1
|
Taboni A, Fagoni N, Fontolliet T, Vinetti G, Ferretti G. Baroreflex dynamics during the rest to exercise transient in acute normobaric hypoxia in humans. Eur J Appl Physiol 2024; 124:2765-2775. [PMID: 38656378 PMCID: PMC11365845 DOI: 10.1007/s00421-024-05485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE We hypothesised that during a rest-to-exercise transient in hypoxia (H), compared to normoxia (N), (i) the initial baroreflex sensitivity (BRS) decrease would be slower and (ii) the fast heart rate (HR) and cardiac output (CO) response would have smaller amplitude (A1) due to lower vagal activity in H than N. METHODS Ten participants performed three rest-to-50 W exercise transients on a cycle-ergometer in N (ambient air) and three in H (inspired fraction of O2 = 0.11). R-to-R interval (RRi, by electrocardiography) and blood pressure profile (by photo-plethysmography) were recorded non-invasively. Analysis of the latter provided mean arterial pressure (MAP) and stroke volume (SV). CO = HR·SV. BRS was calculated by modified sequence method. RESULTS Upon exercise onset in N, MAP fell to a minimum (MAPmin) then recovered. BRS decreased immediately from 14.7 ± 3.6 at rest to 7.0 ± 3.0 ms mmHg-1 at 50 W (p < 0.01). The first BRS sequence detected at 50 W was 8.9 ± 4.8 ms mmHg-1 (p < 0.05 vs. rest). In H, MAP showed several oscillations until reaching a new steady state. BRS decreased rapidly from 10.6 ± 2.8 at rest to 2.9 ± 1.5 ms mmHg-1 at 50 W (p < 0.01), as the first BRS sequence at 50 W was 5.8 ± 2.6 ms mmHg-1 (p < 0.01 vs. rest). CO-A1 was 2.96 ± 1.51 and 2.31 ± 0.94 l min-1 in N and H, respectively (p = 0.06). HR-A1 was 7.7 ± 4.6 and 7.1 ± 5.9 min-1 in N and H, respectively (p = 0.81). CONCLUSION The immediate BRS decrease in H, coupled with similar rapid HR and CO responses, is compatible with a withdrawal of residual vagal activity in H associated with increased sympathetic drive.
Collapse
Affiliation(s)
- Anna Taboni
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy.
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland.
| | - Nazzareno Fagoni
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland
| | - Timothée Fontolliet
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland
| | - Giovanni Vinetti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Guido Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Taboni A, Fagoni N, Fontolliet T, Vinetti G, Ferretti G. Dynamics of cardiovascular and baroreflex readjustments during a light-to-moderate exercise transient in humans. Eur J Appl Physiol 2022; 122:2343-2354. [PMID: 35861802 PMCID: PMC9561001 DOI: 10.1007/s00421-022-05011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022]
Abstract
Purpose We hypothesised that, during a light-to-moderate exercise transient, compared to an equivalent rest-to-exercise transient, (1) a further baroreflex sensitivity (BRS) decrease would be slower, (2) no rapid heart rate (HR) response would occur, and (3) the rapid cardiac output (CO) response would have a smaller amplitude (A1). Hence, we analysed the dynamics of arterial baroreflexes and the HR and CO kinetics during rest-to-50 W (0–50 W) and 50-to-100 W (50–100 W) exercise transients. Methods 10 subjects performed three 0–50 W and three 50–100 W on a cycle ergometer. We recorded arterial blood pressure profiles (photo-plethysmography) and R-to-R interval (RRi, electrocardiography). The former were analysed to obtain beat-by-beat mean arterial pressure (MAP) and stroke volume (SV). CO was calculated as SV times HR. BRS was measured by modified sequence method. Results During 0–50 W, MAP transiently fell (− 9.0 ± 5.7 mmHg, p < 0.01) and BRS passed from 15.0 ± 3.7 at rest to 7.3 ± 2.4 ms mmHg−1 at 50 W (p < 0.01) promptly (first BRS sequence: 8.1 ± 4.6 ms mmHg−1, p < 0.01 vs. rest). During 50–100 W, MAP did not fall and BRS passed from 7.2 ± 2.6 at 50 W to 3.3 ± 1.3 ms mmHg−1 at 100 W (p < 0.01) slowly (first BRS sequence: 5.3 ± 3.1 ms mmHg−1, p = 0.07 vs. 50 W). A1 for HR was 9.2 ± 6.0 and 6.0 ± 4.5 min−1 in 0–50 W and 50–100 W, respectively (p = 0.19). The corresponding A1 for CO were 2.80 ± 1.54 and 0.91 ± 0.55 l∙min−1 (p < 0.01). Conclusion During 50–100 W, with respect to 0–50 W, BRS decreased more slowly, in absence of a prompt pressure decrease. BRS decrease and rapid HR response in 50–100 W were unexpected and ascribed to possible persistence of some vagal tone at 50 W. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-022-05011-4.
