1
|
Plant Bioactives in the Treatment of Inflammation of Skeletal Muscles: A Molecular Perspective. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4295802. [PMID: 35911155 PMCID: PMC9328972 DOI: 10.1155/2022/4295802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 12/20/2022]
Abstract
Skeletal muscle mass responds rapidly to growth stimuli, precipitating hypertrophies (increased protein synthesis) and hyperplasia (activation of the myogenic program). For ages, muscle degeneration has been attributed to changes in the intracellular myofiber pathways. These pathways are tightly regulated by hormones and lymphokines that ultimately pave the way to decreased anabolism and accelerated protein breakdown. Despite the lacunae in our understanding of specific pathways, growing bodies of evidence suggest that the changes in the myogenic/regenerative program are the major contributing factor in the development and progression of muscle wasting. In addition, inflammation plays a key role in the pathophysiology of diseases linked to the failure of skeletal muscles. Chronic inflammation with elevated levels of inflammatory mediators has been observed in a spectrum of diseases, such as inflammatory myopathies and chronic obstructive pulmonary disease (COPD). Although the pathophysiology of these diseases varies greatly, they all demonstrate sarcopenia and dysregulated skeletal muscle physiology as common symptoms. Medicinal plants harbor potential novel chemical moieties for a plenitude of illnesses, and inflammation is no exception. However, despite the vast number of potential antiinflammatory compounds found in plant extracts and isolated components, the research on medicinal plants is highly daunting. This review aims to explore the various phytoconstituents employed in the treatment of inflammatory responses in skeletal muscles, while providing an in-depth molecular insight into the latter.
Collapse
|
2
|
Castañeda R, Cáceres A, Velásquez D, Rodríguez C, Morales D, Castillo A. Medicinal plants used in traditional Mayan medicine for the treatment of central nervous system disorders: An overview. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114746. [PMID: 34656668 DOI: 10.1016/j.jep.2021.114746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE For thousands of years, different cultural groups have used and transformed natural resources for medicinal purposes focused on psychological or neurological conditions. Some of these are recognized as central nervous system (CNS) disorders and diseases, whereas other ethnopsychiatric interpretations are explained in culture-specific terms. In traditional Mayan medicine, several herbs have been part of treatments and rituals focused on cultural and ethnomedical concepts. AIM OF REVIEW This study aims to provide a comprehensive overview of the medicinal plants used in Mesoamerica by traditional healers and Mayan groups to CNS disorders and associate the traditional use with demonstrated pharmacological evidence to establish a solid foundation for directing future research. METHODS A systematic search for primary sources of plant use reports for traditional CNS-related remedies of Mesoamerica were obtained from library catalogs, thesis and scientific databases (PubMed, Scopus, Google Scholar; and Science Direct), and entered in a database with data analyzed in terms of the usage frequency, use by ethnic groups, plant endemism, and pharmacological investigation. RESULTS A total of 155 plants used for ethnopsychiatric conditions in Mesoamerica by Mayan groups were found, encompassing 127 native species. Of these, only 49 native species have reported in vitro or in vivo pharmacological analyses. The most commonly reported ethnopsychiatric conditions are related to anxiety, depression, memory loss, epilepsy, and insomnia. The extent of the scientific evidence available to understand the pharmacological application for their use against CNS disorders varied between different plant species, with the most prominent evidence shown by Annona cherimola, Justicia pectoralis, J. spicigera, Mimosa pudica, Persea americana, Petiveria alliacea, Piper amalago, Psidium guajava, Tagetes erecta and T. lucida. CONCLUSION Available pharmacological data suggest that different plant species used in traditional Mayan medicine may target the CNS, mainly related to GABA, serotonin, acetylcholine, or neuroprotective pathways. However, more research is required, given the limited data regarding mechanism of action at the preclinical in vivo level, identification of active compounds, scarce number of clinical studies, and the dearth of peer-reviewed studies.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | | | - Diana Velásquez
- School of Biology, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - Cesar Rodríguez
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - David Morales
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - Andrea Castillo
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| |
Collapse
|
3
|
Taherkhani S, Suzuki K, Castell L. A Short Overview of Changes in Inflammatory Cytokines and Oxidative Stress in Response to Physical Activity and Antioxidant Supplementation. Antioxidants (Basel) 2020; 9:E886. [PMID: 32962110 PMCID: PMC7555806 DOI: 10.3390/antiox9090886] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Excessive release of inflammatory cytokines and oxidative stress (OS) are triggering factors in the onset of chronic diseases. One of the factors that can ensure health in humans is regular physical activity. This type of activity can enhance immune function and dramatically prevent the spread of the cytokine response and OS. However, if physical activity is done intensely at irregular intervals, it is not only unhealthy but can also lead to muscle damage, OS, and inflammation. In this review, the response of cytokines and OS to exercise is described. In addition, it is focused predominantly on the role of reactive oxygen and nitrogen species (RONS) generated from muscle metabolism and damage during exercise and on the modulatory effects of antioxidant supplements. Furthermore, the influence of factors such as age, sex, and type of exercise protocol (volume, duration, and intensity of training) is analyzed. The effect of antioxidant supplements on improving OS and inflammatory cytokines is somewhat ambiguous. More research is needed to understand this issue, considering in greater detail factors such as level of training, health status, age, sex, disease, and type of exercise protocol.
