1
|
Cavedon V, Sandri M, Zancanaro C, Milanese C. Assessing the Muscle-Bone Unit in Girls Exposed to Different Amounts of Impact-Loading Physical Activity-A Cross-Sectional Association Study. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1099. [PMID: 39334631 PMCID: PMC11430549 DOI: 10.3390/children11091099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND/OBJECTIVES In children, an association exists between muscle and bone, as well as between physical activity and osteogenesis. Impact loading is a factor in increasing bone accrual during growth. In this work, we explored the muscle-bone association in girls exposed to long-term physical activity at different levels of impact loading. METHODS Four groups of girls aged 7-16 were considered. The curricular (C; n = 22) group only had curricular physical activity at school (2 h/w). In addition to curricular physical activity, the girls in the dance (D; n = 21), gymnastics at lower training (GL; n = 14), and gymnastics at higher training (GH; n = 20) groups had 2 h/w, 4 h/w, and 4 h/w < training ≤ 12 h/w additional physical activity, respectively, for at least one year. A visual analysis estimated the respective amounts of impact-loading activity. The bone mineral content (BMC), areal bone mineral density (aBMD), and fat-free soft tissue mass (FFSTM) were assessed with dual-energy X-ray absorptiometry. RESULTS The results showed that, after adjusting for several confounders, statistically significant correlations were present between muscle mass and several bone mineral variables. A regression analysis confirmed the correlation in the data, and showed the marginal role of other body composition variables and physical activity for predicting BMC and BMD. CONCLUSION Skeletal muscle mass is a major determinant of the BMC and BMD of the TBLH, as well as of the Appendicular level, in girls exposed to different amounts of long-term impact-loading physical activity.
Collapse
Affiliation(s)
- Valentina Cavedon
- Laboratory of Anthropometry and Body Composition, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Marco Sandri
- Laboratory of Anthropometry and Body Composition, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Carlo Zancanaro
- Laboratory of Anthropometry and Body Composition, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Chiara Milanese
- Laboratory of Anthropometry and Body Composition, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| |
Collapse
|
2
|
Association between Body Composition and Bone Mineral Density in Children and Adolescents: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212126. [PMID: 34831882 PMCID: PMC8618958 DOI: 10.3390/ijerph182212126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
Background: Bone mass acquisition during growth is a major determinant of the risk of developing osteoporosis later in life. Body composition is an anthropometric determinant of bone mineral density (BMD) and significantly influences its development during childhood and adolescence. Objective: This study aimed to systematically examine the association between body composition and bone mineral density in children and adolescents. Methods: Observational studies addressing this association were identified from PubMed (MEDLINE), Embase, Scopus and the Cochrane Library (up to January 2021). The study populations consisted of healthy children and adolescents. The DerSimonian and Laird method was used to compute pooled estimates of effect size and the respective 95% confidence intervals for upper limbs, femoral neck (FN), lumbar spine (LS) and total body, respectively. Subgroup analyses were further performed based on age, sex and ethnicity. Results: Thirty-one published studies were eligible for inclusion in this systematic review and meta-analysis, including three longitudinal studies. The combined population from all the studies amounted to 21,393 (11,205 males and 10,188 females). The pooled estimates of the correlation coefficients for lean mass (LM) and BMD ranged from 0.53 to 0.74 (p < 0.050), and the pooled regression coefficients ranged from 0.23 to 0.79 for FN, LS and total body (p < 0.050). For fat mass (FM), the pooled correlation coefficients ranged from 0.10 to 0.50 (p < 0.050) and the pooled regression coefficient was only significant for FN BMD with a weak strength (pooled β = 0.07, p < 0.050). The pooled regression coefficients for body fat percentage (BF%) were between −0.54 and −0.04 (p < 0.050). The subgroup analysis revealed a stronger association in Asians than in Caucasians for LM and in males compared to females for BF% (p < 0.050). Conclusions: This systematic review and meta-analysis supports a positive association between LM and BMD. BF% appears to have a deleterious effect on bone acquisition in children and adolescents.
