1
|
Hu Y, Shi W, Jiang D, Zhao L, Lu H, Wu D, Lin Z. MR Assessment of Acute Changes of Cerebral Perfusion, Metabolism, and Blood-Brain Barrier Permeability in Response to Aerobic Exercise. J Magn Reson Imaging 2025; 61:1470-1479. [PMID: 39096314 DOI: 10.1002/jmri.29544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND It remains unclear how a single bout of exercise affects brain perfusion, oxygen metabolism, and blood-brain barrier (BBB) permeability. Addressing this unresolved issue is essential to understand the acute changes in cerebral physiology induced by aerobic exercise. PURPOSE To dynamically monitor the acute changes in cerebral physiology subsequent to a single aerobic exercise training session using noninvasive MRI measurements. STUDY TYPE Prospective. POPULATION Twenty-three healthy participants (18-35 years, 10 females/13 males) were enrolled and divided into 10-minute exercising (N = 10) and 20-minute exercising (N = 13) groups. FIELD STRENGTH/SEQUENCE 3.0 T/Phase Contrast (PC) MRI (gradient echo), T2-Relaxation-Under-Spin-Tagging (TRUST) MRI (gradient echo EPI), Water-Extraction-with-Phase-Contrast-Arterial-Spin-Tagging (WEPCAST) MRI (gradient echo EPI) and T1-weighted magnetization-prepared-rapid-acquisition-of-gradient-echo (MPRAGE) (gradient echo). ASSESSMENT A baseline MR measurement plus four repeated MR measurements immediately after 10 or 20 minutes moderate running exercise. MR measurements included cerebral blood flow (CBF) as measured by PC MRI, venous oxygenation (Yv) and cerebral metabolic rate of oxygen (CMRO2) as assessed by TRUST MRI, water extraction fraction (E), and BBB permeability-surface-area product (PS) as determined by WEPCAST MRI. STATISTICAL TESTS The time dependence of the physiological parameters was studied with a linear mixed-effect model. Additionally, pairwise t-tests comparison of the physiological parameters at each time point was conducted. A P-value of <0.05 was considered statistically significant. RESULTS There was an initial drop (8.22 ± 2.60%) followed by a recovery in CBF after exercise, while Yv revealed a significant decrease (6.37 ± 0.92%), i.e., an increased oxygen extraction, and returned to baseline at later time points. CMRO2 showed a trend of increase (5.68 ± 3.04%) and a significant interaction between time and group. In addition, E increased significantly (3.86% ± 0.89) and returned to baseline level at later time points, while PS remained elevated (13.33 ± 4.79%). DATA CONCLUSION A single bout of moderate aerobic exercise can induce acute alterations in cerebral perfusion, metabolism, and BBB permeability. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yizhe Hu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen Shi
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zixuan Lin
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Doody NE, Smith NJ, Akam EC, Askew GN, Kwok JCF, Ichiyama RM. Differential expression of genes in the RhoA/ROCK pathway in the hippocampus and cortex following intermittent hypoxia and high-intensity interval training. J Neurophysiol 2024; 132:531-543. [PMID: 38985935 PMCID: PMC11427053 DOI: 10.1152/jn.00422.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Structural neuroplasticity such as neurite extension and dendritic spine dynamics is enhanced by brain-derived neurotrophic factor (BDNF) and impaired by types of inhibitory molecules that induce growth cone collapse and actin depolymerization, for example, myelin-associated inhibitors, chondroitin sulfate proteoglycans, and negative guidance molecules. These inhibitory molecules can activate RhoA/rho-associated coiled-coil containing protein kinase (ROCK) signaling (known to restrict structural plasticity). Intermittent hypoxia (IH) and high-intensity interval training (HIIT) are known to upregulate BDNF that is associated with improvements in learning and memory and greater functional recovery following neural insults. We investigated whether the RhoA/ROCK signaling pathway is also modulated by IH and HIIT in the hippocampus, cortex, and lumbar spinal cord of male Wistar rats. The gene expression of 25 RhoA/ROCK signaling pathway components was determined following IH, HIIT, or IH combined with HIIT (30 min/day, 5 days/wk, 6 wk). IH included 10 3-min bouts that alternated between hypoxia (15% O2) and normoxia. HIIT included 10 3-min bouts alternating between treadmill speeds of 50 cm·s-1 and 15 cm·s-1. In the hippocampus, IH and HIIT significantly downregulated Acan and NgR2 mRNA that are involved in the inhibition of neuroplasticity. However, IH and IH + HIIT significantly upregulated Lingo-1 and NgR3 in the cortex. This is the first time IH and HIIT have been linked to the modulation of plasticity-inhibiting pathways. These results provide a fundamental step toward elucidating the interplay between the neurotrophic and inhibitory mechanisms involved in experience-driven neural plasticity that will aid in optimizing physiological interventions for the treatment of cognitive decline or neurorehabilitation.NEW & NOTEWORTHY Intermittent hypoxia (IH) and high-intensity interval training (HIIT) enhance neuroplasticity and upregulate neurotrophic factors in the central nervous system (CNS). We provide evidence that IH and IH + HIIT also have the capacity to regulate genes involved in the RhoA/ROCK signaling pathway that is known to restrict structural plasticity in the CNS. This provides a new mechanistic insight into how these interventions may enhance hippocampal-related plasticity and facilitate learning, memory, and neuroregeneration.
