1
|
Longrak R, Sonchan W, Jaidee W. Regional morphological adaptations of vastus lateralis muscle in response to different progressive resistance training programs: A randomised controlled trial. SOUTH AFRICAN JOURNAL OF SPORTS MEDICINE 2024; 36:v36i1a18549. [PMID: 39355555 PMCID: PMC11444487 DOI: 10.17159/2078-516x/2024/v36i1a18549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Background Resistance training often increases muscle size, a phenomenon known as muscle hypertrophy. These morphological adaptations were typically documented to occur in a non-uniform pattern. Investigating the specific morphological adaptations to different training programs was of interest. Objectives This study aimed to investigate two resistance training programs, a high-intensity program (HI) and a combined high-intensity with low-intensity blood flow restriction program (MIX), on morphological adaptations of vastus lateralis muscle in healthy young men. Methods Eighteen active participants were recruited and randomly assigned to the HI (n = 10) or MIX (n = 8) groups, undergoing different 6-week resistance training programs. The training volume set was equated and progressively increased from three sets in weeks 1 and 2 to six sets, and eight sets in weeks 3-4 and 5-6, respectively. Three specific regions of vastus lateralis were assessed by magnetic resonance imaging (MRI) and ultrasound imaging (US) during pre-and post-intervention. Results Statistical analysis revealed statistically significant increases in muscle area at the proximal (HI: Δ12%, MIX: Δ9.2%), middle (HI: Δ8.7%, MIX: Δ9.0%), and distal (HI: Δ14%, MIX: Δ13%) regions. Additionally, both HI and MIX groups showed statistically significant increases in the sum of muscle thickness post-intervention (HI: Δ12%, MIX: Δ19%) and in the sum of fascia thickness post-intervention (HI: Δ27%, MIX: Δ54%). Despite the MIX group training with higher volume load, no statistical differences were observed between groups for any week. Conclusion These findings suggested that both HI and MIX programs effectively induced increases in muscle area and sums of muscle and fascia thickness in healthy young men, allowing practitioners to choose either program based on individual preferences and constraints.
Collapse
Affiliation(s)
- R Longrak
- Faculty of Sport Science, Burapha University, Chon Buri,
Thailand
| | - W Sonchan
- Faculty of Sport Science, Burapha University, Chon Buri,
Thailand
| | - W Jaidee
- Faculty of Medicine, Burapha University, Chon Buri,
Thailand
| |
Collapse
|
2
|
Gillet A, Grolaux T, Forton K, Ibrahim M, Lamotte M, Roussoulieres A, Dewachter C, Faoro V, Chaumont M, Deboeck G, van de Borne P. Effect of a new resistance training method on the metaboreflex in cardiac rehabilitation patients: a randomized controlled trial. Eur J Appl Physiol 2024:10.1007/s00421-024-05570-8. [PMID: 39102020 DOI: 10.1007/s00421-024-05570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Patients with cardiac disease exhibit exaggerated sympathoexcitation, pressor, and ventilatory responses to muscle metaboreflex activation (MMA). However, the effects of cardiac rehabilitation (CR) and especially resistance training (RT) modalities on MMA are not well known. This study investigated how CR impacts MMA in such patients, specifically examining the effects of two different resistance training (RT) protocols following 12 weeks of CR. In addition to endurance exercises, 32 patients were randomized into either a 3/7 RT modality (comprising 5 sets of 3-7 repetitions) or a control (CTRL) modality (involving 3 sets of 9 repetitions), with distinct inter-set rest intervals (15 s for 3/7 and 60 s for CTRL). MMA, gauged by blood pressure (BP) and ventilatory (Ve) responses during a handgrip exercise at 40% effort and subsequent post-exercise circulatory occlusion, demonstrated CR's significant impact. Systolic BP, initially at + 28 ± 23% pre-CR, improved to + 11 ± 15% post-CR (P = .011 time effect; P = .131 group effect). Diastolic BP showed a similar trend, from + 27 ± 23% to + 13 ± 15% (P = .099 time effect; P = .087 group effect). Ve, initially at + 60 ± 39%, reduced to + 14 ± 19% post-CR (P < .001 time effect; P = .142 group effect). Critical parameters-maximal oxygen consumption, lean mass, hand grip, and quadriceps strength-exhibited parallel increases in both 3/7 and CTRL groups (P < .05 time effect; P > .3 group effect). Ultimately, CR demonstrated comparable improvements in MMA across both RT modalities, indicating its positive influence on cardiovascular responses and physical performance in individuals with cardiac conditions.
