1
|
Li DCW, Rudloff S, Langer HT, Norman K, Herpich C. Age-Associated Differences in Recovery from Exercise-Induced Muscle Damage. Cells 2024; 13:255. [PMID: 38334647 PMCID: PMC10854791 DOI: 10.3390/cells13030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Understanding the intricate mechanisms governing the cellular response to resistance exercise is paramount for promoting healthy aging. This narrative review explored the age-related alterations in recovery from resistance exercise, focusing on the nuanced aspects of exercise-induced muscle damage in older adults. Due to the limited number of studies in older adults that attempt to delineate age differences in muscle discovery, we delve into the multifaceted cellular influences of chronic low-grade inflammation, modifications in the extracellular matrix, and the role of lipid mediators in shaping the recovery landscape in aging skeletal muscle. From our literature search, it is evident that aged muscle displays delayed, prolonged, and inefficient recovery. These changes can be attributed to anabolic resistance, the stiffening of the extracellular matrix, mitochondrial dysfunction, and unresolved inflammation as well as alterations in satellite cell function. Collectively, these age-related impairments may impact subsequent adaptations to resistance exercise. Insights gleaned from this exploration may inform targeted interventions aimed at enhancing the efficacy of resistance training programs tailored to the specific needs of older adults, ultimately fostering healthy aging and preserving functional independence.
Collapse
Affiliation(s)
- Donna Ching Wah Li
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Stefan Rudloff
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| | | | - Kristina Norman
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Catrin Herpich
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| |
Collapse
|
2
|
Xie G, Jin H, Mikhail H, Pavel V, Yang G, Ji B, Lu B, Li Y. Autophagy in sarcopenia: Possible mechanisms and novel therapies. Biomed Pharmacother 2023; 165:115147. [PMID: 37473679 DOI: 10.1016/j.biopha.2023.115147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
With global population aging, age-related diseases, especially sarcopenia, have attracted much attention in recent years. Characterized by low muscle strength, low muscle quantity or quality and low physical performance, sarcopenia is one of the major factors associated with an increased risk of falls and disability. Much effort has been made to understand the cellular biological and physiological mechanisms underlying sarcopenia. Autophagy is an important cellular self-protection mechanism that relies on lysosomes to degrade misfolded proteins and damaged organelles. Research designed to obtain new insight into human diseases from the autophagic aspect has been carried out and has made new progress, which encourages relevant studies on the relationship between autophagy and sarcopenia. Autophagy plays a protective role in sarcopenia by modulating the regenerative capability of satellite cells, relieving oxidative stress and suppressing the inflammatory response. This review aims to reveal the specific interaction between sarcopenia and autophagy and explore possible therapies in hopes of encouraging more specific research in need and unlocking novel promising therapies to ameliorate sarcopenia.
Collapse
Affiliation(s)
- Guangyang Xie
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China
| | - Hongfu Jin
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Herasimenka Mikhail
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Guang Yang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bingzhou Ji
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
3
|
Leal DV, Ferreira A, Watson EL, Wilund KR, Viana JL. Muscle-Bone Crosstalk in Chronic Kidney Disease: The Potential Modulatory Effects of Exercise. Calcif Tissue Int 2021; 108:461-475. [PMID: 33388899 DOI: 10.1007/s00223-020-00782-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) is a prevalent worldwide public burden that increasingly compromises overall health as the disease progresses. Two of the most negatively affected tissues are bone and skeletal muscle, with CKD negatively impacting their structure, function and activity, impairing the quality of life of these patients and contributing to morbidity and mortality. Whereas skeletal health in this population has conventionally been associated with bone and mineral disorders, sarcopenia has been observed to impact skeletal muscle health in CKD. Indeed, bone and muscle tissues are linked anatomically and physiologically, and together regulate functional and metabolic mechanisms. With the initial crosstalk between the skeleton and muscle proposed to explain bone formation through muscle contraction, it is now understood that this communication occurs through the interaction of myokines and osteokines, with the skeletal muscle secretome playing a pivotal role in the regulation of bone activity. Regular exercise has been reported to be beneficial to overall health. Also, the positive regulatory effect that exercise has been proposed to have on bone and muscle anatomical, functional, and metabolic activity has led to the proposal of regular physical exercise as a therapeutic strategy for muscle and bone-related disorders. The detection of bone- and muscle-derived cytokine secretion following physical exercise has strengthened the idea of a cross communication between these organs. Hence, this review presents an overview of the impact of CKD in bone and skeletal muscle, and narrates how these tissues intrinsically communicate with each other, with focus on the potential effect of exercise in the modulation of this intercommunication.
