1
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 3: Heat and cold tolerance during exercise. Eur J Appl Physiol 2024; 124:1-145. [PMID: 37796292 DOI: 10.1007/s00421-023-05276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/04/2023] [Indexed: 10/06/2023]
Abstract
In this third installment of our four-part historical series, we evaluate contributions that shaped our understanding of heat and cold stress during occupational and athletic pursuits. Our first topic concerns how we tolerate, and sometimes fail to tolerate, exercise-heat stress. By 1900, physical activity with clothing- and climate-induced evaporative impediments led to an extraordinarily high incidence of heat stroke within the military. Fortunately, deep-body temperatures > 40 °C were not always fatal. Thirty years later, water immersion and patient treatments mimicking sweat evaporation were found to be effective, with the adage of cool first, transport later being adopted. We gradually acquired an understanding of thermoeffector function during heat storage, and learned about challenges to other regulatory mechanisms. In our second topic, we explore cold tolerance and intolerance. By the 1930s, hypothermia was known to reduce cutaneous circulation, particularly at the extremities, conserving body heat. Cold-induced vasodilatation hindered heat conservation, but it was protective. Increased metabolic heat production followed, driven by shivering and non-shivering thermogenesis, even during exercise and work. Physical endurance and shivering could both be compromised by hypoglycaemia. Later, treatments for hypothermia and cold injuries were refined, and the thermal after-drop was explained. In our final topic, we critique the numerous indices developed in attempts to numerically rate hot and cold stresses. The criteria for an effective thermal stress index were established by the 1930s. However, few indices satisfied those requirements, either then or now, and the surviving indices, including the unvalidated Wet-Bulb Globe-Thermometer index, do not fully predict thermal strain.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 2: physiological measurements. Eur J Appl Physiol 2023; 123:2587-2685. [PMID: 37796291 DOI: 10.1007/s00421-023-05284-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/14/2023] [Indexed: 10/06/2023]
Abstract
In this, the second of four historical reviews on human thermoregulation during exercise, we examine the research techniques developed by our forebears. We emphasise calorimetry and thermometry, and measurements of vasomotor and sudomotor function. Since its first human use (1899), direct calorimetry has provided the foundation for modern respirometric methods for quantifying metabolic rate, and remains the most precise index of whole-body heat exchange and storage. Its alternative, biophysical modelling, relies upon many, often dubious assumptions. Thermometry, used for >300 y to assess deep-body temperatures, provides only an instantaneous snapshot of the thermal status of tissues in contact with any thermometer. Seemingly unbeknownst to some, thermal time delays at some surrogate sites preclude valid measurements during non-steady state conditions. To assess cutaneous blood flow, immersion plethysmography was introduced (1875), followed by strain-gauge plethysmography (1949) and then laser-Doppler velocimetry (1964). Those techniques allow only local flow measurements, which may not reflect whole-body blood flows. Sudomotor function has been estimated from body-mass losses since the 1600s, but using mass losses to assess evaporation rates requires precise measures of non-evaporated sweat, which are rarely obtained. Hygrometric methods provide data for local sweat rates, but not local evaporation rates, and most local sweat rates cannot be extrapolated to reflect whole-body sweating. The objective of these methodological overviews and critiques is to provide a deeper understanding of how modern measurement techniques were developed, their underlying assumptions, and the strengths and weaknesses of the measurements used for humans exercising and working in thermally challenging conditions.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- College of Human Ecology, Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Donnan KJ, Williams EL, Bargh MJ. The effectiveness of heat preparation and alleviation strategies for cognitive performance: A systematic review. Temperature (Austin) 2023; 10:404-433. [PMID: 38130656 PMCID: PMC10732620 DOI: 10.1080/23328940.2022.2157645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
A range of occupational and performance contexts (e.g. military personnel operations, emergency services, sport) require the critical maintenance of cognitive performance in environmentally challenging environments. Several reviews exist which evaluate the effectiveness of heat preparation strategies to facilitate physical performance. To date, no review has explored the usefulness of heat preparation strategies for cognitive performance. Therefore, this systematic review aimed to evaluate a range of interventions for the maintenance of cognitive performance, during or following active or passive heat exposure. Studies to be included were assessed by two authors reviewing title, abstract, and full-text. Forty articles were identified which met the inclusion criteria. Interventions were categorised into chronic (i.e. acclimation/acclimatisation) and acute strategies (i.e. hydration, cooling, supplementation, psychological). The results indicate that medium-term consecutive heat acclimation may mitigate some cognitive deficits under heat stress, although heat acclimation effectiveness could be influenced by age. Further, pre-cooling appears the most effective cooling method for maintaining cognitive performance under heat stress, although results were somewhat ambiguous. The hydration literature showed that the most effective hydration strategies were those which individualised electrolyte fortified fluid volumes to match for sweat loss. Limited research exploring psychological interventions indicates that motivational self-talk could be facilitative for maintaining cognitive skills following exercise in hot conditions. These findings can be used to help inform strategies for maintaining critical cognitive and decision-making skills in hot environments.