Collapse
Affiliation(s)
- Alexis Gillet
- Department of Cardiology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, route de Lennik 808,1070, Brussels, Belgium.
- Department of Physiotherapy, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, Brussels, Belgium.
- Research Unit in Rehabilitation, Faculty of Human Movement Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Thomas Grolaux
- Department of Cardiology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, route de Lennik 808,1070, Brussels, Belgium
| | - Kevin Forton
- Department of Cardiology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, route de Lennik 808,1070, Brussels, Belgium
- Department of Physiotherapy, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, Brussels, Belgium
| | - Malko Ibrahim
- Research Unit in Rehabilitation, Faculty of Human Movement Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Michel Lamotte
- Department of Cardiology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, route de Lennik 808,1070, Brussels, Belgium
- Department of Physiotherapy, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, Brussels, Belgium
| | - Ana Roussoulieres
- Department of Cardiology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, route de Lennik 808,1070, Brussels, Belgium
| | - Céline Dewachter
- Department of Cardiology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, route de Lennik 808,1070, Brussels, Belgium
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Vitalie Faoro
- Laboratory of Physiology, Faculty of Human Movement Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martin Chaumont
- Department of Cardiology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, route de Lennik 808,1070, Brussels, Belgium
| | - Gaël Deboeck
- Research Unit in Rehabilitation, Faculty of Human Movement Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Philippe van de Borne
- Department of Cardiology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, route de Lennik 808,1070, Brussels, Belgium
| |
Collapse
|
3
|
Gillet A, Forton K, Lamotte M, Macera F, Roussoulières A, Louis P, Ibrahim M, Dewachter C, van de Borne P, Deboeck G. Effects of High-Intensity Interval Training Using the 3/7 Resistance Training Method on Metabolic Stress in People with Heart Failure and Coronary Artery Disease: A Randomized Cross-Over Study. J Clin Med 2023; 12:7743. [PMID: 38137812 PMCID: PMC10743906 DOI: 10.3390/jcm12247743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The 3/7 resistance training (RT) method involves performing sets with increasing numbers of repetitions, and shorter rest periods than the 3x9 method. Therefore, it could induce more metabolic stress in people with heart failure with reduced ejection fraction (HFrEF) or coronary artery disease (CAD). This randomized cross-over study tested this hypothesis. Eleven individuals with HFrEF and thirteen with CAD performed high-intensity interval training (HIIT) for 30 min, followed by 3x9 or 3/7 RT according to group allocation. pH, HCO3-, lactate, and growth hormone were measured at baseline, after HIIT, and after RT. pH and HCO3- decreased, and lactate increased after both RT methods. In the CAD group, lactate increased more (6.99 ± 2.37 vs. 9.20 ± 3.57 mmol/L, p = 0.025), pH tended to decrease more (7.29 ± 0.06 vs. 7.33 ± 0.04, p = 0.060), and HCO3- decreased more (18.6 ± 3.1 vs. 21.1 ± 2.5 mmol/L, p = 0.004) after 3/7 than 3x9 RT. In the HFrEF group, lactate, pH, and HCO3- concentrations did not differ between RT methods (all p > 0.248). RT did not increase growth hormone in either patient group. In conclusion, the 3/7 RT method induced more metabolic stress than the 3x9 method in people with CAD but not HFrEF.