Collapse
Affiliation(s)
- Diogo V Leal
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University Institute of Maia, ISMAI, Maia, Portugal
| | - Aníbal Ferreira
- Department of Nephrology, Curry Cabral Hospital, Hospital Centre of Central Lisbon, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Emma L Watson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Kenneth R Wilund
- Department of Kinesiology and Community Health, University of Illinois At Urbana-Champaign, Champaign, IL, USA
| | - João L Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University Institute of Maia, ISMAI, Maia, Portugal.
| |
Collapse
|
4
|
Duan J, Yang Y, Zhang E, Wang H. Co-Cr-Mo-Cu alloys for clinical implants with osteogenic effect by increasing bone induction, formation and development in a rabbit model. BURNS & TRAUMA 2020; 8:tkaa036. [PMID: 33376752 PMCID: PMC7750714 DOI: 10.1093/burnst/tkaa036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/12/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Background Co-Cr-Mo alloy has been widely used in clinical implants because of its excellent mechanical and anti-corrosion properties, but there is an urgent need to address its disadvantages, such as implant-related infections and implant loosening. We synthesized Co-Cr-Mo-Cu (Co-Cu) alloys with different Cu contents to modify implant performance to be suitable as a bone-compatible implant material. Methods Microstructure, phase content and mechanical properties of the Co-Cr-Mo alloy were characterized. Histological and immunohistochemical analyses were performed after implantation in rabbits. The experimental alloy was implanted on the lateral side of the lower tibial condyle and the tibial nodule. Results Phase content and mechanical properties revealed that the crystallographic structure and wear resistance were changed. Experimental implantation results demonstrated that osteogenic capability was markedly enhanced, ascribed to the excellent antibacterial and osseointegration capacities of Cu phases, and with the release of Cu ions. In particular, Co-Cu alloy containing 2 wt% Cu exhibited the best osteogenic performance among all samples. Conclusions The results indicated that osteogenic performance of the Co-Cr-Mo alloy could be enhanced by adding Cu. In particular, the Co-2Cu alloy exhibited the best properties according to both immunohistochemical and histological analyses. Our study not only provides deep insight into the osteogenic effect of Cu but presents a new Co-Cu alloy for clinical implants.