Collapse
Affiliation(s)
- Kate J. Donnan
- Department of Sport, Exercise, and Rehabilitation Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Emily L. Williams
- Centre for Human Performance, Carnegie School of Sport, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Melissa J. Bargh
- School of Sport and Exercise Science, College of Social Science of University of Lincoln, Lincoln, LN6 7TS, UK
| |
Collapse
|
4
|
Wu YN, Norton A, Zielinski MR, Kao PC, Stanwicks A, Pang P, Cring CH, Flynn B, Yanco HA. Characterizing the Effects of Explosive Ordnance Disposal Operations on the Human Body While Wearing Heavy Personal Protective Equipment. HUMAN FACTORS 2022; 64:1137-1153. [PMID: 33617350 DOI: 10.1177/0018720821992623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To provide a comprehensive characterization of explosive ordnance disposal (EOD) personal protective equipment (PPE) by evaluating its effects on the human body, specifically the poses, tasks, and conditions under which EOD operations are performed. BACKGROUND EOD PPE is designed to protect technicians from a blast. The required features of protection make EOD PPE heavy, bulky, poorly ventilated, and difficult to maneuver in. It is not clear how the EOD PPE wearer physiologically adapts to maintain physical and cognitive performance during EOD operations. METHOD Fourteen participants performed EOD operations including mobility and inspection tasks with and without EOD PPE. Physiological measurement and kinematic data recording were used to record human physiological responses and performance. RESULTS All physiological measures were significantly higher during the mobility and the inspection tasks when EOD PPE was worn. Participants spent significantly more time to complete the mobility tasks, whereas mixed results were found in the inspection tasks. Higher back muscle activations were seen in participants who performed object manipulation while wearing EOD PPE. CONCLUSION EOD operations while wearing EOD PPE pose significant physical stress on the human body. The wearer's mobility is impacted by EOD PPE, resulting in decreased speed and higher muscle activations. APPLICATION The testing and evaluation methodology in this study can be used to benchmark future EOD PPE designs. Identifying hazards posed by EOD PPE lays the groundwork for developing mitigation plans, such as exoskeletons, to reduce physical and cognitive stress caused by EOD PPE on the wearers without compromising their operational performance.
Collapse
Affiliation(s)
- Yi-Ning Wu
- 14710 University of Massachusetts Lowell, USA
| | - Adam Norton
- 14710 University of Massachusetts Lowell, USA
| | - Michael R Zielinski
- 155353 U.S. Army Combat Capabilities Development Command Soldier Center, Massachusetts, USA
| | | | | | | | | | - Brian Flynn
- 14710 University of Massachusetts Lowell, USA
| | | |
Collapse
|
5
|
Fullagar H, Notley SR, Fransen J, Richardson A, Stadnyk A, Lu D, Brown G, Duffield R. Cooling strategies for firefighters: Effects on physiological, physical, and visuo-motor outcomes following fire-fighting tasks in the heat. J Therm Biol 2022; 106:103236. [DOI: 10.1016/j.jtherbio.2022.103236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/21/2022] [Accepted: 03/26/2022] [Indexed: 11/25/2022]
|
6
|
Cognitive Performance Before and Following Habituation to Exercise-Induced Hypohydration of 2 and 4% Body Mass in Physically Active Individuals. Nutrients 2022; 14:nu14050935. [PMID: 35267911 PMCID: PMC8912814 DOI: 10.3390/nu14050935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023] Open
Abstract
We investigated the effect of repeated exposures to hypohydration upon cognitive performance. In a randomized crossover design, ten physically active adults completed two 4-week training blocks, one where they maintained euhydration (EUH) and the other where they were water-restricted (DEH) during walking/running at 55% V.O2max, 40 °C. Three sessions per week were performed: (1) 1 h of exercise, (2) exercise until 2% or (3) 4% of body mass has been lost or replaced. Limited to the first and fourth training week, a 12 min walking/running time-trial was completed following the 2 and 4% exercise bouts. Trail making, the Wisconsin card sort, the Stop signal task, Simple visual reaction time and Corsi block-tapping tests were performed immediately following the time-trials. Body mass loss was maintained < 1% with EUH and reached 2.7 and 4.7% with DEH following the time-trials. Except for a lower percentage of correct responses (% accuracy) during the Wisconsin card sort test (p < 0.05) with DEH compared to EUH, no statistically significant decline in cognitive performance was induced by low and moderate levels of hypohydration. Compared to week 1, no statistical differences in cognitive responses were observed after repeated exposures to hypohydration (all p > 0.05). From a practical perspective, the gains in cognitive performance following training to DEH were mostly unclear, but under certain circumstances, were greater than when EUH was maintained. Based on the battery of cognitive tests used in the current study, we conclude that whether physically active individuals are habituated or not to its effect, exercise-induced hypohydration of 2 and 4% has, in general, no or unclear impact on cognitive performance immediately following exercise. These results encourage further research in this area.