Collapse
|
3
|
Agostinete RR, Fernandes RA, Narciso PH, Maillane-Vanegas S, Werneck AO, Vlachopoulos D. Categorizing 10 Sports According to Bone and Soft Tissue Profiles in Adolescents. Med Sci Sports Exerc 2021; 52:2673-2681. [PMID: 32735110 DOI: 10.1249/mss.0000000000002420] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Considering the different loading and training characteristics of the sports practiced during growth, it is important to specify and categorize the bone and soft tissue adaptations in adolescent athletes. This study aimed to categorize 10 different loading sports and a nonsport group and identify the differences in bone density and soft tissues. METHODS The sample included 625 adolescents (10 to 17 yr of age) of 10 sports (soccer, basketball, volleyball, track and field, judo, karate, kung fu, gymnastics, baseball, and swimming) and a nonsport group. Dual-energy x-ray absorptiometry assessed areal bone mineral density (aBMD), bone mineral apparent density (BMAD), and soft tissues (lean soft tissue and fat mass). The results were adjusted for sex, peak height velocity status, lean soft tissue, fat mass, and weekly training volume. RESULTS The comparisons among groups showed that soccer had the highest whole-body aBMD (mean ± SEM: 1.082 ± 0.007 g·cm) and lower limb aBMD (1.302 ± 0.010 g·cm). Gymnastics presented the highest upper limb aBMD (0.868 ± 0.012 g·cm) and whole-body BMAD (0.094 ± 0.001 g·cm). Swimming presented the lowest aBMD values in all skeletal sites (except at the upper limbs) and whole-body BMAD. The soft tissue comparisons showed that soccer players had the highest lean soft tissue (43.8 ± 0.7 kg). The lowest fat mass was found in gymnasts (8.04 ± 1.0 kg). CONCLUSION The present study investigated and categorized for the first time 10 different sports according to bone density and soft tissue profiles. Soccer and gymnastics sport groups were found to have the highest bone density in most body segments, and both sports were among the groups with the lowest fat mass.
Collapse
Affiliation(s)
- Ricardo Ribeiro Agostinete
- Laboratory of Investigation in Exercise (LIVE), Department of Physical Education, Sao Paulo State University (UNESP), Presidente Prudente, BRAZIL
| | - Romulo Araújo Fernandes
- Laboratory of Investigation in Exercise (LIVE), Department of Physical Education, Sao Paulo State University (UNESP), Presidente Prudente, BRAZIL
| | - Pedro Henrique Narciso
- Laboratory of Investigation in Exercise (LIVE), Department of Physical Education, Sao Paulo State University (UNESP), Presidente Prudente, BRAZIL
| | - Santiago Maillane-Vanegas
- Laboratory of Investigation in Exercise (LIVE), Department of Physical Education, Sao Paulo State University (UNESP), Presidente Prudente, BRAZIL
| | - André Oliveira Werneck
- Laboratory of Investigation in Exercise (LIVE), Department of Physical Education, Sao Paulo State University (UNESP), Presidente Prudente, BRAZIL
| | - Dimitris Vlachopoulos
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, UNITED KINGDOM
| |
Collapse
|
4
|
Bone accrual over 18 months of participation in different loading sports during adolescence. Arch Osteoporos 2020; 15:64. [PMID: 32335776 DOI: 10.1007/s11657-020-00727-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/19/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED This study investigated the impact and non-impact sports on bone mineral density accrual in adolescents over 18 months. The impact sports were beneficial for bone health (accrual of bone density). In contrast, swimmers had similar or lower bone mineral density compared with the control group depending on the skeletal site. PURPOSE To investigate the impact and non-impact sports on bone mineral density (BMD) accrual in adolescents over a period of 18 months METHODS: The sample was composed of 71 adolescents, avarage age of 12.7 (± 1.7) years old at baseline. Bone outcomes were compared according to the loading of the sports practiced (impact sports, n = 33 [basketball, karate, and judo], non-impact sport, n = 18 [swimming], and control group, n = 20). Areal bone mineral density (aBMD) was measured by dual-energy X-ray absorptiometry (DXA) and bone mineral apparent density (BMAD) estimated through equation. The results were compared between the groups using analysis of variance and analysis of covariance. RESULTS Adjusted aBMD at lower limbs, whole body less head (WBLH), and adjusted WBLH BMAD were significantly greater in the impact sport group than the non-impact sport group at all time points. Adjusted upper limbs aBMD was significantly higher at the impact sports group compared to the non-impact sport group at 9 months and 18 months, besides compared to the control group at baseline and 18 months. Non-impact sport group presented a significant lower adjusted aBMD compared with control group at lower limbs and WBLH at 9 months, and at 9 months and 18 months in WBLH BMAD. There was a significant interaction (time × sport group) at upper limbs (p = 0.042) and WBLH aBMD (p = 0.006), and WBLH BMAD (p < 0.001). CONCLUSION Impact sports were more beneficial on accumulating aBMD and BMAD over a period of 18 months, while non-impact group (swimmers) had similar and lower aBMD and BMAD compared with the control group.