Collapse
Affiliation(s)
- Anna Taboni
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland
| | - Nazzareno Fagoni
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland.,Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.,AAT Brescia, Department of Anaesthesiology, Intensive Care and Emergency Medicine, Spedali Civili University Hospital, Brescia, Italy
| | - Timothée Fontolliet
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland
| | - Giovanni Vinetti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy. .,Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.
| | - Guido Ferretti
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland.,Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| |
Collapse
|
3
|
Ferretti G, Fagoni N, Taboni A, Vinetti G, di Prampero PE. A century of exercise physiology: key concepts on coupling respiratory oxygen flow to muscle energy demand during exercise. Eur J Appl Physiol 2022; 122:1317-1365. [PMID: 35217911 PMCID: PMC9132876 DOI: 10.1007/s00421-022-04901-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/25/2022] [Indexed: 12/26/2022]
Abstract
After a short historical account, and a discussion of Hill and Meyerhof's theory of the energetics of muscular exercise, we analyse steady-state rest and exercise as the condition wherein coupling of respiration to metabolism is most perfect. The quantitative relationships show that the homeostatic equilibrium, centred around arterial pH of 7.4 and arterial carbon dioxide partial pressure of 40 mmHg, is attained when the ratio of alveolar ventilation to carbon dioxide flow ([Formula: see text]) is - 21.6. Several combinations, exploited during exercise, of pertinent respiratory variables are compatible with this equilibrium, allowing adjustment of oxygen flow to oxygen demand without its alteration. During exercise transients, the balance is broken, but the coupling of respiration to metabolism is preserved when, as during moderate exercise, the respiratory system responds faster than the metabolic pathways. At higher exercise intensities, early blood lactate accumulation suggests that the coupling of respiration to metabolism is transiently broken, to be re-established when, at steady state, blood lactate stabilizes at higher levels than resting. In the severe exercise domain, coupling cannot be re-established, so that anaerobic lactic metabolism also contributes to sustain energy demand, lactate concentration goes up and arterial pH falls continuously. The [Formula: see text] decreases below - 21.6, because of ensuing hyperventilation, while lactate keeps being accumulated, so that exercise is rapidly interrupted. The most extreme rupture of the homeostatic equilibrium occurs during breath-holding, because oxygen flow from ambient air to mitochondria is interrupted. No coupling at all is possible between respiration and metabolism in this case.
Collapse
Affiliation(s)
- Guido Ferretti
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy.
- Département d'Anesthésiologie, Pharmacologie et Soins Intensifs, Université de Genève, Genève, Switzerland.