Collapse
|
7
|
Schultz Martins R, Wallace PJ, Steele SW, Scott JS, Taber MJ, Hartley GL, Cheung SS. The Clamping of End-Tidal Carbon Dioxide Does Not Influence Cognitive Function Performance During Moderate Hyperthermia With or Without Skin Temperature Manipulation. Front Psychol 2021; 12:788027. [PMID: 35002880 PMCID: PMC8730541 DOI: 10.3389/fpsyg.2021.788027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Increases in body temperature from heat stress (i.e., hyperthermia) generally impairs cognitive function across a range of domains and complexities, but the relative contribution from skin versus core temperature changes remains unclear. Hyperthermia also elicits a hyperventilatory response that decreases the partial pressure of end-tidal carbon dioxide (PetCO2) and subsequently cerebral blood flow that may influence cognitive function. We studied the role of skin and core temperature along with PetCO2 on cognitive function across a range of domains. Eleven males completed a randomized, single-blinded protocol consisting of poikilocapnia (POIKI, no PetCO2 control) or isocapnia (ISO, PetCO2 maintained at baseline levels) during passive heating using a water-perfused suit (water temperature ~ 49°C) while middle cerebral artery velocity (MCAv) was measured continuously as an index of cerebral blood flow. Cognitive testing was completed at baseline, neutral core-hot skin (37.0 ± 0.2°C-37.4 ± 0.3°C), hot core-hot skin (38.6 ± 0.3°C-38.7 ± 0.2°C), and hot core-cooled skin (38.5 ± 0.3°C-34.7 ± 0.6°C). The cognitive test battery consisted of a detection task (psychomotor processing), 2-back task (working memory), set-shifting and Groton Maze Learning Task (executive function). At hot core-hot skin, poikilocapnia led to significant (both p < 0.05) decreases in PetCO2 (∆−21%) and MCAv (∆−26%) from baseline, while isocapnia clamped PetCO2 (∆ + 4% from baseline) leading to a significantly (p = 0.023) higher MCAv (∆−18% from baseline) compared to poikilocapnia. There were no significant differences in errors made on any task (all p > 0.05) irrespective of skin temperature or PetCO2 manipulation. We conclude that neither skin temperature nor PetCO2 maintenance significantly alter cognitive function during passive hyperthermia.
Collapse
Affiliation(s)
- Ricardo Schultz Martins
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Phillip J. Wallace
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Scott W. Steele
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Jake S. Scott
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Michael J. Taber
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- NM Consulting Inc., St. Catharines, ON, Canada
| | - Geoffrey L. Hartley
- Department of Physical and Health Education, Nipissing University, North Bay, ON, Canada
| | - Stephen S. Cheung
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- *Correspondence: Stephen S. Cheung,
| |
Collapse
|
8
|
Effects of Water Restriction and Supplementation on Cognitive Performances and Mood among Young Adults in Baoding, China: A Randomized Controlled Trial (RCT). Nutrients 2021; 13:nu13103645. [PMID: 34684650 PMCID: PMC8539979 DOI: 10.3390/nu13103645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 01/03/2023] Open
Abstract
The brain is approximately 75% water. Therefore, insufficient water intake may affect the cognitive performance of humans. The present study aimed to investigate the effects of water restriction and supplementation on cognitive performances and mood, and the optimum amount of water to alleviate the detrimental effects of dehydration, among young adults. A randomized controlled trial was conducted with 76 young, healthy adults aged 18–23 years old from Baoding, China. After fasting overnight for 12 h, at 8:00 a.m. of day 2, the osmolality of the first morning urine and blood, cognitive performance, and mood were measured as a baseline test. After water restriction for 24 h, at 8:00 a.m. of day 3, the same indexes were measured as a dehydration test. Participants were randomly assigned into four groups: water supplementation group (WS group) 1, 2, or 3 (given 1000, 500, or 200 mL purified water), and the no water supplementation group (NW group). Furthermore, participants were instructed to drink all the water within 10 min. Ninety minutes later, the same measurements were performed as a rehydration test. Compared with the baseline test, participants were all in dehydration and their scores on the portrait memory test, vigor, and self-esteem decreased (34 vs. 27, p < 0.001; 11.8 vs. 9.2, p < 0.001; 7.8 vs. 6.4, p < 0.001). Fatigue and TMD (total mood disturbance) increased (3.6 vs. 4.8, p = 0.004; 95.7 vs. 101.8, p < 0.001) in the dehydration test. Significant interactions between time and volume were found in hydration status, fatigue, vigor, TMD, symbol search test, and operation span test (F = 6.302, p = 0.001; F = 3.118, p = 0.029; F = 2.849, p = 0.043; F = 2.859, p = 0.043; F = 3.463, p = 0.021) when comparing the rehydration and dehydration test. Furthermore, the hydration status was better in WS group 1 compared to WS group 2; the fatigue and TMD scores decreased, and the symbol search test and operation span test scores increased, only in WS group 1 and WS group 2 (p < 0.05). There was no significant difference between them (p > 0.05). Dehydration impaired episodic memory and mood. Water supplementation improved processing speed, working memory, and mood, and 1000 mL was the optimum volume.