Collapse
Affiliation(s)
- Jingzhu Duan
- Department of Orthopaedic, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Yang Yang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Erlin Zhang
- Key Laboratory for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, No. 3-11 Wenhua Road, Heping District, Shenyang 110819, China
| | - Huan Wang
- Department of Orthopaedic, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, China
| |
Collapse
|
5
|
Karlsen A, Soendenbroe C, Malmgaard-Clausen NM, Wagener F, Moeller CE, Senhaji Z, Damberg K, Andersen JL, Schjerling P, Kjaer M, Mackey AL. Preserved capacity for satellite cell proliferation, regeneration, and hypertrophy in the skeletal muscle of healthy elderly men. FASEB J 2020; 34:6418-6436. [PMID: 32167202 DOI: 10.1096/fj.202000196r] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/30/2023]
Abstract
Blunted muscle hypertrophy and impaired regeneration with aging have been partly attributed to satellite cell (SC) dysfunction. However, true muscle regeneration has not yet been studied in elderly individuals. To investigate this, muscle injury was induced by 200 electrically stimulated (ES) eccentric contractions of the vastus lateralis (VL) of one leg in seven young (20-31 years) and 19 elderly men (60-73 years). This was followed by 13 weeks of resistance training (RT) for both legs to investigate the capacity for hypertrophy. Muscle biopsies were collected Pre- and Post-RT, and 9 days after ES, for immunohistochemistry and RT-PCR. Hypertrophy was assessed by MRI, DEXA, and immunohistochemistry. Overall, surprisingly comparable responses were observed between the young and elderly. Nine days after ES, Pax7+ SC number had doubled (P < .05), alongside necrosis and substantial changes in expression of genes related to matrix, myogenesis, and innervation (P < .05). Post-RT, VL cross-sectional area had increased in both legs (~15%, P < .05) and SCs/type II fiber had increased ~2-4 times more with ES+RT vs RT alone (P < .001). Together these novel findings demonstrate "youthful" regeneration and hypertrophy responses in human elderly muscle. Furthermore, boosting SC availability in healthy elderly men does not enhance the subsequent muscle hypertrophy response to RT.
Collapse
Affiliation(s)
- Anders Karlsen
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Casper Soendenbroe
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj M Malmgaard-Clausen
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Wagener
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Casper Emil Moeller
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Zouhir Senhaji
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Kristine Damberg
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Jesper Løvind Andersen
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Ikeda Y, Satoh A, Horinouchi Y, Hamano H, Watanabe H, Imao M, Imanishi M, Zamami Y, Takechi K, Izawa‐Ishizawa Y, Miyamoto L, Hirayama T, Nagasawa H, Ishizawa K, Aihara K, Tsuchiya K, Tamaki T. Iron accumulation causes impaired myogenesis correlated with MAPK signaling pathway inhibition by oxidative stress. FASEB J 2019; 33:9551-9564. [DOI: 10.1096/fj.201802724rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yasumasa Ikeda
- Department of Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Akiho Satoh
- Department of Medical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Yuya Horinouchi
- Department of Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Hirofumi Hamano
- Department of Pharmacy Tokushima University Hospital Tokushima Japan
| | - Hiroaki Watanabe
- Department of Clinical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Mizuki Imao
- Department of Medical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Masaki Imanishi
- Department of Pharmacy Tokushima University Hospital Tokushima Japan
| | - Yoshito Zamami
- Department of Clinical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
- Department of Pharmacy Tokushima University Hospital Tokushima Japan
| | - Kenshi Takechi
- Clinical Trial Center for Developmental Therapeutics Tokushima University Hospital Tokushima Japan
| | - Yuki Izawa‐Ishizawa
- Department of Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Licht Miyamoto
- Department of Medical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry Gifu Pharmaceutical University Gifu Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry Gifu Pharmaceutical University Gifu Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
- Department of Pharmacy Tokushima University Hospital Tokushima Japan
| | - Ken‐Ichi Aihara
- Department of Community Medicine for Diabetes and Metabolic Disorders Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Toshiaki Tamaki
- Department of Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| |
Collapse
|
7
|
McKenna CF, Salvador AF, Hendriks FK, Harris APY, van Loon LJC, Burd NA. Exercising to offset muscle mass loss in hemodialysis patients: The disconnect between intention and intervention. Semin Dial 2019; 32:379-385. [DOI: 10.1111/sdi.12805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Amadeo F. Salvador
- Department of Kinesiology and Community Health University of Illinois Urbana Illinois
| | - Floris K. Hendriks
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ Maastricht The Netherlands
| | - Alana P. Y. Harris
- Department of Kinesiology and Community Health University of Illinois Urbana Illinois
| | - Luc J. C. van Loon
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ Maastricht The Netherlands
| | - Nicholas A. Burd
- Division of Nutritional Sciences University of Illinois Urbana Illinois
- Department of Kinesiology and Community Health University of Illinois Urbana Illinois
| |
Collapse
|