1
|
Demir AE, Ata N. Hysteria as a Trigger for Epidemic Decompression Sickness Following Hypobaric Hypoxia Training. Aerosp Med Hum Perform 2022; 93:712-716. [DOI: 10.3357/amhp.6091.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION: Although hypobaric hypoxia training (HHT) is an essential component of aviation physiology training, it poses a risk of decompression sickness (DCS). DCS can sometimes be observed as a cluster of cases, which is referred to as epidemic DCS. In this report, we aim
to evaluate an epidemic DCS episode that occurred following two consecutive HHT sessions.METHODS: A total of 16 trainees, all of whom were medical doctors, attended the aviation medicine training course in the aeromedical research and training center. They went through HHT in two
sessions, each with eight trainees.RESULTS: Following two HHT sessions, five Type 1 DCS cases occurred among 18 personnel (16 trainees and 2 inside observers). DCS incidence rate was found to be 27.77%. They were successfully treated with hyperbaric oxygen therapy (HBOT).DISCUSSION:
Since the DCS incidence rate was found to be higher than the average in such a short period of time, this cluster of cases was labeled as epidemic DCS. We carried out a thorough investigation into all possible causes by following some templates that were developed to conduct comprehensive
investigations into epidemic DCS episodes. According to the psychological arguments discussed here, we placed a special emphasis on hysterical and psychosocial components, among other probable factors. In cases where the possibility of hysteria and placebo-nocebo responses exist, it is appropriate
to conduct the training and treatment processes with these factors in mind. No matter what the triggering factor is and how the symptoms manifest, HBOT remains crucial in the treatment of DCS.Demir AE, Ata N. Hysteria as a trigger for epidemic decompression sickness following hypobaric
hypoxia training. Aerosp Med Hum Perform. 2022; 93(10):712–716.
Collapse
|
2
|
Szyller J, Kozakiewicz M, Siermontowski P, Kaczerska D. Oxidative Stress, HSP70/HSP90 and eNOS/iNOS Serum Levels in Professional Divers during Hyperbaric Exposition. Antioxidants (Basel) 2022; 11:antiox11051008. [PMID: 35624872 PMCID: PMC9137907 DOI: 10.3390/antiox11051008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins (HSPs) have protective effects against oxidative stress and decompression sickness. Nitric oxide may reduce bubble formation during decompression and its activity is regulated by HSPs. A simulated dive can cause the HSP response. The aim of this study was to describe the effect of simulated dives on the antioxidant system, HSPs, and nitric oxide synthase response and demonste the relationship between the concentration of HSPs and the intensification of oxidative stress. A total of 20 healthy professional divers took part in training, consisting of simulated dry dives in a hyperbaric chamber and split into experiment I (30 m exposure, 400 kPa) and experiment II (60 m exposure, 700 kPa) over 24 h. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and the concentrations of malondialdehyde (MDA), heat shock protein 70 (HSP70), heat shock protein 90 (HSP90), endothelial (eNOS) and inducible (iNOS) nitric oxide synthase were measured. Increases in the activity of SOD and MDA concentration were demonstrated. The activity of GPx depended on the dive profile. The HSP70 serum level in both experiments was significantly lower after the dives. The mean HSP90 level was significantly higher after the simulated dive at 60 m. A significant relationship between HSP concentration and SOD/GPx activity was demonstrated. eNOS concentration increased after 60 m exposure. No change in iNOS concentration was observed. In conclusions, the simulated dive significantly affected the antioxidant system, heat shock protein expression and nitric oxide synthase; however, the changes depend on the diving conditions. There is a relationship between the expression of HSPs and the intensity of oxidative stress.
