1
|
Correcting for Heel Lift Reduces Ankle Joint Operating Range for the Ankle Plantar Flexor Strength Curve. J Biomech 2022; 134:110998. [DOI: 10.1016/j.jbiomech.2022.110998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 01/04/2022] [Accepted: 02/08/2022] [Indexed: 11/18/2022]
|
2
|
Stafilidis S, Kopper-Zisser C. Ankle joint rotation and exerted moment during plantarflexion dependents on measuring- and fixation method. PLoS One 2021; 16:e0253015. [PMID: 34464390 PMCID: PMC8407569 DOI: 10.1371/journal.pone.0253015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/27/2021] [Indexed: 11/18/2022] Open
Abstract
We examined the effect of ankle joint fixation vs increased foot pressure (aiming to reduce dynamometer-subject elasticity (DSE)) on the exerted moment during plantarflexion contraction. We also examined the joint rotation in dependence of the measuring site (forefoot, rearfoot) and the foot condition (fixed, free). We hypothesized higher exerted moments due to reduced DSE compared to fixed condition and an effect of fixation on the joint rotation in dependence of the measuring site. Fourteen healthy individuals (28.7±6.9y) completed in randomized order maximal isometric plantarflexions in four different positions (0-3-6-9 cm) and two ankle joint conditions (fixed-free). Kinematics of the rear- and forefoot were obtained synchronously. We found higher moment in the fixed compared to the free condition at all positions. The maximum moment in the fixed condition did not differ at any position. At the fixed condition, the forefoot rotation did not differ at any position (~5°) while at free condition we observed a significant rotation reduction (form ~12 to ~5°). The rearfoot rotation did not differ between conditions at any position while a significant joint angle reduction was observed (~10 to ~6° and ~12 to ~6°; fixed-free respectively). The results indicate that with appropriate foot fixation the maximum moment can be achieved irrespective of the position. With the foot secured, the measuring site influences the rotational outcome. We suggest that for a minimization of the joint rotation a fixation and the forefoot-measuring site should be preferred. Additionally, for unconstrained foot kinematic observations both measuring sites can be obtained.
Collapse
Affiliation(s)
- Savvas Stafilidis
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Institute of Sport Science, Sport, University of Vienna, Vienna, Austria
- * E-mail:
| | - Carina Kopper-Zisser
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Institute of Sport Science, Sport, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Beethe AZ, Ahamed NU, Connaboy C, Lovalekar M, Fisher LE, Nindl BC, Flanagan SD. Differences in compound muscle activation patterns explain upper extremity bilateral deficits. Hum Mov Sci 2021; 79:102851. [PMID: 34333306 DOI: 10.1016/j.humov.2021.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/20/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Anne Z Beethe
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America; Perception Action Laboratory, Department of Kinesiology and Health Science, Utah State University, Logan, UT, United States of America.
| | - Nizam U Ahamed
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christopher Connaboy
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mita Lovalekar
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Lee E Fisher
- Rehab Neural Engineering Laboratories, Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Bradley C Nindl
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Shawn D Flanagan
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
4
|
Toumi A, Smart R, Elie D, Bassement J, Leteneur S, Simoneau-Buessinger E, Jakobi J. Contribution of Achilles tendon mechanical properties to torque steadiness in persons with transfemoral amputation. Prosthet Orthot Int 2021; 45:170-177. [PMID: 33158397 DOI: 10.1177/0309364620966431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/28/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND How Achilles tendon mechanics and plantar flexion strength and torque steadiness are altered in the intact leg of persons with trauma-related amputation is unknown. Understanding Achilles tendon mechanics following amputation will further inform rehabilitation approaches to enhance posture, balance, and force control. OBJECTIVE Conduct a pilot study to quantify plantar flexion maximal voluntary contraction torque, torque steadiness, and Achilles tendon mechanics in persons with unilateral trauma-related transfemoral amputation and controls without amputation. STUDY DESIGN Cross-sectional study. METHODS Isometric plantar flexion maximal voluntary contractions were performed with the intact leg of ten males with transfemoral amputation (48 ± 14 years) and the dominant leg of age-matched male controls without amputation. Torque steadiness was calculated as the coefficient of variation in torque over 6 s during submaximal tracking tasks (5%, 10%, 25%, 50%, and 75% maximal voluntary contraction). Achilles tendon elongation and cross-sectional area were recorded with ultrasound to calculate strain, stress, and stiffness. RESULTS Maximal voluntary contraction and torque steadiness did not differ between persons with amputation (90.6 ± 31.6 N m, 3.7 ± 2.0%) and controls (95.8 ± 26.8 N m, 2.9 ± 1.2%; p > 0.05). Tendon stiffness (21.1 ± 18.2 N/mm) and strain (5.2 ± 1.3%) did not differ between groups (p > 0.05). Tendon cross-sectional area was 10% greater in persons with amputation leading to 29% lower stress (p = 0.021). Maximal voluntary contraction was a predictor of a lower coefficient of variation in torque (R2 = 0.11, p < 0.05). CONCLUSION Persons with trauma-related transfemoral amputation do not differ in plantar flexion maximal voluntary contraction and torque steadiness of the intact leg compared with controls without amputation. Larger tendon cross-sectional area reduces stress and enables distribution of force across a greater area.