| | - Nazzareno Fagoni
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy
| | - Anna Taboni
- Département d'Anesthésiologie, Pharmacologie et Soins Intensifs, Université de Genève, Genève, Switzerland
| | - Giovanni Vinetti
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy
| | | |
Collapse
|
4
|
Taboni A, Fagoni N, Fontolliet T, Moia C, Vinetti G, Ferretti G. A closed-loop approach to the study of the baroreflex dynamics during posture changes at rest and at exercise in humans. Am J Physiol Regul Integr Comp Physiol 2021; 321:R960-R968. [PMID: 34643104 DOI: 10.1152/ajpregu.00167.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that during rapid uptilting at rest, due to vagal withdrawal, arterial baroreflex sensitivity (BRS) may decrease promptly and precede the operating point (OP) resetting, whereas different kinetics are expected during exercise steady state, due to lower vagal activity than at rest. To test this, eleven subjects were rapidly (<2 s) tilted from supine (S) to upright (U) and vice versa every 3 min, at rest and during steady-state 50 W pedaling. Mean arterial pressure (MAP) was measured by finger cuff (Portapres) and R-to-R interval (RRi) by electrocardiography. BRS was computed with the sequence method both during steady and unsteady states. At rest, BRS was 35.1 ms·mmHg-1 (SD = 17.1) in S and 16.7 ms·mmHg-1 (SD = 6.4) in U (P < 0.01), RRi was 901 ms (SD = 118) in S and 749 ms (SD = 98) in U (P < 0.01), and MAP was 76 mmHg (SD = 11) in S and 83 mmHg (SD = 8) in U (P < 0.01). During uptilt, BRS decreased promptly [first BRS sequence was 19.7 ms·mmHg-1 (SD = 5.0)] and was followed by an OP resetting (MAP increase without changes in RRi). At exercise, BRS and OP did not differ between supine and upright positions [BRS was 7.7 ms·mmHg-1 (SD = 3.0) and 7.7 ms·mmHg-1 (SD = 3.5), MAP was 85 mmHg (SD = 13) and 88 mmHg (SD = 10), and RRi was 622 ms (SD = 61) and 600 ms (SD = 70), respectively]. The results support the tested hypothesis. The prompt BRS decrease during uptilt at rest may be ascribed to a vagal withdrawal, similarly to what occurs at exercise onset. The OP resetting may be due to a slower control mechanism, possibly an increase in sympathetic activity.
Collapse
Affiliation(s)
- Anna Taboni
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland
| | - Nazzareno Fagoni
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,AAT Brescia, Department of Anaesthesiology, Intensive Care and Emergency Medicine, Spedali Civili University Hospital, Brescia, Italy
| | - Timothée Fontolliet
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland.,Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Christian Moia
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland.,Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Giovanni Vinetti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Guido Ferretti
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Vagal blockade suppresses the phase I heart rate response but not the phase I cardiac output response at exercise onset in humans. Eur J Appl Physiol 2021; 121:3173-3187. [PMID: 34390402 PMCID: PMC8505324 DOI: 10.1007/s00421-021-04769-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022]
Abstract
Purpose We tested the vagal withdrawal concept for heart rate (HR) and cardiac output (CO) kinetics upon moderate exercise onset, by analysing the effects of vagal blockade on cardiovascular kinetics in humans. We hypothesized that, under atropine, the φ1 amplitude (A1) for HR would reduce to nil, whereas the A1 for CO would still be positive, due to the sudden increase in stroke volume (SV) at exercise onset. Methods On nine young non-smoking men, during 0–80 W exercise transients of 5-min duration on the cycle ergometer, preceded by 5-min rest, we continuously recorded HR, CO, SV and oxygen uptake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{V} $$\end{document}V˙O2) upright and supine, in control condition and after full vagal blockade with atropine. Kinetics were analysed with the double exponential model, wherein we computed the amplitudes (A) and time constants (τ) of phase 1 (φ1) and phase 2 (φ2). Results In atropine versus control, A1 for HR was strongly reduced and fell to 0 bpm in seven out of nine subjects for HR was practically suppressed by atropine in them. The A1 for CO was lower in atropine, but not reduced to nil. Thus, SV only determined A1 for CO in atropine. A2 did not differ between control and atropine. No effect on τ1 and τ2 was found. These patterns were independent of posture. Conclusion The results are fully compatible with the tested hypothesis. They provide the first direct demonstration that vagal blockade, while suppressing HR φ1, did not affect φ1 of CO.
