1
|
Shoemaker LN, Sajid A, Schondorf R, Shoemaker JK. Cerebrovascular compliance during progressive hypotension in patients with autonomic failure. J Appl Physiol (1985) 2025; 138:468-472. [PMID: 39813013 DOI: 10.1152/japplphysiol.00900.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/03/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
The compliant nature of cerebral blood vessels may represent an important mechanical protection for sustained cerebral perfusion during reductions in arterial blood pressure (ABP). However, whether the rise in cerebrovascular compliance (Ci) with falling ABP persists and exhibits a threshold effect remains unknown. Therefore, we analyzed Ci changes during graded head-up tilt (HUT) in individuals with autonomic failure (AF), a group that tolerates graded and progressive reductions in ABP. Finger ABP and middle cerebral artery blood velocity (MCAv) were recorded from five patients with AF (61 ± 22 yr) at supine rest and during graded HUT. Tilt gradients increased incrementally between 30, 45, and 60° every 5 min until ABP reached a critically low value. The total time in HUT was 11 ± 4 min. Every 5 s during supine and HUT, individual ABP and MCAv waveforms were assessed for Ci and cerebrovascular resistance (CVR) using a modified Windkessel model. Pulse pressure (PP) was calculated as systolic ABP - diastolic ABP. A threshold value for the increase in Ci was determined using breakpoint analysis of the linear relationship between changes in Ci and PP or ABP across tilt periods. Graded HUT resulted in reduced ABP, PP, CVR, and mean MCAv, and increased Ci (all P < 0.01). Ci began to increase progressively after PP fell by 22 ± 6 mmHg and ABP fell by 20 ± 11 mmHg. In conclusion, the increase in Ci during progressive hypotension exhibited a threshold effect and persisted as ABP continued to fall.NEW & NOTEWORTHY We identify a threshold effect for the increase in cerebrovascular compliance (Ci) during progressive hypotension (baseline vs. end-tilt: 86 ± 18 vs. 50 ± 8 mmHg) in individuals with autonomic failure, such that Ci began to increase progressively after pulse pressure fell by 22 ± 6 mmHg and arterial blood pressure fell by 20 ± 11 mmHg.
Collapse
Affiliation(s)
- Leena N Shoemaker
- School of Kinesiology, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Aleena Sajid
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Ronald Schondorf
- Department of Neurology, McGill University Jewish General Hospital, Montreal, Quebec, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Bari V, Gelpi F, Cairo B, Anguissola M, Acerbi E, Squillace M, De Maria B, Bertoldo EG, Fiolo V, Callus E, De Vincentiis C, Bedogni F, Ranucci M, Porta A. Impact of surgical aortic valve replacement and transcatheter aortic valve implantation on cardiovascular and cerebrovascular controls: A pilot study. Physiol Rep 2024; 12:e70028. [PMID: 39227321 PMCID: PMC11371460 DOI: 10.14814/phy2.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Surgical aortic valve replacement (SAVR) and transcatheter aortic valve implantation (TAVI) are options in severe aortic valve stenosis (AVS). Cardiovascular (CV) and cerebrovascular (CBV) control markers, derived from variability of heart period, systolic arterial pressure, mean cerebral blood velocity and mean arterial pressure, were acquired in 19 AVS patients (age: 76.8 ± 3.1 yrs, eight males) scheduled for SAVR and in 19 AVS patients (age: 79.9 + 6.5 yrs, 11 males) scheduled for TAVI before (PRE) and after intervention (POST, <7 days). Left ventricular function was preserved in both groups. Patients were studied at supine resting (REST) and during active standing (STAND). We found that: (i) both SAVR and TAVI groups featured a weak pre-procedure CV control; (ii) TAVI ensured better CV control; (iii) cerebral autoregulation was working in PRE in both SAVR and TAVI groups; (iv) SAVR and TAVI had no impact on the CBV control; (v) regardless of group, CV and CBV control markers were not influenced by STAND in POST. Even though the post-procedure preservation of both CV and CBV controls in TAVI group might lead to privilege this procedure in patients at higher risk, the missing response to STAND suggests that this advantage could be insignificant.
