1
|
Shifman AR, Sun Y, Benoit CM, Lewis JE. Dynamics of a neuronal pacemaker in the weakly electric fish Apteronotus. Sci Rep 2020; 10:16707. [PMID: 33028878 PMCID: PMC7542169 DOI: 10.1038/s41598-020-73566-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/14/2020] [Indexed: 12/04/2022] Open
Abstract
The precise timing of neuronal activity is critical for normal brain function. In weakly electric fish, the medullary pacemaker network (PN) sets the timing for an oscillating electric organ discharge (EOD) used for electric sensing. This network is the most precise biological oscillator known, with sub-microsecond variation in oscillator period. The PN consists of two principle sets of neurons, pacemaker and relay cells, that are connected by gap junctions and normally fire in synchrony, one-to-one with each EOD cycle. However, the degree of gap junctional connectivity between these cells appears insufficient to provide the population averaging required for the observed temporal precision of the EOD. This has led to the hypothesis that individual cells themselves fire with high precision, but little is known about the oscillatory dynamics of these pacemaker cells. As a first step towards testing this hypothesis, we have developed a biophysical model of a pacemaker neuron action potential based on experimental recordings. We validated the model by comparing the changes in oscillatory dynamics produced by different experimental manipulations. Our results suggest that this relatively simple model can capture a large range of channel dynamics exhibited by pacemaker cells, and will thus provide a basis for future work on network synchrony and precision.
Collapse
Affiliation(s)
- Aaron R Shifman
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada. .,Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada. .,uOttawa Brain and Mind Research Institute, Ottawa, Ontario, K1H 8M5, Canada.
| | - Yiren Sun
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.,Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.,uOttawa Brain and Mind Research Institute, Ottawa, Ontario, K1H 8M5, Canada
| | - Chloé M Benoit
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.,Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.,uOttawa Brain and Mind Research Institute, Ottawa, Ontario, K1H 8M5, Canada
| | - John E Lewis
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.,Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.,uOttawa Brain and Mind Research Institute, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
2
|
Lucas KM, Warrington J, Lewis TJ, Lewis JE. Neuronal Dynamics Underlying Communication Signals in a Weakly Electric Fish: Implications for Connectivity in a Pacemaker Network. Neuroscience 2019; 401:21-34. [PMID: 30641115 DOI: 10.1016/j.neuroscience.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 11/19/2022]
Abstract
Neuronal networks can produce stable oscillations and synchrony that are under tight control yet flexible enough to rapidly switch between dynamical states. The pacemaker nucleus in the weakly electric fish comprises a network of electrically coupled neurons that fire synchronously at high frequency. This activity sets the timing for an oscillating electric organ discharge with the lowest cycle-to-cycle variability of all known biological oscillators. Despite this high temporal precision, pacemaker activity is behaviorally modulated on millisecond time-scales for the generation of electrocommunication signals. The network mechanisms that allow for this combination of stability and flexibility are not well understood. In this study, we use an in vitro pacemaker preparation from Apteronotus leptorhynchus to characterize the neural responses elicited by the synaptic inputs underlying electrocommunication. These responses involve a variable increase in firing frequency and a prominent desynchronization of neurons that recovers within 5 oscillation cycles. Using a previously developed computational model of the pacemaker network, we show that the frequency changes and rapid resynchronization observed experimentally are most easily explained when model neurons are interconnected more densely and with higher coupling strengths than suggested by published data. We suggest that the pacemaker network achieves both stability and flexibility by balancing coupling strength with interconnectivity and that variation in these network features may provide a substrate for species-specific evolution of electrocommunication signals.
Collapse
Affiliation(s)
- Kathleen M Lucas
- Department of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Julie Warrington
- Department of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Timothy J Lewis
- Department of Mathematics, University of California Davis, Davis, CA 95616, USA
| | - John E Lewis
- Department of Biology, University of Ottawa, Ottawa K1N 6N5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa K1N 6N5, Canada.
| |
Collapse
|
3
|
Holt AB, Wilson D, Shinn M, Moehlis J, Netoff TI. Phasic Burst Stimulation: A Closed-Loop Approach to Tuning Deep Brain Stimulation Parameters for Parkinson's Disease. PLoS Comput Biol 2016; 12:e1005011. [PMID: 27415832 PMCID: PMC4945037 DOI: 10.1371/journal.pcbi.1005011] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 06/06/2016] [Indexed: 01/09/2023] Open
Abstract
We propose a novel, closed-loop approach to tuning deep brain stimulation (DBS) for Parkinson's disease (PD). The approach, termed Phasic Burst Stimulation (PhaBS), applies a burst of stimulus pulses over a range of phases predicted to disrupt pathological oscillations seen in PD. Stimulation parameters are optimized based on phase response curves (PRCs), which would be measured from each patient. This approach is tested in a computational model of PD with an emergent population oscillation. We show that the stimulus phase can be optimized using the PRC, and that PhaBS is more effective at suppressing the pathological oscillation than a single phasic stimulus pulse. PhaBS provides a closed-loop approach to DBS that can be optimized for each patient.
Collapse
Affiliation(s)
- Abbey B. Holt
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dan Wilson
- Department of Mechanical Engineering, University of California, Santa Barbara, California, United States of America
| | - Max Shinn
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jeff Moehlis
- Department of Mechanical Engineering, University of California, Santa Barbara, California, United States of America
| | - Theoden I. Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|