Collapse
|
9
|
Taylor NAS, Lee JY, Kim S, Notley SR. Physiological interactions with personal-protective clothing, physically demanding work and global warming: An Asia-Pacific perspective. J Therm Biol 2021; 97:102858. [PMID: 33863427 DOI: 10.1016/j.jtherbio.2021.102858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 01/03/2023]
Abstract
The Asia-Pacific contains over half of the world's population, 21 countries have a Gross Domestic Product <25% of the world's largest economy, many countries have tropical climates and all suffer the impact of global warming. That 'perfect storm' exacerbates the risk of occupational heat illness, yet first responders must perform physically demanding work wearing personal-protective clothing and equipment. Unfortunately, the Eurocentric emphasis of past research has sometimes reduced its applicability to other ethnic groups. To redress that imbalance, relevant contemporary research has been reviewed, to which has been added information applicable to people of Asian, Melanesian and Polynesian ancestry. An epidemiological triad is used to identify the causal agents and host factors of work intolerance within hot-humid climates, commencing with the size dependency of resting metabolism and heat production accompanying load carriage, followed by a progression from the impact of single-layered clothing through to encapsulating ensembles. A morphological hypothesis is presented to account for inter-individual differences in heat production and heat loss, which seems to explain apparent ethnic- and gender-related differences in thermoregulation, at least within thermally compensable states. The mechanisms underlying work intolerance, cardiovascular insufficiency and heat illness are reviewed, along with epidemiological data from the Asia-Pacific. Finally, evidence-based preventative and treatment strategies are presented and updated concerning moisture-management fabrics and barriers, dehydration, pre- and post-exercise cooling, and heat adaptation. An extensive reference list is provided, with >25 recommendations enabling physiologists, occupational health specialists, policy makers, purchasing officers and manufacturers to rapidly extract interpretative outcomes pertinent to the Asia-Pacific.
Collapse
Affiliation(s)
- Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| | - Joo-Young Lee
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Siyeon Kim
- Human Convergence Technology R&D Department, Korea Institute of Industrial Technology, Ansan, Republic of Korea
| | - Sean R Notley
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
10
|
Shen C, Wei D, Wang G, Kang Y, Yang F, Xu Q, Xia L, Liu J. Swine hemorrhagic shock model and pathophysiological changes in a desert dry-heat environment. PLoS One 2021; 16:e0244727. [PMID: 33400711 PMCID: PMC7785222 DOI: 10.1371/journal.pone.0244727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This study aimed to establish a traumatic hemorrhagic shock (THS) model in swine and examine pathophysiological characteristics in a dry-heat environment. METHODS Forty domestic Landrace piglets were randomly assigned to four study groups: normal temperature non-shock (NS), normal temperature THS (NTHS), desert dry-heat non-shock (DS), and desert dry-hot THS (DTHS) groups. The groups were exposed to either normal temperature (25°C) or dry heat (40.5°C) for 3 h. To induce THS, anesthetized piglets in the NTHS and DTHS groups were subjected to liver trauma and hypovolemic shock until death, and piglets in the NS and DS groups were euthanized at 11 h and 4 h, respectively. Body temperature, blood gas, cytokine production, and organ function were assessed before and after environmental exposure at 0 h and at every 30 min after shock to death. Hemodynamics was measured post exposure and post-shock at 0 h and at every 30 min after shock to death. RESULTS Survival, body temperature, oxygen delivery, oxygen consumption, and cardiac output were significantly different for traumatic hemorrhagic shock in the dry-heat groups compared to those in the normal temperature groups. Lactic acid and IL-6 had a marked increase at 0.5 h, followed by a progressive and rapid increase in the DTHS group. CONCLUSIONS Our findings suggest that the combined action of a dry-heat environment and THS leads to higher oxygen metabolism, poorer hemodynamic stability, and earlier and more severe inflammatory response with higher mortality.
Collapse
Affiliation(s)
- Caifu Shen
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the Chinese People’s Liberation Army, Urumqi, China
| | - Dunhong Wei
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the Chinese People’s Liberation Army, Urumqi, China
| | - Guangjun Wang
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the Chinese People’s Liberation Army, Urumqi, China
| | - Yan Kang
- The 69240 Army Hospital of the Chinese People’s Liberation Army, Xinjiang, Urumqi, China
| | - Fan Yang
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the Chinese People’s Liberation Army, Urumqi, China
| | - Qin Xu
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the Chinese People’s Liberation Army, Urumqi, China
| | - Liang Xia
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the Chinese People’s Liberation Army, Urumqi, China
| | - Jiangwei Liu
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the Chinese People’s Liberation Army, Urumqi, China
| |
Collapse
|
11
|
Wallace PJ, Schultz Martins R, Scott JS, Steele SW, Greenway MJ, Cheung SS. The effects of acute dopamine reuptake inhibition on cognitive function during passive hyperthermia. Appl Physiol Nutr Metab 2020; 46:511-520. [PMID: 33232172 DOI: 10.1139/apnm-2020-0869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dopamine activity can modulate physical performance in the heat, but less is known about its effects on cognition during thermal stress. Twelves males completed a randomized, double-blinded protocol consisting of oral ingestion of 20 mg of methylphenidate (MPH) or placebo (lactose pill) during passive heating using a water-perfused suit (water temperature ∼49 °C). To identify the impact of peripheral versus central thermal strain, a cognitive test battery was completed at 4 different thermal states: baseline (BASE; 37.2 ± 0.6 °C core, 32.9 ± 0.7 °C skin), neutral core-hot skin (NC-HS; 37.2 ± 0.3 °C, 37.4 ± 0.3 °C), hyperthermic core-hot skin (HC-HS; 38.7 ± 0.4 °C, 38.7 ± 0.2 °C), and hyperthermic core-cooled skin (HC-CS; 38.5 ± 0.4 °C, 35.1 ± 0.8 °C). The cognitive test battery consisted of the 2-back task (i.e., working memory), set-shifting (i.e., executive function), Groton Maze Learning Task (i.e., executive function) and detection task (i.e., psychomotor processing). MPH led to significantly higher heart rates (∼5-15 b·min-1) at BASE, NC-HS, and HC-HS (all p < 0.05). There were no significant differences in the number of errors made on each task (all p < 0.05). Participants were significantly faster (p < 0.05) on the set-shifting task in the HC-HS timepoint, irrespective of drug condition (p > 0.05). In summary, we demonstrated that 20 mg of MPH did not significantly alter cognitive function during either normothermia or moderate hyperthermia. Novelty: Twenty milligrams of MPH did not significantly alter cognitive function during passive heat stress. MPH led to significant higher heart rates (∼5-15 b·min-1) in thermoneutral and during passive heat stress. Future studies are needed to determine the mechanisms of why MPH improves physical but not cognitive performance during heat stress.