Collapse
Affiliation(s)
- Vlasta Bari
- Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
- Department of Cardiothoracic, Vascular Anesthesia and Intensive CareIRCCS Policlinico San DonatoMilanItaly
| | - Francesca Gelpi
- Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
| | - Beatrice Cairo
- Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
| | - Martina Anguissola
- Department of Cardiothoracic, Vascular Anesthesia and Intensive CareIRCCS Policlinico San DonatoMilanItaly
| | - Elena Acerbi
- Department of Clinical and Interventional CardiologyIRCCS Policlinico San DonatoMilanItaly
| | - Mattia Squillace
- Department of Clinical and Interventional CardiologyIRCCS Policlinico San DonatoMilanItaly
| | | | | | - Valentina Fiolo
- Clinical Psychology ServiceIRCCS Policlinico San DonatoMilanItaly
| | - Edward Callus
- Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
- Clinical Psychology ServiceIRCCS Policlinico San DonatoMilanItaly
| | | | - Francesco Bedogni
- Department of Clinical and Interventional CardiologyIRCCS Policlinico San DonatoMilanItaly
| | - Marco Ranucci
- Department of Cardiothoracic, Vascular Anesthesia and Intensive CareIRCCS Policlinico San DonatoMilanItaly
| | - Alberto Porta
- Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
- Department of Cardiothoracic, Vascular Anesthesia and Intensive CareIRCCS Policlinico San DonatoMilanItaly
| |
Collapse
|
3
|
Brassard P, Roy MA, Burma JS, Labrecque L, Smirl JD. Quantification of dynamic cerebral autoregulation: welcome to the jungle! Clin Auton Res 2023; 33:791-810. [PMID: 37758907 DOI: 10.1007/s10286-023-00986-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE Patients with dysautonomia often experience symptoms such as dizziness, syncope, blurred vision and brain fog. Dynamic cerebral autoregulation, or the ability of the cerebrovasculature to react to transient changes in arterial blood pressure, could be associated with these symptoms. METHODS In this narrative review, we go beyond the classical view of cerebral autoregulation to discuss dynamic cerebral autoregulation, focusing on recent advances pitfalls and future directions. RESULTS Following some historical background, this narrative review provides a brief overview of the concept of cerebral autoregulation, with a focus on the quantification of dynamic cerebral autoregulation. We then discuss the main protocols and analytical approaches to assess dynamic cerebral autoregulation, including recent advances and important issues which need to be tackled. CONCLUSION The researcher or clinician new to this field needs an adequate comprehension of the toolbox they have to adequately assess, and interpret, the complex relationship between arterial blood pressure and cerebral blood flow in healthy individuals and clinical populations, including patients with autonomic disorders.
Collapse
Affiliation(s)
- Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada.
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Panerai RB, Brassard P, Burma JS, Castro P, Claassen JA, van Lieshout JJ, Liu J, Lucas SJ, Minhas JS, Mitsis GD, Nogueira RC, Ogoh S, Payne SJ, Rickards CA, Robertson AD, Rodrigues GD, Smirl JD, Simpson DM. Transfer function analysis of dynamic cerebral autoregulation: A CARNet white paper 2022 update. J Cereb Blood Flow Metab 2023; 43:3-25. [PMID: 35962478 PMCID: PMC9875346 DOI: 10.1177/0271678x221119760] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester and NIHR Biomedical Research Centre, Leicester, UK
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, and Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Joel S Burma
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Pedro Castro
- Department of Neurology, Centro Hospitalar Universitário de São João, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jurgen Ahr Claassen
- Department of Geriatric Medicine and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Johannes J van Lieshout
- Department of Internal Medicine, Amsterdam, UMC, The Netherlands and Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, UK
| | - Jia Liu
- Institute of Advanced Computing and Digital Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town, Shenzhen, China
| | - Samuel Je Lucas
- School of Sport, Exercise and Rehabilitation Sciences and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester and NIHR Biomedical Research Centre, Leicester, UK
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montreal, Québec, QC, Canada
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Andrew D Robertson
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel D Rodrigues
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Jonathan D Smirl
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - David M Simpson
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | | |
Collapse
|
5
|