Collapse
|
6
|
Fontolliet T, Pichot V, Bringard A, Fagoni N, Adami A, Tam E, Furlan R, Barthélémy JC, Ferretti G. TESTING THE VAGAL WITHDRAWAL HYPOTHESIS DURING LIGHT EXERCISE UNDER AUTONOMIC BLOCKADE: A HEART RATE VARIABILITY STUDY. J Appl Physiol (1985) 2018; 125:1804-1811. [PMID: 30307822 DOI: 10.1152/japplphysiol.00619.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION We performed the first analysis of heart rate variability (HRV) at rest and exercise under full autonomic blockade on the same subjects, to test the conjecture that vagal tone withdrawal occurs at exercise onset. We hypothesized that, between rest and exercise: i) no differences in total power (PTOT) under parasympathetic blockade; ii) a PTOT fall under β1-sympathetic blockade; iii) no differences in Ptot under blockade of both ANS branches. METHODS 7 males (24±3 years) performed 5-min cycling (80W) supine, preceded by 5-min rest during control and with administration of atropine, metoprolol and atropine+metoprolol (double blockade). Heart rate and arterial blood pressure were continuously recorded. HRV and blood pressure variability were determined by power spectral analysis, and baroreflex sensitivity (BRS) by the sequence method. RESULTS At rest, PTOT and the powers of low (LF) and high (HF) frequency components of HRV were dramatically decreased in atropine and double blockade compared to control and metoprolol, with no effects on LF/HF ratio and on the normalised LF (LFnu) and HF (HFnu). At exercise, patterns were the same as at rest. Comparing exercise to rest, PTOT varied as hypothesized. For SAP and DAP, resting PTOT was the same in all conditions. At exercise, in all conditions, PTOT was lower than in control. BRS decreased under atropine and double blockade at rest, under control and metoprolol during exercise. CONCLUSIONS The results support the hypothesis that vagal suppression determined disappearance of HRV during exercise.
Collapse
Affiliation(s)
| | | | - Aurélien Bringard
- Department of Basic Neurosciences, University of Geneva, Switzerland, Switzerland
| | - Nazzareno Fagoni
- Dipartment of Kinesiology, College of Health Sciences, Universita di Brescia, Italy
| | - Alessandra Adami
- Department of Kinesiology, University of Rhode Island, Kingston, RI, USA, United States
| | - Enrico Tam
- Dipartimento di Scienze Neurologiche e del Movimento, Università di Verona, Italy
| | - Raffaello Furlan
- Division of Internal Medicine, Humanitas Clinical and Research Center, Rozzano Humanitas University, Italy
| | | | - Guido Ferretti
- University of Geneva, Switzerland, and of Brescia, Italy, Switzerland
| |
Collapse
|
7
|
The physiology of submaximal exercise: The steady state concept. Respir Physiol Neurobiol 2017; 246:76-85. [PMID: 28818484 DOI: 10.1016/j.resp.2017.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/13/2017] [Accepted: 08/04/2017] [Indexed: 11/24/2022]
Abstract
The steady state concept implies that the oxygen flow is invariant and equal at each level along the respiratory system. The same is the case with the carbon dioxide flow. This condition has several physiological consequences, which are analysed. First, we briefly discuss the mechanical efficiency of exercise and the energy cost of human locomotion, as well as the roles played by aerodynamic work and frictional work. Then we analyse the equations describing the oxygen flow in lungs and in blood, the effects of ventilation and of the ventilation - perfusion inequality, and the interaction between diffusion and perfusion in the lungs. The cardiovascular responses sustaining gas flow increase in blood are finally presented. An equation linking ventilation, circulation and metabolism is developed, on the hypothesis of constant oxygen flow in mixed venous blood. This equation tells that, if the pulmonary respiratory quotient stays invariant, any increase in metabolic rate is matched by a proportional increase in ventilation, but by a less than proportional increase in cardiac output.
Collapse
|
8
|
Adami A, Fagoni N, Ferretti G. The Q˙-V˙O2 diagram: an analytical interpretation of oxygen transport in arterial blood during exercise in humans. Respir Physiol Neurobiol 2014; 193:55-61. [PMID: 24440436 DOI: 10.1016/j.resp.2014.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
Abstract
A new analysis of the relationship between cardiac output (Q˙) and oxygen consumption V˙O2 is presented (Q˙-V˙O2 diagram). Data from different sources in the literature have been used for validation in three conditions: exercise and rest in normoxia, and exercise in hypoxia. The effects of changes in arterial oxygen concentration CaO2 on Q˙ are discussed, as well as the effects of predominant sympathetic or vagal stimulation. Differences appear depending on whether CaO2 is varied by means of changes in blood haemoglobin concentration or changes in arterial oxygen saturation. The present Q˙-V˙O2 diagram allows comprehensive description of oxygen transport in exercising humans; it expands applicability of the historical Q˙-V˙O2 relationship to include CaO2 variations; it opens new pathways for understanding underlying mechanisms; it allows computation of Q˙ from CaO2 and V˙O2 measurements, when Q˙ cannot be measured.