Collapse
|
5
|
Luiz-de-Marco R, Gobbo LA, Castoldi RC, Maillane-Vanegas S, da Silva Ventura Faustino-da-Silva Y, Exupério IN, Agostinete RR, Fernandes RA. Impact of changes in fat mass and lean soft tissue on bone mineral density accrual in adolescents engaged in different sports: ABCD Growth Study. Arch Osteoporos 2020; 15:22. [PMID: 32090287 DOI: 10.1007/s11657-020-0707-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/27/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED Body composition can have a significant impact on bone mineral density (BMD) in pediatric patients and may cause bone disease. This study demonstrated that lean soft tissue (LST) seems to have a greater impact on BMD gain in the lower limbs of adolescents. PURPOSE To analyze the impact of changes in lean soft tissue (LST) and fat mass on areal bone mineral density (BMD) accrual in the lower limbs among adolescents engaged in sports with different weight-bearing levels. METHODS Longitudinal (12 months: measurements at two time points). Adolescents of both sexes (n = 191; 62 girls [32.5%] and 129 boys [67.5%]) were divided into three groups: control group (n = 65), swimming group (n = 25), and weight-bearing sports group (n = 100). Absolute changes in LST (kg) and fat mass (kg) were the independent variables, while BMD accrual (left and right legs) was the dependent variable. Linear regression was used to assess the relationship between dependent and independent variables in a multivariate model adjusted by sex, body weight, somatic maturation, serum osteocalcin, and baseline values of BMD of the lower limbs. RESULTS For the left leg, LST was positively related to areal BMD accrual in the control (β = 0.021 [95%CI: 0.001 to 0.042]) and weight-bearing sport groups (β = 0.051 [95%CI: 0.037 to 0.065]), but not among swimmers (β = 0.029 [95%CI: - 0.004 to 0.062]). For the right leg, LST was positively related to areal BMD accrual in the swimming group (β = 0.065 [95%CI: 0.031 to 0.100]) and weight-bearing sport groups (β = 0.048 [95%CI: 0.034 to 0.062]), but not in the control group (β = 0.014 [95%CI: - 0.002 to 0.030]). Fat mass was not significantly related to areal BMD in either leg. CONCLUSIONS Changes in LST were the most relevant determinant of BMD accrual in the lower limbs, mainly among adolescents engaged in sports.
Collapse
Affiliation(s)
- Rafael Luiz-de-Marco
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, BR, Roberto Simonsen Street, 305, Presidente Prudente, São Paulo, 19060900, Brazil.