Collapse
Affiliation(s)
- Jakub Szyller
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A Str., 50-556 Wroclaw, Poland
- Correspondence:
| | - Mariusz Kozakiewicz
- Division of Biochemistry and Biogerontology, Department of Geriatrics, Faculty of Health Sciences, L. Rydygier Collegium Medicum, Dębowa 3 Str., 85-626 Bydgoszcz, Poland;
| | - Piotr Siermontowski
- Department of Underwater Works Technology, Faculty of Mechanical and Electrical Engineering, Polish Naval Academy, Śmidowicza 69 Str., 81-127 Gdynia, Poland;
| | - Dorota Kaczerska
- Department of Physiotherapy and Health Sciences, Faculty of Dietetics, Gdańsk College of Health, Pelplińska 7 Str., 80-335 Gdańsk, Poland;
| |
Collapse
|
3
|
Lambrechts K, Germonpré P, Vandenheede J, Delorme M, Lafère P, Balestra C. Mini Trampoline, a New and Promising Way of SCUBA Diving Preconditioning to Reduce Vascular Gas Emboli? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5410. [PMID: 35564805 PMCID: PMC9105492 DOI: 10.3390/ijerph19095410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/31/2022]
Abstract
Background: Despite evolution in decompression algorithms, decompression illness is still an issue nowadays. Reducing vascular gas emboli (VGE) production or preserving endothelial function by other means such as diving preconditioning is of great interest. Several methods have been tried, either mechanical, cardiovascular, desaturation aimed or biochemical, with encouraging results. In this study, we tested mini trampoline (MT) as a preconditioning strategy. Methods: In total, eight (five females, three males; mean age 36 ± 16 years; body mass index 27.5 ± 7.1 kg/m2) healthy, non-smoking, divers participated. Each diver performed two standardized air dives 1 week apart with and without preconditioning, which consisted of ±2 min of MT jumping. All dives were carried out in a pool (NEMO 33, Brussels, Belgium) at a depth of 25 m for 25 min. VGE counting 30 and 60 min post-dive was recorded by echocardiography together with an assessment of endothelial function by flow-mediated dilation (FMD). Results: VGE were significantly reduced after MT (control: 3.1 ± 4.9 VGE per heartbeat vs. MT: 0.6 ± 1.1 VGE per heartbeat, p = 0.031). Post-dive FMD exhibited a significant decrease in the absence of preconditioning (92.9% ± 7.4 of pre-dive values, p = 0.03), as already described. MT preconditioning prevented this FMD decrease (103.3% ± 7.1 of pre-dive values, p = 0.30). FMD difference is significant (p = 0.03). Conclusions: In our experience, MT seems to be a very good preconditioning method to reduce VGE and endothelial changes. It may become the easiest, cheapest and more efficient preconditioning for SCUBA diving.
Collapse
Affiliation(s)
- Kate Lambrechts
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
| | - Peter Germonpré
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Centre for Hyperbaric Oxygen Therapy, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Joaquim Vandenheede
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Manon Delorme
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
| | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Laboratoire ORPHY, EA4324, Université de Bretagne Occidentale (UBO), 29238 Brest, France
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
4
|
Imbert JP, Egi SM, Germonpré P, Balestra C. Static Metabolic Bubbles as Precursors of Vascular Gas Emboli During Divers' Decompression: A Hypothesis Explaining Bubbling Variability. Front Physiol 2019; 10:807. [PMID: 31354506 PMCID: PMC6638188 DOI: 10.3389/fphys.2019.00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction The risk for decompression sickness (DCS) after hyperbaric exposures (such as SCUBA diving) has been linked to the presence and quantity of vascular gas emboli (VGE) after surfacing from the dive. These VGE can be semi-quantified by ultrasound Doppler and quantified via precordial echocardiography. However, for an identical dive, VGE monitoring of divers shows variations related to individual susceptibility, and, for a same diver, dive-to-dive variations which may be influenced by pre-dive pre-conditioning. These variations are not explained by currently used algorithms. In this paper, we present a new hypothesis: individual metabolic processes, through the oxygen window (OW) or Inherent Unsaturation of tissues, modulate the presence and volume of static metabolic bubbles (SMB) that in turn act as precursors of circulating VGE after a dive. Methods We derive a coherent system of assumptions to describe static gas bubbles, located on the vessel endothelium at hydrophobic sites, that would be activated during decompression and become the source of VGE. We first refer to the OW and show that it creates a local tissue unsaturation that can generate and stabilize static gas phases in the diver at the surface. We then use Non-extensive thermodynamics to derive an equilibrium equation that avoids any geometrical description. The final equation links the SMB volume directly to the metabolism. Results and Discussion Our model introduces a stable population of small gas pockets of an intermediate size between the nanobubbles nucleating on the active sites and the VGE detected in the venous blood. The resulting equation, when checked against our own previously published data and the relevant scientific literature, supports both individual variation and the induced differences observed in pre-conditioning experiments. It also explains the variability in VGE counts based on age, fitness, type and frequency of physical activities. Finally, it fits into the general scheme of the arterial bubble assumption for the description of the DCS risk. Conclusion Metabolism characterization of the pre-dive SMB population opens new possibilities for decompression algorithms by considering the diver's individual susceptibility and recent history (life style, exercise) to predict the level of VGE during and after decompression.