Collapse
Affiliation(s)
- Phillip J Wallace
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Ricardo Schultz Martins
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Jake S Scott
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Scott W Steele
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Mathew J Greenway
- Department of Family Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stephen S Cheung
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
12
|
Goodman SPJ, Marino FE. Thirst perception exacerbates objective mental fatigue. Neuropsychologia 2020; 150:107686. [PMID: 33212138 DOI: 10.1016/j.neuropsychologia.2020.107686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 10/06/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022]
Abstract
Thirst is represented within the anterior cingulate and insular cortices, and may share some common neuroanatomical structures that are implicated with the regulation of mental fatigue. This novel study investigated whether thirst might modulate the subjective, behavioural, or neurophysiological representations of mental fatigue. In a crossover design, thirst was monitored in 15 males during 60 min of cycling in normothermic conditions. Participants either consumed water to the dictates of their thirst (sated), or fluid was withheld and replaced with periodic salt water mouth rinses (thirst). Following either satiety or thirst, a 60 min modified Stroop task was completed to evoke mental fatigue. Prefrontal cortex (PFC) haemodynamics were monitored throughout the prolonged task, and subjective perceptions of fatigue were reported through a visual analogue scale. Behavioural performance was quantified as the total number of Stroop task iterations completed in the mentally fatiguing task, and by collating response time and accuracy into the inverse efficiency score (IES) for each 5 min interval throughout the task. During thirst, fewer iterations were completed and poorer IES performance was evident toward the latter portion of the mentally fatiguing task. Compensatory elevations in PFC oxyhaemoglobin were produced in each condition, however, differed temporally, and were premature during thirst. A diminished capacity to sustain cognitive performance is likely the product of an inability to preserve the distribution of resources within the prefrontal cortex, due to heightened activation about thirst regulatory centres. These data provide novel insight into the relationship between thirst and mental fatigue, and suggest that drinking to the dictates of thirst may be a pertinent strategy to sustain prolonged cognitive performance.
Collapse
Affiliation(s)
- Stephen P J Goodman
- School of Exercise Science, Sport & Health, Charles Sturt University, Bathurst, Australia; School of Science and Technology, University of New England, Armidale, Australia.
| | - Frank E Marino
- School of Exercise Science, Sport & Health, Charles Sturt University, Bathurst, Australia.
| |
Collapse
|
13
|
van den Heuvel AMJ, Haberley BJ, Hoyle DJR, Taylor NAS, Croft RJ. Hyperthermia, but not dehydration, alters the electrical activity of the brain. Eur J Appl Physiol 2020; 120:2797-2811. [DOI: 10.1007/s00421-020-04492-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/03/2020] [Indexed: 11/28/2022]
|
14
|
Hyperthermia and dehydration: their independent and combined influences on physiological function during rest and exercise. Eur J Appl Physiol 2020; 120:2813-2834. [DOI: 10.1007/s00421-020-04493-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
|
15
|
Coudevylle GR, Sinnapah S, Hue O, Robin N, Popa-Roch M. Impact of Cold Water Intake on Environmental Perceptions, Affect, and Attention Depends on Climate Condition. AMERICAN JOURNAL OF PSYCHOLOGY 2020. [DOI: 10.5406/amerjpsyc.133.2.0205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
The use of cooling techniques in a tropical climate can limit the increase in core body temperature and therefore improve physical exercise performance. However, little is known about the impact of cooling on psychological functioning. The aim of this study was to determine whether cold water intake influences environmental perceptions, affects, and attention depending on the climate condition (tropical climate vs. neutral climate). The study followed a mixed 2 × 3 crossover design (climate as the within factor, tropical climate vs. neutral climate; water intake as the between factor, cold water vs. neutral water vs. no water). Participants reported lower thermal comfort, had positive affect scores, had lower attention performance scores, and had higher thermal sensation and negative affect in tropical climate compared with neutral climate. It was shown that drinking water at room temperature in a neutral climate causes the best thermal comfort scores, and drinking water at room temperature in tropical climate causes the worst scores. Cold water intake, which had no notable influence on positive affect scores in a tropical climate, had a deleterious effect in a neutral climate. Drinking cold water as a technique to limit the deleterious effects of tropical climate on environmental perceptions, affect, and attention is discussed.