Collapse
Affiliation(s)
- Anis Toumi
- Laboratoire d'Automatique de Mécanique et d'Informatique industrielles et Humaines (LAMIH), UMR CNRS 8201, Université Polytechnique Hauts-de-France, Valenciennes, France.,School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Rowan Smart
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Dimitri Elie
- Laboratoire d'Automatique de Mécanique et d'Informatique industrielles et Humaines (LAMIH), UMR CNRS 8201, Université Polytechnique Hauts-de-France, Valenciennes, France
| | - Jennifer Bassement
- Laboratoire d'Automatique de Mécanique et d'Informatique industrielles et Humaines (LAMIH), UMR CNRS 8201, Université Polytechnique Hauts-de-France, Valenciennes, France
| | - Sébastien Leteneur
- Laboratoire d'Automatique de Mécanique et d'Informatique industrielles et Humaines (LAMIH), UMR CNRS 8201, Université Polytechnique Hauts-de-France, Valenciennes, France
| | - Emilie Simoneau-Buessinger
- Laboratoire d'Automatique de Mécanique et d'Informatique industrielles et Humaines (LAMIH), UMR CNRS 8201, Université Polytechnique Hauts-de-France, Valenciennes, France
| | - Jennifer Jakobi
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
5
|
Corticomuscular Coherence and Motor Control Adaptations after Isometric Maximal Strength Training. Brain Sci 2021; 11:brainsci11020254. [PMID: 33670532 PMCID: PMC7922221 DOI: 10.3390/brainsci11020254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Strength training (ST) induces corticomuscular adaptations leading to enhanced strength. ST alters the agonist and antagonist muscle activations, which changes the motor control, i.e., force production stability and accuracy. This study evaluated the alteration of corticomuscular communication and motor control through the quantification of corticomuscular coherence (CMC) and absolute (AE) and variable error (VE) of the force production throughout a 3 week Maximal Strength Training (MST) intervention specifically designed to strengthen ankle plantarflexion (PF). Evaluation sessions with electroencephalography, electromyography, and torque recordings were conducted pre-training, 1 week after the training initiation, then post-training. Training effect was evaluated over the maximal voluntary isometric contractions (MVIC), the submaximal torque production, AE and VE, muscle activation, and CMC changes during submaximal contractions at 20% of the initial and daily MVIC. MVIC increased significantly throughout the training completion. For submaximal contractions, agonist muscle activation decreased over time only for the initial torque level while antagonist muscle activation, AE, and VE decreased over time for each torque level. CMC remained unaltered by the MST. Our results revealed that neurophysiological adaptations are noticeable as soon as 1 week post-training. However, CMC remained unaltered by MST, suggesting that central motor adaptations may take longer to be translated into CMC alteration.