| | - Luis Alberto Gobbo
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, BR, Roberto Simonsen Street, 305, Presidente Prudente, São Paulo, 19060900, Brazil
| | - Robson Chacon Castoldi
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, BR, Roberto Simonsen Street, 305, Presidente Prudente, São Paulo, 19060900, Brazil
| | - Santiago Maillane-Vanegas
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, BR, Roberto Simonsen Street, 305, Presidente Prudente, São Paulo, 19060900, Brazil
| | - Yuri da Silva Ventura Faustino-da-Silva
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, BR, Roberto Simonsen Street, 305, Presidente Prudente, São Paulo, 19060900, Brazil
| | - Isabela Neto Exupério
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, BR, Roberto Simonsen Street, 305, Presidente Prudente, São Paulo, 19060900, Brazil
| | - Ricardo Ribeiro Agostinete
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, BR, Roberto Simonsen Street, 305, Presidente Prudente, São Paulo, 19060900, Brazil
| | - Romulo A Fernandes
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, BR, Roberto Simonsen Street, 305, Presidente Prudente, São Paulo, 19060900, Brazil
| |
Collapse
|
6
|
Zymbal V, Baptista F, Letuchy EM, Janz KF, Levy SM. Mediating Effect of Muscle on the Relationship of Physical Activity and Bone. Med Sci Sports Exerc 2019; 51:202-210. [PMID: 30157107 DOI: 10.1249/mss.0000000000001759] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE This study analyzed prospective associations between distinct trajectories of objectively measured physical activity (PA) and late adolescent bone parameters and explored the mediating effects of lean soft tissue, a surrogate of muscle mass to associations. METHODS Physical activity was measured by accelerometry starting at age 5 yr and continuing at 8, 11, 13, 15, and 17 yr in approximately 524 participants from the Iowa Bone Development Study. Sex-specific group-based trajectory modeling was used to construct developmental trajectories of moderate- and vigorous-intensity PA (MVPA) from childhood to late adolescence. At age 17 yr, proximal femur bone mineral density (aBMD) was assessed by dual X-ray energy absorptiometry, and its distribution was calculated by aBMD ratios. Specific geometric measures of the proximal femur were assessed using hip structural analysis. RESULTS A significant portion of the total effect of MVPA from age 5 to 17 yr on bone parameters at age 17 yr was explained by an increase in leg lean soft tissue in both sexes. For males and females, indirect effects were observed on the total and all regional proximal femur aBMD, and on the ratio between the inferomedial and superolateral neck aBMD. The effect on the ratio between the trochanter and the total proximal femur was specific to females, whereas the effect on the hip axis length was specific to males. Direct effects of MVPA on aBMD were identified only in males. CONCLUSIONS Using robust mediation analysis, this is the first study addressing the indirect effect (through muscle) of PA across childhood and adolescence on proximal femur bone parameters. To improve bone health at the proximal femur, the results suggest PA interventions during growth that increase muscle mass, particularly in females.
Collapse
Affiliation(s)
- Vera Zymbal
- Department of Sport and Health, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, PORTUGAL
| | - Fátima Baptista
- Department of Sport and Health, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, PORTUGAL
| | - Elena M Letuchy
- Department of Epidemiology, The University of Iowa, Iowa City, IA
| | - Kathleen F Janz
- Department of Epidemiology, The University of Iowa, Iowa City, IA.,Department of Health and Human Physiology, The University of Iowa, Iowa City, IA
| | - Steven M Levy
- Department of Epidemiology, The University of Iowa, Iowa City, IA.,Department of Preventive and Community Dentistry, College of Dentistry, The University of Iowa, Iowa City, IA
| |
Collapse
|
7
|