Collapse
Affiliation(s)
- Alexis Gillet
- Department of Cardiology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (A.G.); (K.F.); (M.L.); (F.M.); (A.R.); (C.D.); (P.v.d.B.)
- Department of Physiotherapy, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
- Research Unit in Rehabilitation Sciences, Faculty of Motor Skills Science, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Kevin Forton
- Department of Cardiology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (A.G.); (K.F.); (M.L.); (F.M.); (A.R.); (C.D.); (P.v.d.B.)
- Department of Physiotherapy, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| | - Michel Lamotte
- Department of Cardiology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (A.G.); (K.F.); (M.L.); (F.M.); (A.R.); (C.D.); (P.v.d.B.)
- Department of Physiotherapy, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| | - Francesca Macera
- Department of Cardiology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (A.G.); (K.F.); (M.L.); (F.M.); (A.R.); (C.D.); (P.v.d.B.)
| | - Ana Roussoulières
- Department of Cardiology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (A.G.); (K.F.); (M.L.); (F.M.); (A.R.); (C.D.); (P.v.d.B.)
| | - Pauline Louis
- Department of Physiotherapy, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| | - Malko Ibrahim
- Research Unit in Rehabilitation Sciences, Faculty of Motor Skills Science, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Céline Dewachter
- Department of Cardiology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (A.G.); (K.F.); (M.L.); (F.M.); (A.R.); (C.D.); (P.v.d.B.)
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Philippe van de Borne
- Department of Cardiology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (A.G.); (K.F.); (M.L.); (F.M.); (A.R.); (C.D.); (P.v.d.B.)
| | - Gaël Deboeck
- Research Unit in Rehabilitation Sciences, Faculty of Motor Skills Science, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| |
Collapse
|
4
|
Gillet A, Lamotte M, Forton K, Roussoulières A, Dewachter C, Bouziotis J, Deboeck G, van de Borne P. Hemodynamic Tolerance of New Resistance Training Methods in Patients With Heart Failure and Coronary Artery Disease: A RANDOMIZED CROSSOVER STUDY. J Cardiopulm Rehabil Prev 2023; 43:453-459. [PMID: 37040560 DOI: 10.1097/hcr.0000000000000794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
PURPOSE The purpose of this study was to determine and compare the effectiveness of three different resistance training (RT) methods for cardiac rehabilitation. METHODS Individuals with heart failure with reduced ejection fraction (HFrEF, n = 23) or coronary artery disease (CAD, n = 22) and healthy controls (CTRL, n = 29) participated in this randomized crossover trial of RT exercises at 70% of the one-maximal repetition on a leg extension machine. Peak heart rate (HR) and blood pressure (BP) were measured noninvasively. The three RT methods were five sets of increasing repetitions from three to seven (RISE), of decreasing repetitions from seven to three (DROP), and three sets of nine repetitions (USUAL). Interset rest intervals were 15 sec for RISE and DROP and 60 sec for USUAL. RESULTS Peak HR differed on average by <4 bpm between methods in the HFrEF and CAD groups ( P < .02). Rises in systolic BP (SBP) in the HFrEF group were comparable across methods. In the CAD group, mean SBP at peak exercise increased more in RISE and DROP than in USUAL ( P < .001), but the increase was ≤10 mm Hg. In the CTRL group, SBP was higher for DROP than for USUAL (152 ± 22 vs 144 ± 24 mm Hg, respectively; P < .01). Peak cardiac output and perceived exertion did not differ between methods. CONCLUSIONS The RISE, DROP, and USUAL RT methods induced a similar perception of effort and similar increases in peak HR and BP. The RISE and DROP methods appear more efficient as they allow a comparable training volume in a shorter time than the USUAL method.