Collapse
|
16
|
Kingma BRM, Roijendijk LMM, Van Maanen L, Van Rijn H, Van Beurden MHPH. Time perception and timed decision task performance during passive heat stress. Temperature (Austin) 2020; 8:53-63. [PMID: 33553505 PMCID: PMC7849768 DOI: 10.1080/23328940.2020.1776925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This study investigates the hypotheses that during passive heat stress, the change in perception of time and change in accuracy of a timed decision task relate to changes in thermophysiological variables gastrointestinal temperature and heart rate (HR), as well as subjective measures of cognitive load and thermal perception. Young adult males (N = 29) participated in two 60-min head-out water immersion conditions (36.5°C-neutral and 38.0°C-warm). Cognitive task measurements included accuracy (judgment task), response time (judgment ask), and time estimation (interval timing task). Physiological measurements included gastrointestinal temperature and heart rate. Subjective measurements included cognitive task load (NASA-TLX), rate of perceived exertion, thermal sensation, and thermal comfort. Gastrointestinal temperature and HR were significantly higher in warm versus neutral condition (gastrointestinal temperature: 38.4 ± 0.2°C vs. 37.2 ± 0.2°C, p < 0.01; HR: 105 ± 8 BPM vs. 83 ± 9 BPM, p < 0.01). The change in accuracy was significantly associated with the change in gastrointestinal temperature, and attenuated by change in thermal sensation and change in HR (r2=0.40, p< 0.01). Change in response time was significantly associated with the change in gastrointestinal temperature (r2=0.26, p< 0.002), and change in time estimation was best explained by a change in thermal discomfort (r2=0.18, p< 0.01). Changes in cognitive performance during passive thermal stress are significantly associated with changes in thermophysiological variables and thermal perception. Although explained variance is low (<50%), decreased accuracy is attributed to increased gastrointestinal temperature, yet is attenuated by increased arousal (expressed as increased HR and warmth thermal sensation).
Collapse
Affiliation(s)
- Boris R M Kingma
- Department of Training and Performance Innovations, TNO, Netherlands Organization for Applied Scientific Research, Unit Defense Safety and Security, Soesterberg, The Netherlands.,Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Denmark.,Department of Energy Technology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Linsey M M Roijendijk
- Department of Training and Performance Innovations, TNO, Netherlands Organization for Applied Scientific Research, Unit Defense Safety and Security, Soesterberg, The Netherlands
| | - Leendert Van Maanen
- Department of Experimental Psychology & Helmholtz Institute, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hedderik Van Rijn
- Department of Psychology, University of Groningen, Groningen, The Netherlands
| | - Maurice H P H Van Beurden
- Department of Training and Performance Innovations, TNO, Netherlands Organization for Applied Scientific Research, Unit Defense Safety and Security, Soesterberg, The Netherlands
| |
Collapse
|
17
|
Abstract
Radiofrequency electromagnetic fields (EMFs) are used to enable a number of modern devices, including mobile telecommunications infrastructure and phones, Wi-Fi, and Bluetooth. As radiofrequency EMFs at sufficiently high power levels can adversely affect health, ICNIRP published Guidelines in 1998 for human exposure to time-varying EMFs up to 300 GHz, which included the radiofrequency EMF spectrum. Since that time, there has been a considerable body of science further addressing the relation between radiofrequency EMFs and adverse health outcomes, as well as significant developments in the technologies that use radiofrequency EMFs. Accordingly, ICNIRP has updated the radiofrequency EMF part of the 1998 Guidelines. This document presents these revised Guidelines, which provide protection for humans from exposure to EMFs from 100 kHz to 300 GHz.
Collapse
|
18
|
Martin K, McLeod E, Périard J, Rattray B, Keegan R, Pyne DB. The Impact of Environmental Stress on Cognitive Performance: A Systematic Review. HUMAN FACTORS 2019; 61:1205-1246. [PMID: 31002273 DOI: 10.1177/0018720819839817] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
OBJECTIVE In this review, we detail the impact of environmental stress on cognitive and military task performance and highlight any individual characteristics or interventions which may mitigate any negative effect. BACKGROUND Military personnel are often deployed in regions markedly different from their own, experiencing hot days, cold nights, and trips both above and below sea level. In spite of these stressors, high-level cognitive and operational performance must be maintained. METHOD A systematic review of the electronic databases Medline (PubMed), EMBASE (Scopus), PsycINFO, and Web of Science was conducted from inception up to September 2018. Eligibility criteria included a healthy human cohort, an outcome of cognition or military task performance and assessment of an environmental condition. RESULTS The search returned 113,850 records, of which 124 were included in the systematic review. Thirty-one studies examined the impact of heat stress on cognition; 20 of cold stress; 59 of altitude exposure; and 18 of being below sea level. CONCLUSION The severity and duration of exposure to the environmental stressor affects the degree to which cognitive performance can be impaired, as does the complexity of the cognitive task and the skill or familiarity of the individual performing the task. APPLICATION Strategies to improve cognitive performance in extreme environmental conditions should focus on reducing the magnitude of the physiological and perceptual disturbance caused by the stressor. Strategies may include acclimatization and habituation, being well skilled on the task, and reducing sensations of thermal stress with approaches such as head and neck cooling.