Vlachopoulos D, Barker AR, Ubago-Guisado E, Williams CA, Gracia-Marco L. A 9-Month Jumping Intervention to Improve Bone Geometry in Adolescent Male Athletes. Med Sci Sports Exerc 2019; 50:2544-2554. [PMID: 30067592 DOI: 10.1249/mss.0000000000001719] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Sports have different effects on bone development and effective interventions to improve bone health of adolescent athletes are needed. The purpose of the study was to investigate the effect of a 9-month jumping intervention on bone geometry and metabolism in adolescent male athletes. METHODS Ninety-three adolescent (14.1 yr old) male swimmers (SWI), footballers (FOO), and cyclists (CYC) were randomized to intervention and sport (INT-SWI = 19, INT-FOO = 15, and INT-CYC = 14) or sport only (CON-SWI = 18, CON-FOO = 15, and CON-CYC = 12) groups. Cross-sectional area, cross-sectional moment of inertia (CSMI), and section modulus (Z) at the femoral neck were assessed using hip structural analysis and trabecular texture of the lumbar spine using trabecular bone score. Bone mineral content (BMC) at femoral neck and lumbar spine was assessed using dual-energy x-ray absorptiometry. Serum N-terminal propeptide of procollagen type I, isomer of the carboxy-terminal telopeptide of type 1 collagen, total serum calcium, and 25-hydroxyvitamin D were analyzed. RESULTS INT-CYC acquired significantly higher lumbar spine BMC (4.6%) and femoral neck BMC (9.8%) than CON-CYC. INT-CYC acquired significantly higher cross-sectional area (11.0%), CSMI (10.1%), and trabecular bone score (4.4%) than CON-CYC. INT-SWI acquired significantly higher femoral neck BMC (6.0%) and CSMI (10.9%) than CON-SWI. There were no significant differences between INT-FOO and CON-FOO in any bone outcomes. N-terminal propeptide of procollagen type I significantly decreased in CON-SWI, INT-FOO, CON-FOO, and CON-CYC. Carboxy-terminal telopeptide of type 1 collagen significantly decreased in CON-SWI and CON-CYC. The 25-hydroxyvitamin D significantly increased in INT-CYC, CON-CYC, INT-FOO, and CON-FOO. CONCLUSIONS A 9-month jumping intervention improved bone outcomes in adolescent swimmers and cyclists, but not in footballers. This intervention might be used by sports clubs to improve bone health of adolescent athletes.
Collapse
Affiliation(s)
- Dimitris Vlachopoulos
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - Alan R Barker
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - Esther Ubago-Guisado
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, UNITED KINGDOM.,IGOID Research Group, University of Castilla-La Mancha, Toledo, SPAIN
| | - Craig A Williams
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - Luis Gracia-Marco
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, UNITED KINGDOM.,Growth, Exercise, Nutrition and Development Research Group, University of Zaragoza, Zaragoza, SPAIN.,PROFITH Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, SPAIN
| |
Collapse
|
8
|
Agreement Between Dual-Energy X-Ray Absorptiometry and Quantitative Ultrasound to Evaluate Bone Health in Adolescents: The PRO-BONE Study. Pediatr Exerc Sci 2018; 30:466-473. [PMID: 29804497 DOI: 10.1123/pes.2017-0217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE The present study aims to investigate the association between dual-energy X-ray absorptiometry (DXA) and quantitative ultrasound (QUS) parameters and the intermethods agreement in active males. METHODS In this cross-sectional study, bone health (by DXA and calcaneal QUS), physical activity (by accelerometers), and anthropometrics measurements were assessed in 117 active adolescents (12-14 y old). Bivariate correlation coefficients were calculated to assess the relationships between DXA standard regions of interest and QUS parameters. Intraclass correlation coefficients and Bland-Altman plots were used to assess the level of agreement between bone mineral content regions derived from DXA and stiffness index. The measurements were z score transformed for comparison. RESULTS Most QUS parameters were positive and significantly correlated with DXA outcomes (stiffness index: r = .43-.52; broadband ultrasound attenuation: r = .50-.58; speed of sound: r = .25-.27) with the hip showing the highest correlations. Moreover, the present study found fair to good intraclass correlation coefficients of agreement (.60-.68) between DXA and QUS to assess bone health. The Bland-Altman analysis showed a limited percentage of outliers (3.2%-8.6%). CONCLUSION QUS device could represent an acceptable alternative method to assess bone health in active adolescent males.