Collapse
Affiliation(s)
- Alexis Gillet
- Departments of Cardiology (Mr Gillet and Drs Lamotte, Forton, Roussoulières, Dewachter, and van de Borne), Physiotherapy (Mr Gillet and Drs Lamotte and Forton), and Biomedical Research (Mr Bouziotis), Hôpital Universitaire de Bruxelles (H.U.B.), CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Research Unit in Rehabilitation, Faculty of Motor Skills Science (Mr Gillet and Dr Deboeck) and Laboratory of Physiology and Pharmacology, Faculty of Medicine (Dr Dewachter), Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Diong J, Kishimoto KC, Butler JE, Héroux ME. Muscle electromyographic activity normalized to maximal muscle activity, not to Mmax, better represents voluntary activation. PLoS One 2022; 17:e0277947. [PMID: 36409688 PMCID: PMC9678282 DOI: 10.1371/journal.pone.0277947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
In human applied physiology studies, the amplitude of recorded muscle electromyographic activity (EMG) is often normalized to maximal EMG recorded during a maximal voluntary contraction. When maximal contractions cannot be reliably obtained (e.g. in people with muscle paralysis, anterior cruciate ligament injury, or arthritis), EMG is sometimes normalized to the maximal compound muscle action potiential evoked by stimulation, the Mmax. However, it is not known how these two methods of normalization affect the conclusions and comparability of studies. To address this limitation, we investigated the relationship between voluntary muscle activation and EMG normalized either to maximal EMG or to Mmax. Twenty-five able-bodied adults performed voluntary isometric ankle plantarflexion contractions to a range of percentages of maximal voluntary torque. Ankle torque, plantarflexor muscle EMG, and voluntary muscle activation measured by twitch interpolation were recorded. EMG recorded at each contraction intensity was normalized to maximal EMG or to Mmax for each plantarflexor muscle, and the relationship between the two normalization approaches quantified. A slope >1 indicated EMG amplitude normalized to maximal EMG (vertical axis) was greater than EMG normalized to Mmax (horizontal axis). Mean estimates of the slopes were large and had moderate precision: soleus 8.7 (95% CI 6.9 to 11.0), medial gastrocnemius 13.4 (10.5 to 17.0), lateral gastrocnemius 11.4 (9.4 to 14.0). This indicates EMG normalized to Mmax is approximately eleven times smaller than EMG normalized to maximal EMG. Normalization to maximal EMG gave closer approximations to the level of voluntary muscle activation assessed by twitch interpolation.
Collapse
Affiliation(s)
- Joanna Diong
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
- * E-mail:
| | - Kenzo C. Kishimoto
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jane E. Butler
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Martin E. Héroux
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
6
|
Hackett D, Ghayomzadeh M, Farrell S, Davies T, Sabag A. Influence of total repetitions per set on local muscular endurance: A systematic review with meta-analysis and meta-regression. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Strengthening the Case for Cluster Set Resistance Training in Aged and Clinical Settings: Emerging Evidence, Proposed Benefits and Suggestions. Sports Med 2021; 51:1335-1351. [PMID: 33983613 DOI: 10.1007/s40279-021-01455-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Resistance training (RT) is a fundamental component of exercise prescription aimed at improving overall health and function. RT techniques such as cluster set (CS) configurations, characterized by additional short intra-set or inter-repetition rest intervals, have been shown to maintain acute muscular force, velocity, and 'power' outputs across a RT session, and facilitate positive longer-term neuromuscular adaptations. However, to date CS have mainly been explored from a human performance perspective despite potential for application in health and clinical exercise settings. Therefore, this current opinion piece aims to highlight emerging evidence and provide a rationale for why CS may be an advantageous RT technique for older adults, and across several neurological, neuromuscular, cardiovascular and pulmonary settings. Specifically, CS may minimize acute fatigue and adverse physiologic responses, improve patient tolerance of RT and promote functional adaptations (i.e., force, velocity, and power). Moreover, we propose that CS may be a particularly useful exercise rehabilitation technique where injury or illness, persistent fatigue, weakness and dysfunction exist. We further suggest that CS offer an alternative RT strategy that can be easily implemented alongside existing exercise/rehabilitation programs requiring no extra cost, minimal upskilling and/or time commitment for the patient and professional. In light of the emerging evidence and likely efficacy in clinical exercise practice, future research should move toward further direct investigation of CS-based RT in a variety of adverse health conditions and across the lifespan given the already demonstrated benefits in healthy populations.