Collapse
Affiliation(s)
- Natalie E Doody
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Nicole J Smith
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Elizabeth C Akam
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Graham N Askew
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Jessica C F Kwok
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Institute of Experimental Medicine, The Czech Academy of Sciences, Prague 4, Czech Republic
| | - Ronaldo M Ichiyama
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
3
|
Dobashi K, Ichinose M, Fujii N, Fujimoto T, Nishiyasu T. Effects of Pre-Exercise Voluntary Hyperventilation on Metabolic and Cardiovascular Responses During and After Intense Exercise. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:1141-1152. [PMID: 36170018 DOI: 10.1080/02701367.2022.2121371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Purpose: We investigated the effects of pre-exercise voluntary hyperventilation and the resultant hypocapnia on metabolic and cardiovascular responses during and after high-intensity exercise. Methods: Ten healthy participants performed a 60-s cycling exercise at a workload of 120% peak oxygen uptake in control (spontaneous breathing), hypocapnia and normocapnia trials. Hypocapnia was induced through 20-min pre-exercise voluntary hyperventilation. In the normocapnia trial, voluntary hyperpnea was performed with CO2 inhalation to prevent hypocapnia. Results: Pre-exercise end-tidal CO2 partial pressure was lower in the hypocapnia trial than the control or normocapnia trial, with similar levels in the control and normocapnia trials. Average V ˙ O 2 during the entire exercise was lower in both the hypocapnia and normocapnia trials than in the control trial (1491 ± 252vs.1662 ± 169vs.1806 ± 149 mL min-1), with the hypocapnia trial exhibiting a greater reduction than the normocapnia trial. Minute ventilation during exercise was lower in the hypocapnia trial than the normocapnia trial. In addition, minute ventilation during the first 10s of the exercise was lower in the normocapnia than the control trial. Pre-exercise hypocapnia also reduced heart rates and arterial blood pressures during the exercise relative to the normocapnia trial, a response that lasted through the subsequent early recovery periods, though end-tidal CO2 partial pressure was similar in the two trials. Conclusions: Our results suggest that pre-exercise hyperpnea and the resultant hypocapnia reduce V ˙ O 2 during high-intensity exercise. Moreover, hypocapnia may contribute to voluntary hyperventilation-mediated cardiovascular responses during the exercise, and this response can persist into the subsequent recovery period, despite the return of arterial CO2 pressure to the normocapnic level.
Collapse
Affiliation(s)
- Kohei Dobashi
- University of Tsukuba
- Japan Society for the Promotion of Science
- Hokkaido University of Education
| | | | | | - Tomomi Fujimoto
- University of Tsukuba
- Niigata University of Health and Welfare
| | | |
Collapse
|
4
|
Combined Effects of Hypocapnic Hyperventilation and Hypoxia on Exercise Performance and Metabolic Responses During the Wingate Anaerobic Test. Int J Sports Physiol Perform 2023; 18:69-76. [PMID: 36521190 DOI: 10.1123/ijspp.2022-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 12/23/2022]
Abstract
Hypoxia during supramaximal exercise reduces aerobic metabolism with a compensatory increase in anaerobic metabolism without affecting exercise performance. A similar response is elicited by preexercise voluntary hypocapnic hyperventilation, but it remains unclear whether hypocapnic hyperventilation and hypoxia additively reduce aerobic metabolism and increase anaerobic metabolism during supramaximal exercise. To address that issue, 12 healthy subjects (8 males and 4 females) performed the 30-second Wingate anaerobic test (WAnT) after (1) spontaneous breathing in normoxia (control, ∼21% fraction of inspired O2 [FiO2]), (2) voluntary hypocapnic hyperventilation in normoxia (hypocapnia, ∼21% FiO2), (3) spontaneous breathing in hypoxia (hypoxia, ∼11% FiO2), or (4) voluntary hypocapnic hyperventilation in hypoxia (combined, ∼11% FiO2). Mean power output during the 30-second WAnT was similar among the control (561 [133] W), hypocapnia (563 [140] W), hypoxia (558 [131] W), and combined (560 [133] W) trials (P = .778). Oxygen uptake during the 30-second WAnT was lower in the hypocapnia (1523 [318] mL/min), hypoxia (1567 [300] mL/min), and combined (1203 [318] mL/min) trials than in the control (1935 [250] mL/min) trial, and the uptake in the combined trial was lower than in the hypocapnia or hypoxia trial (all P < .001). Oxygen deficit, an index of anaerobic metabolism, was higher in the hypocapnia (38.4 [7.3] mL/kg), hypoxia (37.8 [6.8] mL/kg), and combined (40.7 [6.9] mL/kg) trials than in the control (35.0 [6.8] mL/kg) trial, and the debt was greater in the combined trial than in the hypocapnia or hypoxia trial (all P < .003). Our results suggest that voluntary hypocapnic hyperventilation and hypoxia additively reduce aerobic metabolism and increase anaerobic metabolism without affecting exercise performance during the 30-second WAnT.