Collapse
|
9
|
Julián C, Huybrechts I, Gracia-Marco L, González-Gil EM, Gutiérrez Á, González-Gross M, Marcos A, Widhalm K, Kafatos A, Vicente-Rodríguez G, Moreno LA. Mediterranean diet, diet quality, and bone mineral content in adolescents: the HELENA study. Osteoporos Int 2018; 29:1329-1340. [PMID: 29508038 DOI: 10.1007/s00198-018-4427-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 02/06/2018] [Indexed: 10/17/2022]
Abstract
Dietary scores, rather than individual nutrients, allow exploring associations between overall diet and bone health. The aim of the present study was to assess the associations between the Mediterranean Diet Score for Adolescents (MDS-A) and the Diet Quality Index for Adolescents (DQI-A) and bone mineral content (BMC) among Spanish adolescents. Our results do not support an association between dietary scores or indices and BMC in adolescents. INTRODUCTION To assess the associations between the MDS-A and a DQI-A with the BMC measured with dual-energy X-ray absorptiometry. METHODS The MDS-A and the DQI-A were calculated in 179 Spanish adolescents, based on two 24-h dietary recalls from the HELENA cross-sectional study. The associations between the diet scores and the BMC outcomes [total body less head (TBLH), femoral neck (FN), lumbar spine (LS), and hip] were analyzed using logistic regression models adjusting for several confounders. RESULTS Four hundred ninety-two models were included and only fruits and nuts and cereal and roots were found to provide significant ORs with regard to BMC. The risk of having low BMC reduced by 32% (OR 0.684; CI 0.473-0.988) for FN when following the ideal MDS-A, but this association lost significance when adjusting for lean mass and physical activity. For every 1-point increase in the cereal and root and the fruit and nut components, the risk of having low FN diminished by 56% (OR 0.442; CI 0.216-0.901) and by 67% (OR 0.332; CI 0.146-0.755), respectively. CONCLUSION An overall dietary score or index is not associated with BMC in our adolescent Spanish sample.
Collapse
Affiliation(s)
- C Julián
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Faculty of Health Science, University of Zaragoza, Pedro Cerbuna 12, 50007, Zaragoza, Spain.
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Zaragoza, Spain.
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.
| | - I Huybrechts
- International Agency for Research on Cancer, Lyon, France
| | - L Gracia-Marco
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Faculty of Health Science, University of Zaragoza, Pedro Cerbuna 12, 50007, Zaragoza, Spain
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - E M González-Gil
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Faculty of Health Science, University of Zaragoza, Pedro Cerbuna 12, 50007, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Á Gutiérrez
- Department of Physiology, School of Medicine, University of Granada, Granada, Spain
| | - M González-Gross
- ImFine Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences-INEF, Universidad Politécnica de Madrid, Madrid, Spain
| | - A Marcos
- Department of Metabolism and Nutrition, ICTAN Spanish National Research Council, Madrid, Spain
| | - K Widhalm
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - A Kafatos
- Preventive Medicine and Nutrition Unit, University of Crete School of Medicine, Heraklion, Greece
| | - G Vicente-Rodríguez
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Faculty of Health Science, University of Zaragoza, Pedro Cerbuna 12, 50007, Zaragoza, Spain
| | - L A Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Faculty of Health Science, University of Zaragoza, Pedro Cerbuna 12, 50007, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| |
Collapse
|
10
|
Vlachopoulos D, Barker AR, Ubago-Guisado E, Williams CA, Gracia-Marco L. The effect of a high-impact jumping intervention on bone mass, bone stiffness and fitness parameters in adolescent athletes. Arch Osteoporos 2018; 13:128. [PMID: 30446875 PMCID: PMC6244891 DOI: 10.1007/s11657-018-0543-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/07/2018] [Indexed: 02/03/2023]
Abstract