Collapse
|
8
|
Kassiano W, de Vasconcelos Costa BD, Nunes JP, Aguiar AF, de Salles BF, Ribeiro AS. Are We Exploring the Potential Role of Specialized Techniques in Muscle Hypertrophy? Int J Sports Med 2021; 42:494-496. [PMID: 33506444 DOI: 10.1055/a-1342-7708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Specialized resistance training techniques (e.g., drop-set, rest-pause) are commonly used by well-trained subjects for maximizing muscle hypertrophy. Most of these techniques were designed to allow a greater training volume (i.e., total repetitions×load), due to the supposition that it elicits greater muscle mass gains. However, many studies that compared the traditional resistance training configuration with specialized techniques seek to equalize the volume between groups, making it difficult to determine the inherent hypertrophic potential of these advanced strategies, as well as, this equalization restricts part of the practical extrapolation on these findings. In this scenario, the objectives of this manuscript were 1) to present the nuance of the evidence that deals with the effectiveness of these specialized resistance training techniques and - primarily - to 2) propose possible ways to explore the hypertrophic potential of such strategies with greater ecological validity without losing the methodological rigor of controlling possible intervening variables; and thus, contributing to increasing the applicability of the findings and improving the effectiveness of hypertrophy-oriented resistance training programs.
Collapse
Affiliation(s)
- Witalo Kassiano
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| | | | - João Pedro Nunes
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| | | | - Belmiro F de Salles
- Department of Physical Education, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Silva Ribeiro
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil.,University of Northern Paraná, Londrina, PR, Brazil
| |
Collapse
|
9
|
Davies TB, Tran DL, Hogan CM, Haff GG, Latella C. Chronic Effects of Altering Resistance Training Set Configurations Using Cluster Sets: A Systematic Review and Meta-Analysis. Sports Med 2021; 51:707-736. [PMID: 33475986 DOI: 10.1007/s40279-020-01408-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The acute responses to cluster set resistance training (RT) have been demonstrated. However, as compared to traditional sets, the effect of cluster sets on muscular and neuromuscular adaptations remains unclear. OBJECTIVE To compare the effects of RT programs implementing cluster and traditional set configurations on muscular and neuromuscular adaptations. METHODS Systematic searches of Embase, Scopus, Medline and SPORTDiscus were conducted. Inclusion criteria were: (1) randomized or non-randomized comparative studies; (2) publication in English; (3) participants of all age groups; (4) participants free of any medical condition or injury; (5) cluster set intervention; (6) comparison intervention utilizing a traditional set configuration; (7) intervention length ≥ three weeks and (8) at least one measure of changes in strength/force/torque, power, velocity, hypertrophy or muscular endurance. Raw data (mean ± SD or range) were extracted from included studies. Hedges' g effect sizes (ES) ± standard error of the mean (SEM) and 95% confidence intervals (95% CI) were calculated. RESULTS Twenty-nine studies were included in the meta-analysis. No differences between cluster and traditional set configurations were found for strength (ES = - 0.05 ± 0.10, 95% CI - 0.21 to 0.11, p = 0.56), power output (ES = 0.02 ± 0.10, 95% CI - 0.17 to 0.20, p = 0.86), velocity (ES = 0.15 ± 0.13, 95% CI - 0.10 to 0.41, p = 0.24), hypertrophy (ES = - 0.05 ± 0.14, 95% CI - 0.32 to 0.23, p = 0.73) or endurance (ES = - 0.07 ± 0.18, 95% CI - 0.43 to 0.29, p = 0.70) adaptations. Moreover, no differences were observed when training volume, cluster set model, training status, body parts trained or exercise type were considered. CONCLUSION Collectively, both cluster and traditional set configurations demonstrate equal effectiveness to positively induce muscular and neuromuscular adaptation(s). However, cluster set configurations may achieve such adaptations with less fatigue development during RT which may be an important consideration across various exercise settings and stages of periodized RT programs.