Collapse
Affiliation(s)
- Alessandra Adami
- Département de Neurosciences Fondamentales, Université de Genève, 1 Rue Michel Servet, CH-1211 Genève 4, Switzerland
| | - Nazzareno Fagoni
- Dipartimento di Scienze Cliniche e Sperimentali, Università di Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Guido Ferretti
- Département de Neurosciences Fondamentales, Université de Genève, 1 Rue Michel Servet, CH-1211 Genève 4, Switzerland; Dipartimento di Scienze Cliniche e Sperimentali, Università di Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| |
Collapse
|
9
|
Chang CL, Mills GD, McLachlan JD, Karalus NC, Hancox RJ. Cardio-selective and non-selective beta-blockers in chronic obstructive pulmonary disease: effects on bronchodilator response and exercise. Intern Med J 2009; 40:193-200. [PMID: 19383058 DOI: 10.1111/j.1445-5994.2009.01943.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Patients with chronic obstructive pulmonary disease (COPD) often have co-existing cardiovascular disease and may require beta-blocker treatment. There are limited data on the effects of beta-blockers on the response to inhaled beta2-agonists and exercise capacity in patients with COPD. OBJECTIVE To determine the effects of different doses of cardio-selective and non-selective beta-blockers on the acute bronchodilator response to beta-agonists in COPD, and to assess their effects on exercise capacity. METHODS A double-blind, randomized, three-way cross-over (metoprolol 95 mg, propranolol 80 mg, placebo) study with a final open-label high-dose arm (metoprolol 190 mg). After 1 week of each treatment, the bronchodilator response to salbutamol was measured after first inducing bronchoconstriction using methacholine. Exercise capacity was assessed using the incremental shuttle walk test. RESULTS Eleven patients with moderate COPD were recruited. Treatments were well-tolerated although two did not participate in the high-dose metoprolol phase. The area under the salbutamol-response curve was lower after propranolol compared with placebo (P=0.0006). The area under the curve also tended to be lower after high-dose metoprolol (P=0.076). The per cent recovery of the methacholine-induced fall was also lower after high-dose metoprolol (P=0.0018). Low-dose metoprolol did not alter the bronchodilator response. Oxygen saturation at peak exercise was lower with all beta-blocker treatments (P=0.046). CONCLUSION Non-selective beta-blockers and high doses of cardio-selective beta-blockers may inhibit the bronchodilator response to beta2-agonists in patients with COPD. Beta-blockers were also associated with lower oxygen saturation during exercise. The clinical significance of these adverse effects is uncertain in view of the benefits of beta-blocker treatment for cardiovascular disease.
Collapse
Affiliation(s)
- C L Chang
- Respiratory Research Unit, Department of Respiratory Medicine, Waikato Hospital, Hamilton, New Zealand
| | | | | | | | | |
Collapse
|
10
|
Yan B, Hu Y, Ji H, Bao D. The effect of acute hypoxia on left ventricular function during exercise. Eur J Appl Physiol 2007; 100:261-5. [PMID: 17323069 DOI: 10.1007/s00421-007-0427-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
The effect of acute hypoxia on the human left ventricular function during exercise was evaluated by 2D and Doppler echocardiography on 11 healthy male college students. Each subject completed 6-min moderate intensity (100 W) supine cycling exercises in normoxia and hypoxia, respectively. The concentration of inspired O(2) was adjusted to keep arterial hemoglobin O(2) concentration (SpO(2)) at 88-92% during hypoxia. Doppler indices obtained were compared between normoxia and hypoxia. The left ventricular myocardial diastolic function was increased during exercise in hypoxia compared with normoxia. The peak velocity of early filling wave increased at rest (P < 0.05) and during exercise (P < 0.05 at second minute, and P < 0.01 at sixth minute) in hypoxia. The heart rate (P < 0.01) and cardiac output (P < 0.001) were elevated markedly at rest during hypoxia. The left ventricular systolic function variables, such as stroke volume, ejection fraction, and end-systolic volume were relatively unaltered during hypoxia compared with normoxia. The results suggest that acute hypoxia increases the left ventricular myocardial diastolic function during moderate intensity supine cycling exercise without affecting the systolic function.
Collapse
Affiliation(s)
- Bing Yan
- Sport Science College of Beijing Sport University, Beijing 100084, China
| | | | | | | |
Collapse
|