UNLABELLED This study demonstrates that a 9-month jumping intervention can improve bone mass gains and physical fitness performance in adolescent males participating in non-osteogenic sports, such as swimming and cycling. PURPOSE To examine the effect of a jumping intervention on bone mass, bone stiffness and fitness parameters in adolescents involved in different sports. METHODS Ninety-three adolescent male swimmers (SWI), footballers (FOO) and cyclists (CYC) were randomised to intervention (INT) and sport (INT-SWI = 19, INT-FOO = 15, INT-CYC = 14) or sport only (CON-SWI = 18, CON-FOO = 15, CON-CYC = 12) groups. The 9-month jumping intervention consisted of 3 levels (12 weeks each) of 20 repetitions per set of counter movement jumps (CMJ) using adjustable weight vests (level 1 = 20 CMJ jumps/set, 0 kg, 3 sets/day, 3 times/week; level 2 = 20 CMJ jumps/set, 2 kg, 4 sets/day, 3 times/week; level 3 = 20 CMJ jumps/set, 5 kg, 4 sets/day, 4 times/week). Total body bone mineral content (BMC) at total body less head (TBLH) was measured using dual-energy X-ray absorptiometry and bone stiffness using quantitative ultrasound. Fitness was assessed using the 20-m shuttle run (20mSRT), CMJ and standing long jump (SLJ) tests. RESULTS INT-SWI had significantly higher increase in BMC legs and bone stiffness compared to CON-SWI (4.2-12.7%). INT-CYC had significantly higher increase in BMC at TBLH and legs and bone stiffness compared to CON-CYC (5.0-12.3%). There were no significant differences between INT-FOO and CON-FOO in any bone outcomes (0.9-3.9%). The increase in CMJ performance was significantly higher in INT-SWI (3.1 cm) and INT-CYC (3.2 cm) compared to CON-SWI and CON-CYC groups, respectively. CONCLUSIONS A 9-month jumping intervention can improve bone mass, bone stiffness and muscular fitness in adolescent males participating in non-osteogenic sports, such as swimming and cycling. CLINICAL TRIAL REGISTRATION ISRCTN17982776.
Collapse
Affiliation(s)
- Dimitris Vlachopoulos
- 0000 0004 1936 8024grid.8391.3Children’s Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Exeter, EX1 2LU UK
| | - Alan R. Barker
- 0000 0004 1936 8024grid.8391.3Children’s Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Exeter, EX1 2LU UK
| | - Esther Ubago-Guisado
- 0000 0004 1936 8024grid.8391.3Children’s Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Exeter, EX1 2LU UK ,0000 0001 2194 2329grid.8048.4IGOID Research Group, University of Castilla-La Mancha, Toledo, Spain
| | - Craig A. Williams
- 0000 0004 1936 8024grid.8391.3Children’s Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Exeter, EX1 2LU UK
| | - Luis Gracia-Marco
- 0000 0004 1936 8024grid.8391.3Children’s Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Exeter, EX1 2LU UK ,0000 0001 2152 8769grid.11205.37Growth, Exercise, Nutrition and Development Research Group, University of Zaragoza, Zaragoza, Spain ,0000000121678994grid.4489.1PROFITH “PROmoting FITness and Health through physical activity” Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
11
|
Vlachopoulos D, Barker AR, Ubago-Guisado E, Fatouros IG, Knapp KM, Williams CA, Gracia-Marco L. Longitudinal Adaptations of Bone Mass, Geometry, and Metabolism in Adolescent Male Athletes: The PRO-BONE Study. J Bone Miner Res 2017; 32:2269-2277. [PMID: 28685886 DOI: 10.1002/jbmr.3206] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 11/09/2022]
Abstract
Adolescence is a crucial period for bone development, and exercise can enhance bone acquisition during this period of life. However, it is not known how the different loading sports practiced can affect bone acquisition in adolescent male athletes. Therefore, the purpose of the present study was to determine the 1-year longitudinal bone acquisition among adolescent males involved in osteogenic (football) and non-osteogenic (swimming and cycling) sports and to compare with active controls. A total of 116 adolescent males aged 12 to 14 years at baseline were followed for 1 year: 37 swimmers, 37 footballers, 28 cyclists, and 14 active controls. Bone mineral content (BMC) was assessed using dual-energy X-ray absorptiometry (DXA); cross-sectional area (CSA), cross-sectional moment of inertia (CSMI), and section modulus (Z) at the femoral neck was assessed using hip structural analysis (HSA); and bone texture of the lumbar spine was assessed using trabecular bone score (TBS). Serum N-terminal propeptide of procollagen type I (PINP), isomer of the Carboxi-terminal telopeptide of type 1 collagen (CTX-I), total serum calcium, and 25 hydroxyvitamin D [25(OH)D] were analyzed. Footballers had significantly higher adjusted BMC at the lumbar spine (7.0%) and femoral neck (5.0%) compared with cyclists, and significantly greater BMC at the lumbar spine (6.9%) compared with swimmers. Footballers presented significantly greater TBS (4.3%) compared with swimmers, and greater CSMI (10.2%), CSA (7.1%), Z (8.9%) and TBS (4.2%) compared with cyclists. No differences were noted between cyclists and swimmers, both groups had similar bone acquisition compared with controls. PINP was significantly higher in footballers and controls compared with cyclists and swimmers (3.3% to 6.0%), and 25(OH)D was significantly higher in footballers and cyclists compared with swimmers and controls (9.9% to 13.1%). These findings suggest that bone acquisition is higher in adolescent male footballers compared with swimmers and cyclists at the femoral neck and lumbar spine sites of the skeleton. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Dimitris Vlachopoulos