Collapse
Affiliation(s)
- Kristy Martin
- University of Canberra, Australian Capital Territory, Australia
| | - Emily McLeod
- University of Canberra, Australian Capital Territory, Australia
| | - Julien Périard
- University of Canberra, Australian Capital Territory, Australia
| | - Ben Rattray
- University of Canberra, Australian Capital Territory, Australia
| | - Richard Keegan
- University of Canberra, Australian Capital Territory, Australia
| | - David B Pyne
- University of Canberra, Australian Capital Territory, Australia
| |
Collapse
|
19
|
Wittbrodt MT, Millard-Stafford M. Dehydration Impairs Cognitive Performance: A Meta-analysis. Med Sci Sports Exerc 2019; 50:2360-2368. [PMID: 29933347 DOI: 10.1249/mss.0000000000001682] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dehydration (DEH) is believed to impair cognitive performance but which domains are affected and at what magnitude of body mass loss (BML) remains unclear. PURPOSE To conduct systematic literature review and meta-analysis to determine the effect size (ES) of DEH on cognitive performance and influence of experimental design factors (e.g., DEH > 2% BML). METHODS Thirty-three studies were identified, providing 280 ES estimates from 413 subjects with DEH ranging from 1% to 6% BML. Outcome variables (accuracy, reaction time), cognitive domains, and methods to induce DEH varied. Effect sizes were calculated using standardized mean differences and multivariate meta-analysis. RESULTS Impairment of cognitive performance (all domains/outcomes) with DEH was small but significant (ES = -0.21; 95% confidence interval [CI]: -0.31 to -0.11; P < 0.0001) with significant heterogeneity (Q(279) = 696.0, P < 0.0001; I = 37.6%). Tasks of executive function (ES = -0.24; 95% CI: -0.37 to -0.12), attention (ES = -0.52; 95% CI: -0.66 to -0.37), and motor coordination (ES = -0.40 to 95% CI: -0.63 to -0.17) were significantly impaired (P ≤ 0.01) after DEH, and attention/motor coordination was different (P < 0.001) from reaction time specific tasks (ES = -0.10; 95% CI: -0.23 to 0.02). Body mass loss was associated with the ES for cognitive impairment (P = 0.04); consequently, impairment was greater (P = 0.04) for studies reporting >2% BML (ES = -0.28; 95% CI: -0.41 to -0.16) compared with ≤2%; (ES = -0.14; 95% CI: -0.27 to 0.00). CONCLUSIONS Despite variability among studies, DEH impairs cognitive performance, particularly for tasks involving attention, executive function, and motor coordination when water deficits exceed 2% BML.
Collapse
Affiliation(s)
- Matthew T Wittbrodt
- Exercise Physiology Laboratory, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | | |
Collapse
|
20
|
Goodman SP, Moreland AT, Marino FE. The effect of active hypohydration on cognitive function: A systematic review and meta-analysis. Physiol Behav 2019; 204:297-308. [DOI: 10.1016/j.physbeh.2019.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/12/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
|
21
|
Maintaining Euhydration Preserves Cognitive Performance, But Is Not Superior to Hypohydration. JOURNAL OF COGNITIVE ENHANCEMENT 2019. [DOI: 10.1007/s41465-019-00123-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Piil JF, Lundbye-Jensen J, Christiansen L, Ioannou L, Tsoutsoubi L, Dallas CN, Mantzios K, Flouris AD, Nybo L. High prevalence of hypohydration in occupations with heat stress-Perspectives for performance in combined cognitive and motor tasks. PLoS One 2018; 13:e0205321. [PMID: 30356308 PMCID: PMC6200230 DOI: 10.1371/journal.pone.0205321] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Purpose To evaluate the prevalence of dehydration in occupational settings and contextualize findings to effects on performance in cognitively dominated tasks, simple and complex motor tasks during moderate and high heat stress. Methods The study included an occupational part with hydration assessed in five industries across Europe with urine samples collected from 139 workers and analyzed for urine specific gravity. In addition, laboratory experiments included eight male participants completing mild-intensity exercise once with full fluid replacement to maintain euhydration, and once with restricted water intake until the dehydration level corresponded to 2% bodyweight deficit. Following familiarization, euhydration and dehydration sessions were completed on separate days in random order (cross-over design) with assessment of simple motor (target pinch), complex motor (visuo-motor tracking), cognitive (math addition) and combined motor-cognitive (math and pinch) performance at baseline, at 1°C (MOD) and 2°C (HYPER) delta increase in body core temperature. Results The field studies revealed that 70% of all workers had urine specific gravity values ≥1.020 corresponding to the urine specific gravity (1.020±0.001) at the end of the laboratory dehydration session. At this hydration level, HYPER was associated with reductions in simple motor task performance by 4±1%, math task by 4±1%, math and pinch by 9±3% and visuo-motor tracking by 16±4% (all P<0.05 compared to baseline), whereas no significant changes were observed when the heat stress was MOD (P>0.05). In the euhydration session, HYPER reduced complex (tracking) motor performance by 10±3% and simple pinch by 3±1% (both P<0.05, compared to baseline), while performance in the two cognitively dominated tasks were unaffected when dehydration was prevented (P>0.05). Conclusion Dehydration at levels commonly observed across a range of occupational settings with environmental heat stress aggravates the impact of hyperthermia on performance in tasks relying on combinations of cognitive function and motor response accuracy.