Collapse
Affiliation(s)
- Shima Taherkhani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht 4199843653, Iran;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Lindy Castell
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK
| |
Collapse
|
4
|
haeri ST, azarbayjani MA, peeri M. Effect of Eight Weeks of Aerobic Exercise and Vitamin D Supplementation on 8-hydroxy-2'-deoxyguanosine and O6-methylguanine DNA methyltransferase in Lung of Rats Poisoned with Hydrogen Peroxide. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.4.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
5
|
DAS K, Deb S, Karanth T. Phytochemical Screening and Metallic Ion Content and Its Impact on the Antipsoriasis Activity of Aqueous Leaf Extracts of Calendula officinalis and Phlebodium decumanum in an Animal Experiment Model. Turk J Pharm Sci 2020; 16:292-302. [PMID: 32454727 DOI: 10.4274/tjps.galenos.2018.44265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/31/2018] [Indexed: 12/01/2022]
Abstract
Objectives The aim of this study was to evaluate the influence of metal ions present in soil as well as in leaf samples of Calendula officinalis and Phlebodium decumanum for the treatment of psoriasis. Materials and Methods To meet the objective, soil and leaf samples were estimated for metal ions by atomic absorption spectrophotometer to determine the influence in antipsoriatic activity. Thereafter imiquimod-induced dermatitis lesions were created in grouped mice. Two plant extracts (aqueous) separately as well as in combinations and standard Retino-A (0.05%) were used. Psoriasis severity index (PSI) was evaluated according to the phenotypic (redness, erythema, and scales) and histological features (epidermal thickness). Further content of phytochemicals in terms of extract was correlated with the effect of psoriasis activity. Results We observed redness, erythema, and scales and the histological features and found a progressive reduction (P<0.05) in the severity of psoriatic lesions (redness, erythema, and scales) from days 7 to 21 and decreased epidermal thickness in animals treated with combined extracts at a dose of 200 mg/kg b.w. Furthermore, plant samples procured from the Nandi Hills, Bangalore, showed better uptake of metals with respect to Fe (2.05 mg/kg), Cu (0.78 mg/kg), and Zn (1.12 mg/kg), which showed a positive impact on procurement of maximum amount of extracts that further correlated with the activity, indicating a significant reduction in psoriatic lesions. Conclusion The results revealed that the significant dose-dependent antipsoriasis activity of combined aqueous extracts of C. officinalis and P. decumanum as well as metal ions had an impact on the procurement of extracts and said activity.
Collapse
Affiliation(s)
- Kuntal DAS
- Krupanidhi College of Pharmacy, Bangalore, India
| | - Someswar Deb
- Krupanidhi College of Pharmacy, Bangalore, India
| | | |
Collapse
|
6
|
Martín-Pozo L, Zafra-Gómez A, Cantarero-Malagón S, Vilchez JL. Analysis of Phlebodium decumanum Fronds by High-Performance Liquid Chromatography by Ultraviolet-Visible and Quadrupole Time-of-Flight Tandem Mass Spectrometry (HPLC–UV–VIS–QTOF–MS/MS). ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1594866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Laura Martín-Pozo
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Granada, Spain
| | - Alberto Zafra-Gómez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Granada, Spain
| | | | - José Luis Vilchez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Hoetker D, Chung W, Zhang D, Zhao J, Schmidtke VK, Riggs DW, Derave W, Bhatnagar A, Bishop DJ, Baba SP. Exercise alters and β-alanine combined with exercise augments histidyl dipeptide levels and scavenges lipid peroxidation products in human skeletal muscle. J Appl Physiol (1985) 2018; 125:1767-1778. [PMID: 30335580 PMCID: PMC10392632 DOI: 10.1152/japplphysiol.00007.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carnosine and anserine are dipeptides synthesized from histidine and β-alanine by carnosine synthase (ATPGD1). These dipeptides, present in high concentration in the skeletal muscle, form conjugates with lipid peroxidation products such as 4-hydroxy trans-2-nonenal (HNE). Although skeletal muscle levels of these dipeptides could be elevated by feeding β-alanine, it is unclear how these dipeptides and their conjugates are affected by exercise training with or without β-alanine supplementation. We recruited twenty physically active men, who were allocated to either β-alanine or placebo-feeding group matched for VO2 peak, lactate threshold, and maximal power (Wmax). Participants completed 2 weeks of conditioning phase followed by 1 week of exercise testing (CPET) and a single session followed by 6 weeks of high intensity