Collapse
|
6
|
Simoneau-Buessinger É, Jakobi JM, Toumi A, Mathys A, Bassement J, Barbier F, Leteneur S. Does Unilateral Lower Limb Amputation Influence Ankle Joint Torque in the Intact Leg? Arch Phys Med Rehabil 2019; 100:1259-1266. [DOI: 10.1016/j.apmr.2018.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 01/11/2023]
|
7
|
Jochumsen M, Cremoux S, Robinault L, Lauber J, Arceo JC, Navid MS, Nedergaard RW, Rashid U, Haavik H, Niazi IK. Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface. SENSORS 2018; 18:s18113761. [PMID: 30400325 PMCID: PMC6264113 DOI: 10.3390/s18113761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 11/16/2022]
Abstract
Brain-computer interfaces (BCIs) can be used to induce neural plasticity in the human nervous system by pairing motor cortical activity with relevant afferent feedback, which can be used in neurorehabilitation. The aim of this study was to identify the optimal type or combination of afferent feedback modalities to increase cortical excitability in a BCI training intervention. In three experimental sessions, 12 healthy participants imagined a dorsiflexion that was decoded by a BCI which activated relevant afferent feedback: (1) electrical nerve stimulation (ES) (peroneal nerve-innervating tibialis anterior), (2) passive movement (PM) of the ankle joint, or (3) combined electrical stimulation and passive movement (Comb). The cortical excitability was assessed with transcranial magnetic stimulation determining motor evoked potentials (MEPs) in tibialis anterior before, immediately after and 30 min after the BCI training. Linear mixed regression models were used to assess the changes in MEPs. The three interventions led to a significant (p < 0.05) increase in MEP amplitudes immediately and 30 min after the training. The effect sizes of Comb paradigm were larger than ES and PM, although, these differences were not statistically significant (p > 0.05). These results indicate that the timing of movement imagery and afferent feedback is the main determinant of induced cortical plasticity whereas the specific type of feedback has a moderate impact. These findings can be important for the translation of such a BCI protocol to the clinical practice where by combining the BCI with the already available equipment cortical plasticity can be effectively induced. The findings in the current study need to be validated in stroke populations.
Collapse
Affiliation(s)
- Mads Jochumsen
- SMI, Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark.
| | - Sylvain Cremoux
- LAMIH, UMR CNRS 8201, Université Polytechnique des Hauts de France, Valenciennes 59313, France.
| | - Lucien Robinault
- LAMIH, UMR CNRS 8201, Université Polytechnique des Hauts de France, Valenciennes 59313, France.
| | - Jimmy Lauber
- LAMIH, UMR CNRS 8201, Université Polytechnique des Hauts de France, Valenciennes 59313, France.
| | - Juan Carlos Arceo
- LAMIH, UMR CNRS 8201, Université Polytechnique des Hauts de France, Valenciennes 59313, France.
| | - Muhammad Samran Navid
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg 9000, Denmark.
- New Zealand College of Chiropractic, Auckland 1060, New Zealand.
| | - Rasmus Wiberg Nedergaard
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg 9000, Denmark.
- New Zealand College of Chiropractic, Auckland 1060, New Zealand.
| | - Usman Rashid
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland 0627, New Zealand.
| | - Heidi Haavik
- New Zealand College of Chiropractic, Auckland 1060, New Zealand.
| | - Imran Khan Niazi
- SMI, Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark.
- New Zealand College of Chiropractic, Auckland 1060, New Zealand.
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland 0627, New Zealand.
| |
Collapse
|
8
|
Desmyttere G, Mathieu E, Begon M, Simoneau‐Buessinger E, Cremoux S. Effect of the phase of force production on corticomuscular coherence with agonist and antagonist muscles. Eur J Neurosci 2018; 48:3288-3298. [DOI: 10.1111/ejn.14126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Gauthier Desmyttere
- École de Kinésiologie et des Sciences de l’Activité PhysiqueUniversité de Montréal Montréal Canada
- LAMIH, UMR CNRS 8201Université de Valenciennes et du Hainaut Cambrésis Valenciennes France
| | - Emilie Mathieu
- LAMIH, UMR CNRS 8201Université de Valenciennes et du Hainaut Cambrésis Valenciennes France
| | - Mickael Begon
- École de Kinésiologie et des Sciences de l’Activité PhysiqueUniversité de Montréal Montréal Canada
| | | | - Sylvain Cremoux
- LAMIH, UMR CNRS 8201Université de Valenciennes et du Hainaut Cambrésis Valenciennes France
| |
Collapse
|
9
|
Simoneau-Buessinger E, Leteneur S, Bisman A, Gabrielli F, Jakobi J. Ultrasonographic quantification of architectural response in tibialis anterior to neuromuscular electrical stimulation. J Electromyogr Kinesiol 2017; 36:90-95. [DOI: 10.1016/j.jelekin.2017.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022] Open
|
10
|
Toumi A, Jakobi JM, Simoneau-Buessinger E. Differential impact of visual feedback on plantar- and dorsi-flexion maximal torque output. Appl Physiol Nutr Metab 2016; 41:557-9. [PMID: 27031663 DOI: 10.1139/apnm-2015-0639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of visual feedback on enhancing isometric maximal voluntary contractions (MVC) was evaluated. Twelve adults performed plantar-flexion and dorsi-flexion MVCs in 3 conditions (no visual feedback, visual feedback, and visual feedback with target). There was no significant effect of visual conditions on dorsi-flexion MVC but there was an effect on plantar-flexion. Irrespective of whether a target was evident, visual feedback increased plantar-flexion MVC by ∼15%. This study highlights the importance of optimal feedback to enhance MVC.