Collapse
|
5
|
Fujimoto T, Dobashi K, Fujii N, Matsutake R, Nishiyasu T. Hypocapnia attenuates local skin thermal perception to innocuous warm and cool stimuli in normothermic resting humans. Am J Physiol Regul Integr Comp Physiol 2023; 324:R120-R127. [PMID: 36534588 DOI: 10.1152/ajpregu.00126.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
When one is exposed to a stressful situation in their daily life, a common response is hyperventilation. Although the physiological significance of stress-induced hyperventilation remains uncertain, this response may blunt perception of the stress-inducing stimulus. This study examined the effects of voluntary hyperventilation and resultant hypocapnia on the local skin thermal detection threshold in normothermic resting humans. Local skin thermal detection thresholds were measured in 15 young adults (three females) under three breathing conditions: 1) spontaneous breathing (Control trial), 2) voluntary hypocapnic hyperventilation (HH trial), and 3) voluntary normocapnic hyperventilation (NH trial). Local skin thermal detection thresholds were measured using thermostimulators containing a Peltier element that were attached to the forearm and forehead. The temperature of the probe was initially equilibrated to the skin temperature, then gradually increased or decreased at a constant rate (±0.1 °C/s) until the participants felt warmth or coolness. The difference between the initial skin temperature and the local skin temperature at which the participant noticed warmth/coolness was assessed as an index of the local skin warm/cool detection threshold. Local detection of warm and cool stimuli did not differ between the Control and NH trials, but it was blunted in the HH trial as compared with the Control and NH trials, except for detection of warm stimuli on the forearm. These findings suggest that hyperventilation-induced hypocapnia, not hyperventilation per se, attenuates local skin thermal perception, though changes in responses to warm stimuli may not be clearly perceived at some skin areas (e.g., forearm).
Collapse
Affiliation(s)
- Tomomi Fujimoto
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kohei Dobashi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.,Faculty of Education, Hokkaido University of Education, Asahikawa, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.,Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Japan
| | - Ryoko Matsutake
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.,Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
Moriyama S, Ichinose M, Dobashi K, Matsutake R, Sakamoto M, Fujii N, Nishiyasu T. Hypercapnia elicits differential vascular and blood flow responses in the cerebral circulation and active skeletal muscles in exercising humans. Physiol Rep 2022; 10:e15274. [PMID: 35466573 PMCID: PMC9035754 DOI: 10.14814/phy2.15274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/29/2022] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to investigate the effects of a rise in arterial carbon dioxide pressure (PaCO2) on vascular and blood flow responses in the cerebral circulation and active skeletal muscles during dynamic exercise in humans. Thirteen healthy young adults (three women) participated in hypercapnia and normocapnia trials. In both trials, participants performed a two‐legged dynamic knee extension exercise at a constant workload that increased heart rate to roughly 100 beats min−1. In the hypercapnia trial, participants performed the exercise with spontaneous breathing while end‐tidal carbon dioxide pressure (PETCO2), an index of PaCO2, was held at 60 mmHg by inhaling hypercapnic gas (O2: 20.3 ± 0.1%; CO2: 6.0 ± 0.5%). In the normocapnia trial, minute ventilation during exercise was matched to the value in the hypercapnia trial by performing voluntary hyperventilation with PETCO2 clamped at baseline level (i.e., 40–45 mmHg) through inhalation of mildly hypercapnic gas (O2: 20.6 ± 0.1%; CO2: 2.7 ± 1.0%). Middle cerebral artery mean blood velocity and the cerebral vascular conductance index were higher in the hypercapnia trial than in the normocapnia trial. By contrast, vascular conductance in the exercising leg was lower in the hypercapnia trial than in the normocapnia trial. Blood flow to the exercising leg did not differ between the two trials. These results demonstrate that hypercapnia‐induced vasomotion in active skeletal muscles is opposite to that in the cerebral circulation. These differential vascular responses may cause a preferential rise in cerebral blood flow.