Collapse
Affiliation(s)
| | - Salih Murat Egi
- Department of Computer Engineering, Galatasaray University, Istanbul, Turkey.,DAN Europe Research Division, Divers Alert Network (DAN), Roseto, Italy
| | - Peter Germonpré
- DAN Europe Research Division, Divers Alert Network (DAN), Roseto, Italy.,Centre for Hyperbaric Oxygen Therapy, Military Hospital Brussels, Brussels, Belgium
| | - Costantino Balestra
- DAN Europe Research Division, Divers Alert Network (DAN), Roseto, Italy.,Environmental, Occupational and Ageing Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
| |
Collapse
|
5
|
Balestra C, Germonpré P, Rocco M, Biancofiore G, Kot J. Diving physiopathology: the end of certainties? Food for thought. Minerva Anestesiol 2019; 85:1129-1137. [PMID: 31238641 DOI: 10.23736/s0375-9393.19.13618-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our understanding of decompression physiopathology has slowly improved during this last decade and some uncertainties have disappeared. A better understanding of anatomy and functional aspects of patent foramen ovale (PFO) have slowly resulted in a more liberal approach toward the medical fitness to dive for those bearing a PFO. Circulating vascular gas emboli (VGE) are considered the key actors in development of decompression sickness and can be considered as markers of decompression stress indicating induction of pathophysiological processes not necessarily leading to occurrence of disease symptoms. During the last decade, it has appeared possible to influence post-dive VGE by a so-called "preconditioning" as a pre-dive denitrogenation, exercise or some pharmacological agents. In the text we have deeply examined all the scientific evidence about this complicated but challenging theme. Finally, the role of the "normobaric oxygen paradox" has been clarified and it is not surprising that it could be involved in neuroprotection and cardioprotection. However, the best level of inspired oxygen and the exact time frame to achieve optimal effect is still not known. The aim of this paper was to reflect upon the most actual uncertainties and distil out of them a coherent, balanced advice towards the researchers involved in gas-bubbles-related pathologies.
Collapse
Affiliation(s)
- Costantino Balestra
- Laboratory of Environmental and Occupational (Integrative) Physiology, Haute Ecole Bruxelles-Brabant, Auderghem, Brussels, Belgium.,Division of Research, Divers Alert Network Europe, Gharghur, Malta
| | - Peter Germonpré
- Laboratory of Environmental and Occupational (Integrative) Physiology, Haute Ecole Bruxelles-Brabant, Auderghem, Brussels, Belgium.,Division of Research, Divers Alert Network Europe, Gharghur, Malta.,Center for Hyperbaric Oxygen Therapy, Military Hospital of Brussels, Brussels, Belgium
| | - Monica Rocco
- Unit of Intensive Care, Department of Surgical and Medical Science and Translational Medicine, Sapienza University, Rome, Italy -
| | | | - Jacek Kot
- National Center of Hyperbaric Medicine in Gdynia, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
6
|
Gennser M, Blogg SL, Eiken O, Mekjavic IB. Indices of Increased Decompression Stress Following Long-Term Bed Rest. Front Physiol 2018; 9:442. [PMID: 30072904 PMCID: PMC6058089 DOI: 10.3389/fphys.2018.00442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Human extravehicular activity (EVA) is essential to space exploration and involves risk of decompression sickness (DCS). On Earth, the effect of microgravity on physiological systems is simulated in an experimental model where subjects are confined to a 6° head-down bed rest (HDBR). This model was used to investigate various resting and exercise regimen on the formation of venous gas emboli (VGE), an indicator of decompression stress, post-hyperbaric exposure. Eight healthy male subjects participating in a bed rest regimen also took part in this study, which incorporated five different hyperbaric exposure (HE) interventions made before, during and after the HDBR. Interventions i–iv were all made with the subjects lying in 6° HD position. They included (C1) resting control, (C2) knee-bend exercise immediately prior to HE, (T1) HE during the fifth week of the 35-day HDBR period, (C3) supine cycling exercise during the HE. In intervention (C4), subjects remained upright and ambulatory. The HE protocol followed the Royal Navy Table 11 with 100 min spent at 18 m (280 kPa), with decompression stops at 6 m for 5 min, and at 3 m for 15 min. Post-HE, regular precordial Doppler audio measurements were made to evaluate any VGE produced post-dive. VGE were graded according to the Kisman Masurel scale. The number of bubbles produced was low in comparison to previous studies using this profile [Kisman integrated severity score (KISS) ranging from 0–1], and may be because subjects were young, and lay supine during both the HE and the 2 h measurement period post-HE for interventions i–iv. However, the HE during the end of HDBR produced significantly higher maximum bubble grades and KISS score than the supine control conditions (p < 0.01). In contrast to the protective effect of pre-dive exercise on bubble production, a prolonged period of bed rest prior to a HE appears to promote the formation of post-decompression VGE. This is in contrast to the absence of DCS observed during EVA. Whether this is due to a difference between hypo- and hyperbaric decompression stress, or that the HDBR model is a not a good model for decompression sensitivity during microgravity conditions will have to be elucidated in future studies.