interval training (HIIT). Analysis of muscle biopsies showed that the levels of carnosine and ATPGD1 expression were increased after CPET and decreased following a single session and 6 weeks of HIIT. Expression of ATPGD1 and levels of carnosine were increased upon β-alanine-feeding after CPET, while ATPGD1 expression decreased following a single session of HIIT. The expression of fiber type markers myosin heavy chain (MHC) I and IIa remained unchanged after CPET. Levels of carnosine, anserine, carnosine-HNE, carnosine-propanal and carnosine-propanol were further increased after 9 weeks of β-alanine supplementation and exercise training, but remained unchanged in the placebo-fed group. These results suggest that carnosine levels and ATPGD1 expression fluctuates with different phases of training. Enhancing carnosine levels by β-alanine feeding could facilitate the detoxification of lipid peroxidation products in the human skeletal muscle.
Collapse
Affiliation(s)
| | - Weiliang Chung
- Department of Movement and Sport Sciences, Ghent University
| | | | | | | | | | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Belgium
| | - Aruni Bhatnagar
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY
| | | | | |
Collapse
|
8
|
van 't Erve TJ. Strategies to decrease oxidative stress biomarker levels in human medical conditions: A meta-analysis on 8-iso-prostaglandin F 2α. Redox Biol 2018; 17:284-296. [PMID: 29775960 PMCID: PMC6007822 DOI: 10.1016/j.redox.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
The widespread detection of elevated oxidative stress levels in many medical conditions has led to numerous efforts to design interventions to reduce its effects. Efforts have been wide-ranging, from dietary changes to administration of antioxidants, supplements, e.g., omega-3-fatty acids, and many medications. However, there is still no systemic assessment of the efficacy of treatments for oxidative stress reduction across a variety of medical conditions. The goal of this meta-analysis is, by combining multiple studies, to quantitate the change in the levels of the popular oxidative stress biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) after a variety of treatment strategies in human populations. Nearly 350 unique publications with 180 distinct strategies were included in the analysis. For each strategy, the difference between pre- or placebo and post-treatment levels calculated using Hedges' g value of effect. In general, administration of antibiotics, antihyperlipidemic agents, or changes in lifestyle (g = - 0.63, - 0.54, and 0.56) had the largest effect. Administration of supplements, antioxidants, or changes in diet (g = - 0.09, - 0.28, - 0.12) had small quantitative effects. To fully interpret the effectiveness of these treatments, comparisons to the increase in g value for each medical condition is required. For example, antioxidants in populations with coronary artery disease (CAD) reduce the 8-iso-PGF2α levels by g = - 0.34 ± 0.1, which is quantitatively considered a small effect. However, CAD populations, in comparison to healthy populations, have an increase in 8-iso-PGF2α levels by g = 0.38 ± 0.04; therefore, the overall reduction of 8-iso-PGF2α levels is ≈ 90% by this treatment in this specific medical condition. In conclusion, 8-iso-PGF2α levels can be reduced not only by antioxidants but by many other strategies. Not all strategies are equally effective at reducing 8-iso-PGF2α levels. In addition, the effectiveness of any strategy can be assessed only in relation to the medical condition investigated.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| |
Collapse
|
9
|
van 't Erve TJ, Kadiiska MB, London SJ, Mason RP. Classifying oxidative stress by F 2-isoprostane levels across human diseases: A meta-analysis. Redox Biol 2017; 12:582-599. [PMID: 28391180 PMCID: PMC5384299 DOI: 10.1016/j.redox.2017.03.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/07/2023] Open
Abstract
The notion that oxidative stress plays a role in virtually every human disease and environmental exposure has become ingrained in everyday knowledge. However, mounting evidence regarding the lack of specificity of biomarkers traditionally used as indicators of oxidative stress in human disease and exposures now necessitates re-evaluation. To prioritize these re-evaluations, published literature was comprehensively analyzed in a meta-analysis to quantitatively classify the levels of systemic oxidative damage across human disease and in response to environmental exposures. In this meta-analysis, the F2-isoprostane, 8-iso-PGF2α, was specifically chosen as the representative marker of oxidative damage. To combine published values across measurement methods and specimens, the standardized mean differences (Hedges’ g) in 