Collapse
Affiliation(s)
- Jacob F. Piil
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Christiansen
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Leonidas Ioannou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece
| | - Lydia Tsoutsoubi
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece
| | - Constantinos N. Dallas
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece
| | - Konstantinos Mantzios
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece
| | - Andreas D. Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Wittbrodt MT, Sawka MN, Mizelle JC, Wheaton LA, Millard‐Stafford ML. Exercise-heat stress with and without water replacement alters brain structures and impairs visuomotor performance. Physiol Rep 2018; 6:e13805. [PMID: 30136401 PMCID: PMC6105626 DOI: 10.14814/phy2.13805] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Abstract
Effects of exercise-heat stress with and without water replacement on brain structure and visuomotor performance were examined. Thirteen healthy adults (23.6 ± 4.2 years) completed counterbalanced 150 min trials of exercise-heat stress (45°C, 15% RH) with water replacement (EHS) or without (~3% body mass loss; EHS-DEH) compared to seated rest (CON). Anatomical scans and fMRI Blood-Oxygen-Level-Dependent responses during a visuomotor pacing task were evaluated. Accuracy decreased (P < 0.05) despite water replacement during EHS (-8.2 ± 6.8% vs. CON) but further degraded with EHS-DEH (-8.3 ± 6.4% vs. EHS and -16.5 ± 10.2% vs. CON). Relative to CON, EHS elicited opposing volumetric changes (P < 0.05) in brain ventricles (-5.3 ± 1.7%) and periventricular structures (cerebellum: 1.5 ± 0.8%) compared to EHS-DEH (ventricles: 6.8 ± 3.4, cerebellum: -0.7 ± 0.7; thalamus: -2.7 ± 1.3%). Changes in plasma osmolality (EHS: -3.0 ± 2.1; EHS-DEH: 9.3 ± 2.1 mOsm/kg) were related (P < 0.05) to thalamus (r = -0.45) and cerebellum volume (r = -0.61) which, in turn, were related (P < 0.05) to lateral (r = -0.41) and fourth ventricle volume (r = -0.67) changes, respectively; but, there were no associations (P > 0.50) between structural changes and visuomotor accuracy. EHS-DEH increased neural activation (P < 0.05) within motor and visual areas versus EHS and CON. Brain structural changes are related to bidirectional plasma osmolality perturbations resulting from exercise-heat stress (with and without water replacement), but do not explain visuomotor impairments. Negative impacts of exercise-heat stress on visuomotor tasks are further exacerbated by dehydration.
Collapse
Affiliation(s)
| | - Michael N. Sawka
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgia
| | - J. C. Mizelle
- Department of KinesiologyEast Carolina UniversityGreenvilleNorth Carolina
| | - Lewis A. Wheaton
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgia
| | | |
Collapse
|
24
|
Piil JF, Lundbye-Jensen J, Trangmar SJ, Nybo L. Performance in complex motor tasks deteriorates in hyperthermic humans. Temperature (Austin) 2017; 4:420-428. [PMID: 29435481 PMCID: PMC5800368 DOI: 10.1080/23328940.2017.1368877] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 10/25/2022] Open
Abstract
Heat stress, leading to elevations in whole-body temperature, has a marked impact on both physical performance and cognition in ecological settings. Lab experiments confirm this for physically demanding activities, whereas observations are inconsistent for tasks involving cognitive processing of information or decision-making prior to responding. We hypothesized that divergences could relate to task complexity and developed a protocol consisting of 1) simple motor task [TARGET_pinch], 2) complex motor task [Visuo-motor tracking], 3) simple math task [MATH_type], 4) combined motor-math task [MATH_pinch]. Furthermore, visuo-motor tracking performance was assessed both in a separate- and a multipart protocol (complex motor tasks alternating with the three other tasks). Following familiarization, each of the 10 male subjects completed separate and multipart protocols in randomized order in the heat (40°C) or control condition (20°C) with testing at baseline (seated rest) and similar seated position, following exercise-induced hyperthermia (core temperature ∼ 39.5°C in the heat and 38.2°C in control condition). All task scores were unaffected by control exercise or passive heat exposure, but visuo-motor tracking performance was reduced by 10.7 ± 6.5% following exercise-induced hyperthermia when integrated in the multipart protocol and 4.4 ± 5.7% when tested separately (both P < 0.05). TARGET_pinch precision declined by 2.6 ± 1.3% (P < 0.05), while no significant changes were observed for the math tasks. These results indicate that heat per se has little impact on simple motor or cognitive test performance, but complex motor performance is impaired by hyperthermia and especially so when multiple tasks are combined.
Collapse
Affiliation(s)
- Jacob F Piil
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Steven J Trangmar
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|