Collapse
Affiliation(s)
- Anis Toumi
- a Laboratoire d'Automatique, de Mécanique, et d'Informatique industrielles et Humaines (LAMIH) - UMR CNRS 8201, Université de Valenciennes et du Hainaut-Cambrésis (UVHC), F-59313 Valenciennes, France
| | - Jennifer M Jakobi
- b School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Emilie Simoneau-Buessinger
- a Laboratoire d'Automatique, de Mécanique, et d'Informatique industrielles et Humaines (LAMIH) - UMR CNRS 8201, Université de Valenciennes et du Hainaut-Cambrésis (UVHC), F-59313 Valenciennes, France
| |
Collapse
|
11
|
Simoneau-Buessinger E, Leteneur S, Toumi A, Dessurne A, Gabrielli F, Barbier F, Jakobi JM. Bilateral Strength Deficit Is Not Neural in Origin; Rather Due to Dynamometer Mechanical Configuration. PLoS One 2015; 10:e0145077. [PMID: 26684828 PMCID: PMC4684274 DOI: 10.1371/journal.pone.0145077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 11/28/2015] [Indexed: 11/28/2022] Open
Abstract
During maximal contractions, the sum of forces exerted by homonymous muscles unilaterally is typically higher than the sum of forces exerted by the same muscles bilaterally. However, the underlying mechanism(s) of this phenomenon, which is known as the bilateral strength deficit, remain equivocal. One potential factor that has received minimal attention is the contribution of body adjustments to bilateral and unilateral force production. The purpose of this study was to evaluate the plantar-flexors in an innovative dynamometer that permitted the influence of torque from body adjustments to be adapted. Participants were identically positioned between two setup configurations where torques generated from body adjustments were included within the net ankle torque (locked-unit) or independent of the ankle (open-unit). Twenty healthy adult males performed unilateral and bilateral maximal voluntary isometric plantar-flexion contractions using the dynamometer in the open and locked-unit mechanical configurations. While there was a significant bilateral strength deficit in the locked-unit (p = 0.01), it was not evident in the open-unit (p = 0.07). In the locked-unit, unilateral torque was greater than in the open-unit (p<0.001) and this was due to an additional torque from the body since the electromyographic activity of the agonist muscles did not differ between the two setups (p>0.05). This study revealed that the mechanical configuration of the dynamometer and then the body adjustments caused the observation of a bilateral strength deficit.
Collapse
Affiliation(s)
- Emilie Simoneau-Buessinger
- Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines (LAMIH)–UMR CNRS 8201, Université de Valenciennes et du Hainaut-Cambrésis (UVHC), Valenciennes, France
- * E-mail:
| | - Sébastien Leteneur
- Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines (LAMIH)–UMR CNRS 8201, Université de Valenciennes et du Hainaut-Cambrésis (UVHC), Valenciennes, France
| | - Anis Toumi
- Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines (LAMIH)–UMR CNRS 8201, Université de Valenciennes et du Hainaut-Cambrésis (UVHC), Valenciennes, France
| | - Alexandra Dessurne
- Laboratoire de l’Effort et du Mouvement, Haute Ecole Provinciale de Hainaut (HEPH)—Condorcet, Tournai, Belgium
| | - François Gabrielli
- Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines (LAMIH)–UMR CNRS 8201, Université de Valenciennes et du Hainaut-Cambrésis (UVHC), Valenciennes, France
| | - Franck Barbier
- Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines (LAMIH)–UMR CNRS 8201, Université de Valenciennes et du Hainaut-Cambrésis (UVHC), Valenciennes, France
| | - Jennifer M. Jakobi
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, Canada
| |
Collapse
|