piauí, Teresina, PI, Brasil,Departamento de Educação Física, Laboratório de Exercício e Trato Gastrointestinal, Universidade Federal do Piauí, Teresina, PI, Brasil,Departamento de Imuno-Fisiologia e Farmacologia, Laboratório de Fisiologia, Centro de Descoberta de Fármacos e Medicamentos Inovadores, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Mendes CE, Palombit K, Alves Pereira TT, Riceti Magalhães HI, Ferreira Caetano MA, Castelucci P. Effects of probenecid and brilliant blue G on rat enteric glial cells following intestinal ischemia and reperfusion. Acta Histochem 2023; 125:151985. [PMID: 36495673 DOI: 10.1016/j.acthis.2022.151985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
The P2X7 receptor participates in several intracellular events and acts with the pannexin-1 channel. This study examined the effects of probenecid (PB) and brilliant blue G (BBG), which are antagonists of the pannexin-1 channel and P2X7 receptor, respectively, on rat ileum enteric glial cells after on ischemia and reperfusion. The ileal vessels were occluded for 45 min with nontraumatic vascular tweezers, and reperfusion was performed for periods of 24 h and 14 and 28 days. After ischemia (IR groups), the animals were treated with BBG (BG group) or PB (PB group). The double-labeling results demonstrated the following: the P2X7 receptor was present in enteric glial cells (S100β) and enteric neurons positive for HuC/D; enteric glial cells exhibited different phenotypes; some enteric glial cells were immunoreactive to only S100β or GFAP; and the pannexin-1 channel was present in enteric glial cells (GFAP). Density (in cells/cm2) analyses showed that the IR group exhibited a decrease in the number of cells immunoreactive for the P2X7 receptor, pannexin-1, and HuC/D and that treatment with BBG or PB resulted in the recovery of the numbers of these cells. The number of glial cells (S100β and GFAP) was higher in the IR group, and the treatments decreased the number of these cells to the normal value. However, the PB group did not exhibit recovery of S100β-positive glia. The cell profile area (μm2) of S100β-positive enteric glial cells decreased to the normal value after BBG treatment, whereas no recovery was observed in the PB group. The ileum contractile activity was decreased in the IR group and returned to baseline in the BG and PB groups. BBG and PB can effectively induce the recovery of neurons and glia cells and are thus potential therapeutic agents in the treatment of gastrointestinal tract diseases.
Collapse
Affiliation(s)
| | - Kelly Palombit
- Department of Morphology, University Federal of Piaui, Brazil
| | | | | | | | | |
Collapse
|
12
|
Caetano MAF, Castelucci P. Role of short chain fatty acids in gut health and possible therapeutic approaches in inflammatory bowel diseases. World J Clin Cases 2022; 10:9985-10003. [PMID: 36246826 PMCID: PMC9561599 DOI: 10.12998/wjcc.v10.i28.9985] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by inflammation in the gastrointestinal tract and include Ulcerative Colitis and Crohn’s Disease. These diseases are costly to health services, substantially reduce patients’ quality of life, and can lead to complications such as cancer and even death. Symptoms include abdominal pain, stool bleeding, diarrhea, and weight loss. The treatment of these diseases is symptomatic, seeking disease remission. The intestine is colonized by several microorganisms, such as fungi, viruses, and bacteria, which constitute the intestinal microbiota (IM). IM bacteria promotes dietary fibers fermentation and produces short-chain fatty acids (SCFAs) that exert several beneficial effects on intestinal health. SCFAs can bind to G protein-coupled receptors, such as GPR41 and GPR43, promoting improvements in the intestinal barrier, anti-inflammatory, and antioxidant effects. Thus, SCFAs could be a therapeutic tool for IBDs. However, the mechanisms involved in these beneficial effects of SCFAs remain poorly understood. Therefore, this paper aims to provide a review addressing the main aspects of IBDs, and a more detailed sight of SCFAs, focusing on the main effects on different aspects of the intestine with an emphasis on IBDs.
Collapse
Affiliation(s)
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508900, SP, Brazil
| |
Collapse
|
13
|
Ballout J, Claßen R, Richter K, Grau V, Diener M. Ionotropic P2X
4
and P2X
7
receptors in the regulation of ion transport across rat colon. Br J Pharmacol 2022; 179:4992-5011. [DOI: 10.1111/bph.15928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/18/2022] [Accepted: 07/09/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jasmin Ballout
- Institute for Veterinary Physiology and Biochemistry Justus Liebig University Giessen Germany
| | - Rebecca Claßen
- Institute for Veterinary Physiology and Biochemistry Justus Liebig University Giessen Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Departement of General Surgery, German Centre for Lung Research (DZL) Justus Liebig University Giessen Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Departement of General Surgery, German Centre for Lung Research (DZL) Justus Liebig University Giessen Germany
| | - Martin Diener
- Institute for Veterinary Physiology and Biochemistry Justus Liebig University Giessen Germany
| |
Collapse
|
14
|
|