8-iso-PGF2α levels between affected and control populations were calculated. The meta-analysis resulted in a classification of oxidative damage levels as measured by 8-iso-PGF2α across 50 human health outcomes and exposures from 242 distinct publications. Relatively small increases in 8-iso-PGF2α levels (g<0.8) were found in the following conditions: hypertension (g=0.4), metabolic syndrome (g=0.5), asthma (g=0.4), and tobacco smoking (g=0.7). In contrast, large increases in 8-iso-PGF2α levels were observed in pathologies of the kidney, e.g., chronic renal insufficiency (g=1.9), obstructive sleep apnoea (g=1.1), and pre-eclampsia (g=1.1), as well as respiratory tract disorders, e.g., cystic fibrosis (g=2.3). In conclusion, we have established a quantitative classification for the level of 8-iso-PGF2α generation in different human pathologies and exposures based on a comprehensive meta-analysis of published data. This analysis provides knowledge on the true involvement of oxidative damage across human health outcomes as well as utilizes past research to prioritize those conditions requiring further scrutiny on the mechanisms of biomarker generation. Oxidative damage is highly variable in human conditions as measured by F2-isoprostanes. Respiratory tract and urogenital diseases have the highest F2-isoprostanes. Cancer and cardiovascular diseases have surprisingly low F2-isoprostanes.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| | - Maria B Kadiiska
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Stephanie J London
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| |
Collapse
|
10
|
Brito AF, Silva AS, Souza ILL, Pereira JC, Martins IRR, Silva BA. Intensity of swimming exercise influences tracheal reactivity in rats. J Smooth Muscle Res 2016; 51:70-81. [PMID: 26497013 PMCID: PMC5137269 DOI: 10.1540/jsmr.51.70] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Studies that evaluate the mechanisms for increased airway responsiveness are very sparse,
although there are reports of exercise-induced bronchospasm. Therefore, we have evaluated
the tracheal reactivity and the rate of lipid peroxidation after different intensities of
swimming exercise in rats. Thus, male Wistar rats (age 8 weeks; 250–300 g) underwent a
forced swimming exercise for 1 h whilst carrying attached loads of 3, 4, 5, 6 and 8% of
their body weight (groups G3, G4, G5, G6 and G8, respectively; n=5 each).
Immediately after the test, the trachea of each rat was removed and suspended in an organ
bath to evaluate contractile and relaxant responses. The rate of lipid peroxidation was
estimated by measuring malondialdehyde levels. According to a one-way ANOVA, all trained
groups showed a significant decrease in the relaxation induced by aminophylline
(10−12–10−1 M) (pD2=3.1, 3.2, 3.3, 3.3 and 3.2, respectively for
G3, G4, G5, G6 and G8) compared to the control group (pD2=4.6) and the Emax
values of G5, G6, G8 groups were reduced by 94.2, 88.0 and 77.0%, respectively.
Additionally, all trained groups showed a significant increase in contraction induced by
carbachol (10−9–10−3 M) (pD2=6.0, 6.5, 6.5, 7.2 and 7.3,
respectively for G3, G4, G5, G6 and G8) compared to the control group (pD2=5.7). Lipid
peroxidation levels of G3, G4 and G5 were similar in both the trachea and lung, however G6
and G8 presented an increased peroxidation in the trachea. In conclusion, a single bout of
swimming exercise acutely altered tracheal responsiveness in an intensity-related manner
and the elevation in lipid peroxidation indicates a degree of oxidative stress
involvement.
Collapse
Affiliation(s)
- Aline F Brito
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Paraíba, Brasil
| | | | | | | | | | | |
Collapse
|
11
|
A Systematic Review on the Effects of Botanicals on Skeletal Muscle Health in Order to Prevent Sarcopenia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5970367. [PMID: 27051451 PMCID: PMC4804074 DOI: 10.1155/2016/5970367] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/20/2016] [Accepted: 01/24/2016] [Indexed: 01/11/2023]
Abstract
We performed a systematic review to evaluate the evidence-based medicine regarding the main botanical extracts and their nutraceutical compounds correlated to skeletal muscle health in order to identify novel strategies that effectively attenuate skeletal muscle loss and enhance muscle function and to improve the quality of life of older subjects. This review contains all eligible studies from 2010 to 2015 and included 57 publications. We focused our attention on effects of botanical extracts on growth and health of muscle and divided these effects into five categories: anti-inflammation, muscle damage prevention, antifatigue, muscle atrophy prevention, and muscle regeneration and differentiation.
Collapse
|