Collapse
Affiliation(s)
- Timothy B Davies
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Derek L Tran
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Clorinda M Hogan
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - G Gregory Haff
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Directorate of Physiotherapy and Sport, University of Salford, Greater Manchester, UK
| | - Christopher Latella
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Neurophysiology Research Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
10
|
Duchateau J, Stragier S, Baudry S, Carpentier A. Strength Training: In Search of Optimal Strategies to Maximize Neuromuscular Performance. Exerc Sport Sci Rev 2021; 49:2-14. [PMID: 33044332 DOI: 10.1249/jes.0000000000000234] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Training with low-load exercise performed under blood flow restriction can augment muscle hypertrophy and maximal strength to a similar extent as the classical high-load strength training method. However, the blood flow restriction method elicits only minor neural adaptations. In an attempt to maximize training-related gains, we propose using other protocols that combine high voluntary activation, mechanical tension, and metabolic stress.
Collapse
Affiliation(s)
| | | | | | - Alain Carpentier
- Laboratory for Biometry and Exercise Nutrition, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
11
|
de Almeida FN, Lopes CR, da Conceição RM, Oenning L, Crisp AH, de Sousa NMF, Trindade TB, Willardson JM, Prestes J. Acute Effects of the New Method Sarcoplasma Stimulating Training Versus Traditional Resistance Training on Total Training Volume, Lactate and Muscle Thickness. Front Physiol 2019; 10:579. [PMID: 31156459 PMCID: PMC6529514 DOI: 10.3389/fphys.2019.00579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/25/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Trained subjects have difficulty in achieving continued results following years of training, and the manipulation of training variables through advanced resistance training (RT) methods is widely recommended to break through plateaus. Objective: The purpose of the present study was to compare the acute effects of traditional RT (TRT) versus two types of sarcoplasma stimulating training (SST) methods on total training volume (TTV), lactate, and muscle thickness (MT). Methods: Twelve trained males (20.75 ± 2.3 years; 1.76 ± 0.14 meters; body mass = 79.41 ± 4.6 kg; RT experience = 4.1 ± 1.8 years) completed three RT protocols in a randomly sequenced order: TRT, SST contraction type (SST-CT), or SST rest interval variable (SST-RIV) with 7 days between trials in arm curl (elbow flexors) and triceps pulley extension (elbow extensors) performed on the same day. Results: The SST groups displayed greater acute biceps and triceps brachii (TB) MT versus the TRT session, with no difference in lactate levels between them. The SST-CT resulted in greater biceps and TB MT versus the SST-RIV session. The TTV was greater for the TRT session versus the SST sessions, except in the case of the elbow flexors (no difference was observed between TRT and SST-CT), and higher for the SST-CT versus the SST-RIV. Conclusion: Trained subjects may benefit from using the SST method as this method may offer a superior MT stimulus and reduced training time, even with a lower TTV.
Collapse
Affiliation(s)
| | - Charles Ricardo Lopes
- Human Performance Research Group, Methodist University of Piracicaba, São Paulo, Brazil
| | | | - Luan Oenning
- Adventist Faculty of Hortolândia (UNASP), São Paulo, Brazil
| | - Alex Harley Crisp
- Human Performance Research Group, Methodist University of Piracicaba, São Paulo, Brazil
| | | | | | - Jeffrey M Willardson
- Department of Health and Human Performance, Montana State University Billings, Billings, MT, United States
| | - Jonato Prestes
- Graduation Program on Physical Education, Catholic University of Brasilia, Brazilia, Brazil
| |
Collapse
|