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Alan R Barker
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Esther Ubago-Guisado
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, UK.,IGOID Research Group, University of Castilla-La Mancha, Toledo, Spain
| | - Ioannis G Fatouros
- Department of Kinesiology, Institute for Research and Technology, Physical Education and Sport Sciences, University of Thessaly, Trikala, Greece
| | | | - Craig A Williams
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Luis Gracia-Marco
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, UK.,Growth, Exercise, Nutrition and Development Research Group, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
12
|
Vlachopoulos D, Barker AR, Ubago-Guisado E, Ortega FB, Krustrup P, Metcalf B, Castro Pinero J, Ruiz JR, Knapp KM, Williams CA, Moreno LA, Gracia-Marco L. The effect of 12-month participation in osteogenic and non-osteogenic sports on bone development in adolescent male athletes. The PRO-BONE study. J Sci Med Sport 2017; 21:404-409. [PMID: 28886923 DOI: 10.1016/j.jsams.2017.08.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/24/2017] [Accepted: 08/22/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Research investigating the longitudinal effects of the most popular sports on bone development in adolescent males is scarce. The aim is to investigate the effect of 12-month participation in osteogenic and non-osteogenic sports on bone development. DESIGN A 12-month study was conducted in adolescent males involved in football, swimming and cycling and compared with an active control group. METHODS 116 adolescent males (13.1±0.1years at baseline): 37 footballers, 37 swimmers, 28 cyclists and 14 active controls were followed for 12 months. Bone mineral content (BMC) was measured by dual-energy X-ray absorptiometry, and bone stiffness was measured by quantitative ultrasound. Bone outcomes at 12 months were adjusted for baseline bone status, age, height, lean mass and moderate to vigorous physical activity. RESULTS Footballers had higher improvement in adjusted BMC at the total body, total hip, shaft, Ward's triangle, legs and bone stiffness compared to cyclists (6.3-8.0%). Footballers had significantly higher adjusted BMC at total body, shaft and legs compared to swimmers (5.4-5.6%). There was no significant difference between swimmers and cyclists for any bone outcomes. Swimming and cycling participation resulted in non-significant lower bone development at most sites of the skeleton compared to controls (-4.3 to -0.6%). CONCLUSIONS Football participation induces significantly greater improvements in BMC and bone stiffness over 12 months compared to cycling and swimming. CLINICAL TRIAL REGISTRATION ISRCTN17982776.
Collapse
Affiliation(s)
- Dimitris Vlachopoulos
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, United Kingdom
| | - Alan R Barker
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, United Kingdom
| | - Esther Ubago-Guisado
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, United Kingdom; IGOID Research Group, University of Castilla-La Mancha, Spain
| | - Francisco B Ortega
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Spain
| | - Peter Krustrup
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, United Kingdom; Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Denmark
| | - Brad Metcalf
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, United Kingdom
| | - Jose Castro Pinero
- GALENO Research Group, Department of Physical Education, School of Education, University of Cadiz, Spain
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Spain
| | | | - Craig A Williams
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, United Kingdom
| | - Luis A Moreno
- Growth, Exercise, Nutrition and Development Research Group, University of Zaragoza, Spain
| | - Luis Gracia-Marco
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, United Kingdom; PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Spain; Growth, Exercise, Nutrition and Development Research Group, University of Zaragoza, Spain.
| |
Collapse
|