Castro P, Freitas J, Azevedo E, Tan CO. Cerebrovascular regulation in patients with vasovagal syncope and autonomic failure due to familial amyloidotic polyneuropathy. Auton Neurosci 2022; 242:103010. [PMID: 35907336 DOI: 10.1016/j.autneu.2022.103010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/10/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION While there is strong evidence for autonomic involvement in cerebrovascular function acutely, long-term role of autonomic nervous system in cerebrovascular function has been controversial. We assessed autoregulation in 10 healthy individuals, nine patients with vasovagal syncope (VVS), and nine with Familial Amyloidotic Polyneuropathy (FAP), in response to head-up tilt test (HUTT). METHODS Arterial blood pressure heart rate, cardiac output, and bilateral cerebral blood flow velocity (CBFV) at the M1 segment of middle cerebral artery (transcranial Doppler ultrasound) were recorded during supine rest and 70° HUTT. Autoregulation was quantified using a validated nonlinear and nonparametric approach based on projection pursuit regression. Plasma adrenaline and noradrenaline were also measured at rest and during HUTT. RESULTS During supine rest and HUTT, plasma noradrenaline content was lower in FAP patients. During HUTT, VVS patients had a hyperadrenergic status; CBFV decreased in all groups, which was greater in FAP patients (p < 0.01). Healthy controls responded to HUTT with a reduction in CBFV responses to increases (p = 0.01) and decreases (p < 0.01) in arterial pressure without any change in the range or effectiveness of autoregulation. VVS patients responded to HUTT with a reduction in falling (p = 0.02), but not rising slope (p = 0.40). Autoregulatory range (p < 0.01) and effectiveness increased (p = 0.09), consistent with the rapid increase in levels of catecholamines. In FAP patients, the level of increase in range of autoregulation was significantly related to the magnitude of increase in plasma noradrenaline in response to HUTT (R2 = 0.26, p = 0.05). CONCLUSION Autonomic dysfunction affects the cerebral autoregulatory response orthostatic to challenge.
Collapse
Affiliation(s)
- Pedro Castro
- Department of Neurology, Centro Hospitalar Universitário São João, Cardiovascular R&D Unit, Faculty of Medicine of University of Porto, Porto, Portugal.
| | - João Freitas
- Autonomic Unit, São João Hospital Center, Faculty of Medicine of University of Porto, Porto, Portugal
| | - Elsa Azevedo
- Department of Neurology, Centro Hospitalar Universitário São João, Cardiovascular R&D Unit, Faculty of Medicine of University of Porto, Porto, Portugal.
| | - Can Ozan Tan
- Cerebrovascular Research Laboratory and Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, US.
| |
Collapse
|
6
|
Exploring metrics for the characterization of the cerebral autoregulation during head-up tilt and propofol general anesthesia. Auton Neurosci 2022; 242:103011. [PMID: 35834916 DOI: 10.1016/j.autneu.2022.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/30/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
Abstract
Techniques grounded on the simultaneous utilization of Tiecks' second order differential equations and spontaneous variability of mean arterial pressure (MAP) and mean cerebral blood flow velocity (MCBFV), recorded from middle cerebral arteries through a transcranial Doppler device, provide a characterization of cerebral autoregulation (CA) via the autoregulation index (ARI). These methods exploit two metrics for comparing the measured MCBFV series with the version predicted by Tiecks' model: normalized mean square prediction error (NMSPE) and normalized correlation ρ. The aim of this study is to assess the two metrics for ARI computation in 13 healthy subjects (age: 27 ± 8 yrs., 5 males) at rest in supine position (REST) and during 60° head-up tilt (HUT) and in 19 patients (age: 64 ± 8 yrs., all males), scheduled for coronary artery bypass grafting, before (PRE) and after (POST) propofol general anesthesia induction. Analyses were carried out over the original MAP and MCBFV pairs and surrogate unmatched couples built individually via time-shifting procedure. We found that: i) NMSPE and ρ metrics exhibited similar performances in passing individual surrogate test; ii) the two metrics could lead to different ARI estimates; iii) CA was not different during HUT or POST compared to baseline and this conclusion held regardless of the technique and metric for ARI estimation. Results suggest a limited impact of the sympathetic control on CA.
Collapse
|
7
|
Monitoring the Evolution of Asynchrony between Mean Arterial Pressure and Mean Cerebral Blood Flow via Cross-Entropy Methods. ENTROPY 2022; 24:e24010080. [PMID: 35052106 PMCID: PMC8774596 DOI: 10.3390/e24010080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023]
Abstract
Cerebrovascular control is carried out by multiple nonlinear mechanisms imposing a certain degree of coupling between mean arterial pressure (MAP) and mean cerebral blood flow (MCBF). We explored the ability of two nonlinear tools in the information domain, namely cross-approximate entropy (CApEn) and cross-sample entropy (CSampEn), to assess the degree of asynchrony between the spontaneous fluctuations of MAP and MCBF. CApEn and CSampEn were computed as a function of the translation time. The analysis was carried out in 23 subjects undergoing recordings at rest in supine position (REST) and during active standing (STAND), before and after surgical aortic valve replacement (SAVR). We found that at REST the degree of asynchrony raised, and the rate of increase in asynchrony with the translation time decreased after SAVR. These results are likely the consequence of the limited variability of MAP observed after surgery at REST, more than the consequence of a modified cerebrovascular control, given that the observed differences disappeared during STAND. CApEn and CSampEn can be utilized fruitfully in the context of the evaluation of cerebrovascular control via the noninvasive acquisition of the spontaneous MAP and MCBF variability.