Collapse
Affiliation(s)
- Shodai Moriyama
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory School of Business Administration Meiji University Tokyo Japan
| | - Kohei Dobashi
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
- Faculty of Education Hokkaido University of Education Hokkaido Japan
| | - Ryoko Matsutake
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
| | - Mizuki Sakamoto
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
| |
Collapse
|
7
|
Johnson MA, Sharpe GR, Needham RS, Williams NC. Effects of Prior Voluntary Hyperventilation on the 3-min All-Out Cycling Test in Men. Med Sci Sports Exerc 2021; 53:1482-1494. [PMID: 33481485 DOI: 10.1249/mss.0000000000002608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The ergogenic effects of respiratory alkalosis induced by prior voluntary hyperventilation (VH) are controversial. This study examined the effects of prior VH on derived parameters from the 3-min all-out cycling test (3MT). METHODS Eleven men ( = 46 ± 8 mL·kg-1·min-1) performed a 3MT preceded by 15 min of rest (CONT) or VH ( = 38 ± 5 L·min-1) with PETCO2 reduced to 21 ± 1 mm Hg (HYP). End-test power (EP; synonymous with critical power) was calculated as the mean power output over the last 30 s of the 3MT, and the work done above EP (WEP; synonymous with W') was calculated as the power-time integral above EP. RESULTS At the start of the 3MT, capillary blood PCO2 and [H+] were lower in HYP (25.2 ± 3.0 mm Hg, 27.1 ± 2.6 nmol·L-1) than CONT (43.2 ± 2.0 mm Hg, 40.0 ± 1.5 nmol·L-1) (P < 0.001). At the end of the 3MT, blood PCO2 was still lower in HYP (35.7 ± 5.4 mm Hg) than CONT (40.6 ± 5.0 mm Hg) (P < 0.001). WEP was 10% higher in HYP (19.4 ± 7.0 kJ) than CONT (17.6 ± 6.4 kJ) (P = 0.006), whereas EP was 5% lower in HYP (246 ± 69 W) than CONT (260 ± 74 W) (P = 0.007). The ΔWEP (J·kg-1) between CONT and HYP correlated positively with the PCO2 immediately before the 3MT in HYP (r = 0.77, P = 0.006). CONCLUSION These findings suggest that acid-base changes elicited by prior VH increase WEP but decrease EP during the all-out 3MT.
Collapse
Affiliation(s)
- Michael A Johnson
- Exercise and Health Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UNITED KINGDOM
| | | | | | | |
Collapse
|
8
|
Dobashi K, Fujii N, Ichinose M, Fujimoto T, Nishiyasu T. Voluntary hypocapnic hyperventilation lasting 5 min and 20 min similarly reduce aerobic metabolism without affecting power outputs during Wingate anaerobic test. Eur J Sport Sci 2020; 21:1148-1155. [PMID: 32814502 DOI: 10.1080/17461391.2020.1812728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractTwenty minutes of voluntary hypocapnic hyperventilation prior to exercise reduces the aerobic metabolic rate with a compensatory increase in the anaerobic metabolic rate without affecting exercise performance during the Wingate anaerobic test (WAnT). Thus, pre-exercise hypocapnic hyperventilation may be a useful means of stressing the anaerobic energy system during training, ultimately improving anaerobic exercise performance. However, it remains unclear whether a shorter (e.g., 5 min) pre-exercise hypocapnic hyperventilation is sufficient to reduce the aerobic metabolic rate during high-intensity exercise. We therefore compared the effects of 5-min and 20-min pre-exercise hypocapnic hyperventilation on aerobic metabolism during the 30-s WAnT. Ten healthy young males and one female performed the WAnT following 20 min of spontaneous breathing (control trial) or 5 or 20 min of voluntary hypocapnic hyperventilation. Both the 5-min and 20-min hyperventilation reduced end-tidal CO2 partial pressure (an index of arterial CO2 partial pressure) to ∼23 mmHg, whereas it remained unchanged during the spontaneous breathing. The peak, mean and minimum power outputs during the WAnT did not differ among the three trials. Oxygen uptake during the WAnT was lower in both the 5-min (1493 ± 257 mL min-1) and 20-min (1397 ± 447 mL min-1) hyperventilation trials than during the control trial (1847 ± 286 mL min-1), and was similar in the two hyperventilation trials. These results suggest that 5 min of pre-exercise hypocapnic hyperventilation reduces aerobic metabolism during the 30-s WAnT to a level similar to that seen with the 20-min hyperventilation. Moreover, exercise performance was unaffected, which implies anaerobic metabolism was enhanced.
Collapse
Affiliation(s)
- Kohei Dobashi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| | - Tomomi Fujimoto
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|