Collapse
Affiliation(s)
- Mikael Gennser
- Swedish Aerospace Physiology Centre, Department of Environmental Physiology, CBH, KTH Royal Institute of Technology, Stockholm, Sweden
| | - S L Blogg
- SLB Consulting, Cumbria, United Kingdom
| | - Ola Eiken
- Swedish Aerospace Physiology Centre, Department of Environmental Physiology, CBH, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
7
|
Brebeck AK, Deussen A, Range U, Balestra C, Cleveland S, Schipke JD. Beneficial effect of enriched air nitrox on bubble formation during scuba diving. An open-water study. J Sports Sci 2017; 36:605-612. [DOI: 10.1080/02640414.2017.1326617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anne-Kathrin Brebeck
- Institute of Physiology, Medical Faculty Carl Gustav Carus of TU, Dresden, Germany
| | - Andreas Deussen
- Institute of Physiology, Medical Faculty Carl Gustav Carus of TU, Dresden, Germany
| | - Ursula Range
- Institute of Medical Informatics and Biometrics, Medical Faculty Carl Gustav Carus of TU, Dresden, Germany
| | - Costantino Balestra
- Environmental & Occupational Physiology Laboratory, Haute Ecole Henri Spaak, Brussels, BE, Auderghem, Belgium
| | - Sinclair Cleveland
- Institute of Neuro- and Sensory Physiology, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Jochen D. Schipke
- Research Group Experimental Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Balestra C, Theunissen S, Papadopoulou V, Le Mener C, Germonpré P, Guerrero F, Lafère P. Pre-dive Whole-Body Vibration Better Reduces Decompression-Induced Vascular Gas Emboli than Oxygenation or a Combination of Both. Front Physiol 2016; 7:586. [PMID: 27965591 PMCID: PMC5127795 DOI: 10.3389/fphys.2016.00586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/14/2016] [Indexed: 11/13/2022] Open
Abstract
Purpose: Since non-provocative dive profiles are no guarantor of protection against decompression sickness, novel means including pre-dive "preconditioning" interventions, are proposed for its prevention. This study investigated and compared the effect of pre-dive oxygenation, pre-dive whole body vibration or a combination of both on post-dive bubble formation. Methods: Six healthy volunteers performed 6 no-decompression dives each, to a depth of 33 mfw for 20 min (3 control dives without preconditioning and 1 of each preconditioning protocol) with a minimum interval of 1 week between each dive. Post-dive bubbles were counted in the precordium by two-dimensional echocardiography, 30 and 90 min after the dive, with and without knee flexing. Each diver served as his own control. Results: Vascular gas emboli (VGE) were systematically observed before and after knee flexing at each post-dive measurement. Compared to the control dives, we observed a decrease in VGE count of 23.8 ± 7.4% after oxygen breathing (p < 0.05), 84.1 ± 5.6% after vibration (p < 0.001), and 55.1 ± 9.6% after vibration combined with oxygen (p < 0.001). The difference between all preconditioning methods was statistically significant. Conclusions: The precise mechanism that induces the decrease in post-dive VGE and thus makes the diver more resistant to decompression stress is still not known. However, it seems that a pre-dive mechanical reduction of existing gas nuclei might best explain the beneficial effects of this strategy. The apparent non-synergic effect of oxygen and vibration has probably to be understood because of different mechanisms involved.