Collapse
|
8
|
Gelpi F, Bari V, Cairo B, De Maria B, Tonon D, Rossato G, Faes L, Porta A. Dynamic cerebrovascular autoregulation in patients prone to postural syncope: Comparison of techniques assessing the autoregulation index from spontaneous variability series. Auton Neurosci 2021; 237:102920. [PMID: 34808528 DOI: 10.1016/j.autneu.2021.102920] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
Three approaches to the assessment of cerebrovascular autoregulation (CA) via the computation of the autoregulation index (ARI) from spontaneous variability of mean arterial pressure (MAP) and mean cerebral blood flow velocity (MCBFV) were applied: 1) a time domain method (TDM); 2) a nonparametric method (nonPM); 3) a parametric method (PM). Performances were tested over matched and surrogate unmatched pairs. Data were analyzed at supine resting (REST) and during the early phase of 60° head-up tilt (TILT) in 13 subjects with previous history of postural syncope (SYNC, age: 28 ± 9 yrs.; 5 males) and 13 control individuals (noSYNC, age: 27 ± 8 yrs.; 5 males). Analysis was completed by computing autonomic markers from heart period (HP) and systolic arterial pressure (SAP) variability series via spectral approach. HP and SAP spectral indexes suggested that noSYNC and SYNC groups exhibited different autonomic responses to TILT. ARI analysis indicated that: i) all methods have a sufficient statistical power to separate matched from unmatched pairs with the exception of nonPM applied to impulse response; ii) ARI estimates derived from different methods might be uncorrelated and, even when correlated, might exhibit a significant bias; iii) orthostatic stressor did not induce any evident ARI change in either noSYNC or SYNC individuals; iv) this conclusion held regardless of the method. Methods for the ARI estimation from spontaneous variability provide different ARIs but none indicate that noSYNC and SYNC subjects have different dynamic component of CA.
Collapse
Affiliation(s)
- Francesca Gelpi
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Vlasta Bari
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Davide Tonon
- Department of Neurology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Gianluca Rossato
- Department of Neurology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Alberto Porta
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| |
Collapse
|
9
|
Müller M, Österreich M. Cerebrovascular Dynamics During Continuous Motor Task. Physiol Res 2019; 68:997-1004. [PMID: 31647292 DOI: 10.33549/physiolres.934147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We investigated the cerebral autoregulation (CA) dynamics parameter phase and gain change when exposed to a longlasting motor task. 25 healthy subjects (mean age ± SE, 38±2.6 years, 13 females) underwent simultaneous recordings of spontaneous fluctuations in blood pressure (BP), cerebral blood flow velocity (CBFV), and end-tidal CO(2) (ETCO(2)) over 5 min of rest followed by 5 min of left elbow flexion at a frequency of 1 Hz. Tansfer function gain and phase between BP and CBFV were assessed in the frequency ranges of very low frequencies (VLF, 0.02-0.07 Hz), low frequencies (LF, 0.07-0.15), and high frequencies (HF, >0.15). CBFV increased on both sides rapidly to maintain an elevated steady state until movement stopped. Cerebrovascular resistance fell on the right side (rest 1.35±0.06, movement 1.28±0.06, p<0.01), LF gain decreased from baseline (right side 0.97±0.07 %/mm Hg, left 1.01±0.09) to movement epoch (right 0.73±0.08, left 0.76±0.06, p</=0.01). VLF phase decreased from baseline (right 1.03±0.05 radians, left 1.10±0.06) to the movement epoch (right 0.81±0.07, left 0.82±0.10, p?0.05). CA regulates continuous motor efforts by changes in resistance, gain and phase.
Collapse
Affiliation(s)
- M Müller
- Neurocenter, Neurovascular Laboratory, Lucerne Kantonsspital, Lucerne, Switzerland.
| | | |
Collapse
|
10
|
Teixeira SC, Madureira JB, Azevedo EI, Castro PM. Ageing affects the balance between central and peripheral mechanisms of cerebrovascular regulation with increasing influence of systolic blood pressure levels. Eur J Appl Physiol 2018; 119:519-529. [PMID: 30467594 DOI: 10.1007/s00421-018-4036-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/15/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Arterial baroreflex (BR) and cerebral autoregulation (CA) are two major regulatory mechanisms that maintain constant cerebral perfusion. Little is known about the interplay between these mechanisms, particularly when considering the effects of ageing or sex. PURPOSE We studied the relationship between dynamic CA and BR sensitivity (BRS) in healthy subjects by sex and in different age strata. METHODS 95 healthy adults (52% female), 20-80 years-old, were recruited. Arterial blood pressure (Finometer), 3-lead electrocardiogram and cerebral blood flow velocity in middle cerebral arteries (transcranial Doppler) were monitored. We assessed CA by transfer function analysis and BRS in frequency and time domain. RESULTS With increasing age, BRS diminished (ANCOVA R2 = 0.281, p < 0.001) but CA parameters did not change significantly (p > 0.05). Overall, there was an inverse relationship between the efficacy of BRS and CA low-frequency gain [multivariate linear regression β = 0.41 (0.31; 0.61), p < 0.001]. However, this association suffers changes with ageing: in older subjects BRS and CA were not correlated [β = 0.10 (- 0.41; 0.62), p = 0.369]. Instead, decreasing systolic blood pressure correlated with less efficient CA [lower CA low-frequency gain β = - 0.02 (- 0.03; - 0.02), p = 0.003]. Sex did not affect BRS and CA relationship. CONCLUSIONS Cerebral blood supply is governed by a tuned balance between BR and CA which is lost with age as BRS decreases dramatically. Low systolic blood pressure values might be harmful to older subjects as they might reduce the ability to keep cerebral blood flow tightly controlled.
Collapse
Affiliation(s)
- Sofia Cunha Teixeira
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.
| | - João Brandão Madureira
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Elsa Irene Azevedo
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.,Cardiovascular Research and Development Centre, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Neurology, São João Hospital Centre, Porto, Portugal
| | - Pedro Miguel Castro
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.,Cardiovascular Research and Development Centre, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Neurology, São João Hospital Centre, Porto, Portugal
| |
Collapse
|
11
|
van Campen CLMC, Verheugt FWA, Visser FC. Cerebral blood flow changes during tilt table testing in healthy volunteers, as assessed by Doppler imaging of the carotid and vertebral arteries. Clin Neurophysiol Pract 2018; 3:91-95. [PMID: 30215015 PMCID: PMC6133915 DOI: 10.1016/j.cnp.2018.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 01/13/2023] Open
Abstract
Extracranial cerebral artery Doppler imaging show CBF changes during tilt testing. Total CBF during tilt testing decreases 6% in healthy volunteers. Flow decrease of internal carotid and vertebral arteries during tilting is similar.
Objectives Using different techniques, reduction of cerebral blood flow (CBF) during orthostatic stress were demonstrated. One study reported flow reduction of the right internal carotid (ICA) and vertebral (VA) artery during orthostatic stress by Doppler imaging, with different effects on the 2 vessels. Global CBF changes, using this technique, have not been reported. Therefore, flow of the ICA, VA and global CBF were measured during head-up tilt testing. Methods 33 healthy volunteers underwent tilt testing. At three time points (supine, half way and at the end of the test) Doppler imaging of the ICA and VA was performed, as well as PetCO2 measurements. Results Global CBF was significantly reduced by 4.5 ± 2.8% halfway the test and by 6.0 ± 3.4% at the end. All 4 artery flows were significantly reduced during the tilt, without differences between them. Despite small changes in PetCO2 there was a significant relation between de CBF decrease and PetCO2 decrease (p < 0.05). Conclusions Orthostatic stress in HV results in a small but significant reduction of CBF by a homogenous reduction in the four cerebral vessels and is modulated by PetCO2 changes. Significance CBF changes can be measured during tilt testing using Doppler VA and ICA imaging.
Collapse
Affiliation(s)
| | - Freek W A Verheugt
- Radboud UMC, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Frans C Visser
- Stichting CardioZorg, Planetenweg 5, 2132 HN Hoofddorp, The Netherlands
| |
Collapse
|