Collapse
Affiliation(s)
- Costantino Balestra
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant - HE2BBrussels, Belgium; DAN Europe Research DivisionRoseto, Italy; DAN Europe Research DivisionBrussels, Belgium; Anatomical Research and Clinical Studies (ARCS), Vrije Universiteit BrusselBrussels, Belgium; Anatomical Research Training and Education (ARTE), Vrije Universiteit BrusselBrussels, Belgium; Motor Sciences, Université Libre de BruxellesBrussels, Belgium
| | - Sigrid Theunissen
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant - HE2BBrussels, Belgium; DAN Europe Research DivisionRoseto, Italy; DAN Europe Research DivisionBrussels, Belgium
| | - Virginie Papadopoulou
- Dayton Lab, Department of Biomedical Engineering, University of North Carolina Chapel Hill, NC, USA
| | - Cedric Le Mener
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant - HE2B Brussels, Belgium
| | - Peter Germonpré
- DAN Europe Research DivisionRoseto, Italy; DAN Europe Research DivisionBrussels, Belgium; Center for Hyperbaric Oxygen Therapy, Military Hospital "Queen Astrid"Brussels, Belgium
| | - François Guerrero
- DAN Europe Research DivisionRoseto, Italy; DAN Europe Research DivisionBrussels, Belgium; ORPHY Laboratory, EA 4324, Université de Bretagne OccidentaleBrest, France
| | - Pierre Lafère
- DAN Europe Research DivisionRoseto, Italy; DAN Europe Research DivisionBrussels, Belgium; ORPHY Laboratory, EA 4324, Université de Bretagne OccidentaleBrest, France
| |
Collapse
|
9
|
Madden D, Thom SR, Dujic Z. Exercise before and after SCUBA diving and the role of cellular microparticles in decompression stress. Med Hypotheses 2016; 86:80-4. [PMID: 26804603 DOI: 10.1016/j.mehy.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/29/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022]
Abstract
Risk in SCUBA diving is often associated with the presence of gas bubbles in the venous circulation formed during decompression. Although it has been demonstrated time-after-time that, while venous gas emboli (VGE) often accompany decompression sickness (DCS), they are also frequently observed in high quantities in asymptomatic divers following even mild recreational dive profiles. Despite this VGE are commonly utilized as a quantifiable marker of the potential for an individual to develop DCS. Certain interventions such as exercise, antioxidant supplements, vibration, and hydration appear to impact VGE production and the decompression process. However promising these procedures may seem, the data are not yet conclusive enough to warrant changes in decompression procedure, possibly suggesting a component of individual response. We hypothesize that the impact of exercise varies widely in individuals and once tested, recommendations can be made that will reduce individual decompression stress and possibly the incidence of DCS. The understanding of physiological adaptations to diving stress can be applied in different diseases that include endothelial dysfunction and microparticle (MP) production. Exercise before diving is viewed by some as a protective form of preconditioning because some studies have shown that it reduces VGE quantity. We propose that MP production and clearance might be a part of this mechanism. Exercise after diving appears to impact the risk of adverse events as well. Research suggests that the arterialization of VGE presents a greater risk for DCS than when emboli are eliminated by the pulmonary circuit before they have a chance to crossover. Laboratory studies have demonstrated that exercise increases the incidence of crossover likely through extra-cardiac mechanisms such as intrapulmonary arterial-venous anastomoses (IPAVAs). This effect of exercise has been repeated in the field with divers demonstrating a direct relationship between exercise and increased incidence of arterialization.
Collapse
Affiliation(s)
- Dennis Madden
- Department of Integrative Physiology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| | - Stephen R Thom
- Department of Emergency Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia.
| |
Collapse
|
10
|
Madden D, Barak O, Thom SR, Yang M, Bhopale VM, Ljubkovic M, Dujic Z. The impact of predive exercise on repetitive SCUBA diving. Clin Physiol Funct Imaging 2014; 36:197-205. [DOI: 10.1111/cpf.12213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Dennis Madden
- Department of Physiology; University of Split School of Medicine; Split Croatia
| | - Otto Barak
- Department of Physiology; Faculty of Medicine; University of Novi Sad; Novi Sad Serbia
| | - Stephen R. Thom
- Department of Emergency Medicine; University of Maryland; Baltimore MD USA
| | - Ming Yang
- Department of Emergency Medicine; University of Maryland; Baltimore MD USA
| | - Veena M. Bhopale
- Department of Emergency Medicine; University of Maryland; Baltimore MD USA
| | - Marko Ljubkovic
- Department of Physiology; University of Split School of Medicine; Split Croatia
| | - Zeljko Dujic
- Department of Physiology; University of Split School of Medicine; Split Croatia
| |
Collapse
|
11
|
MADDEN DENNIS, THOM STEPHENR, MILOVANOVA TATYANAN, YANG MING, BHOPALE VEENAM, LJUBKOVIC MARKO, DUJIC ZELJKO. Exercise before Scuba Diving Ameliorates Decompression-Induced Neutrophil Activation. Med Sci Sports Exerc 2014; 46:1928-35. [DOI: 10.1249/mss.0000000000000319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
|
13
|
High intensity cycling before SCUBA diving reduces post-decompression microparticle production and neutrophil activation. Eur J Appl Physiol 2014; 114:1955-61. [DOI: 10.1007/s00421-014-2925-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/24/2014] [Indexed: 10/25/2022]
|