1
|
Lino CA, de Bortoli Teixeira L, Capelupe Simões S, de Oliveira Silva T, Diniz GP, da Costa-Neto CM, Barreto-Chaves MLM. Beta-arrestin 2 mediates cardiac hypertrophy induced by thyroid hormones via AT1R. J Cell Physiol 2021; 236:4640-4654. [PMID: 33345322 DOI: 10.1002/jcp.30187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022]
Abstract
We have previously reported that angiotensin II receptor type 1 (AT1R) contributes to the hypertrophic effects of thyroid hormones (TH) in cardiac cells. Even though evidence indicates crosstalks between TH and AT1R, the underlying mechanisms are poorly understood. Beta-arrestin (ARRB) signaling has been described as noncanonical signal transduction pathway that exerts important effects in the cardiovascular system through G-protein-coupled receptors, as AT1R. Herein, we investigated the contribution of ARRB signaling in TH-induced cardiomyocyte hypertrophy. Primary cardiomyocyte cultures were treated with Triiodothyronine (T3) to induce cell hypertrophy. T3 rapidly activates extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, which was partially inhibited by AT1R blockade. Also, ERK1/2 inhibition attenuated the hypertrophic effects of T3. ARRB2 was upregulated by T3, and small interfering RNA assays revealed the role of ARRB2-but not ARRB1-on ERK1/2 activation and cardiomyocyte hypertrophy. Corroborating these findings, the ARRB2-overexpressed cells showed increased expression of hypertrophic markers, which were attenuated by ERK1/2 inhibition. Immunocytochemistry and immunoprecipitation assays revealed the increased expression of nuclear AT1R after T3 stimulation and the increased interaction of AT1R/ARRB2. The inhibition of endocytosis also attenuated the T3 effects on cardiac cells. Our results evidence the contribution of ARRB2 on ERK1/2 activation and cardiomyocyte hypertrophy induced by T3 via AT1R.
Collapse
Affiliation(s)
- Caroline Antunes Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Larissa de Bortoli Teixeira
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Sarah Capelupe Simões
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Gabriela Placoná Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudio Miguel da Costa-Neto
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
2
|
Aguilar M, Rose RA, Takawale A, Nattel S, Reilly S. New aspects of endocrine control of atrial fibrillation and possibilities for clinical translation. Cardiovasc Res 2021; 117:1645-1661. [PMID: 33723575 PMCID: PMC8208746 DOI: 10.1093/cvr/cvab080] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Hormones are potent endo-, para-, and autocrine endogenous regulators of the function of multiple organs, including the heart. Endocrine dysfunction promotes a number of cardiovascular diseases, including atrial fibrillation (AF). While the heart is a target for endocrine regulation, it is also an active endocrine organ itself, secreting a number of important bioactive hormones that convey significant endocrine effects, but also through para-/autocrine actions, actively participate in cardiac self-regulation. The hormones regulating heart-function work in concert to support myocardial performance. AF is a serious clinical problem associated with increased morbidity and mortality, mainly due to stroke and heart failure. Current therapies for AF remain inadequate. AF is characterized by altered atrial function and structure, including electrical and profibrotic remodelling in the atria and ventricles, which facilitates AF progression and hampers its treatment. Although features of this remodelling are well-established and its mechanisms are partly understood, important pathways pertinent to AF arrhythmogenesis are still unidentified. The discovery of these missing pathways has the potential to lead to therapeutic breakthroughs. Endocrine dysfunction is well-recognized to lead to AF. In this review, we discuss endocrine and cardiocrine signalling systems that directly, or as a consequence of an underlying cardiac pathology, contribute to AF pathogenesis. More specifically, we consider the roles of products from the hypothalamic-pituitary axis, the adrenal glands, adipose tissue, the renin–angiotensin system, atrial cardiomyocytes, and the thyroid gland in controlling atrial electrical and structural properties. The influence of endocrine/paracrine dysfunction on AF risk and mechanisms is evaluated and discussed. We focus on the most recent findings and reflect on the potential of translating them into clinical application.
Collapse
Affiliation(s)
- Martin Aguilar
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, QC, Canada.,Department of Pharmacology and Physiology/Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada
| | - Robert A Rose
- Department of Cardiac Sciences, Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, Health Research Innovation Center, University of Calgary, AB, Canada
| | - Abhijit Takawale
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, QC, Canada.,Department of Pharmacology and Physiology/Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Stanley Nattel
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Faculty of Medicine, Department of Pharmacology and Physiology, and Research Centre, Montreal Heart Institute and University of Montreal, Montreal, QC, Canada.,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Germany.,IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
3
|
Barreto-Chaves MLM, Senger N, Fevereiro MR, Parletta AC, Takano APC. Impact of hyperthyroidism on cardiac hypertrophy. Endocr Connect 2020; 9:EC-19-0543.R1. [PMID: 32101527 PMCID: PMC7159257 DOI: 10.1530/ec-19-0543] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
The cardiac growth process (hypertrophy) is a crucial phenomenon conserved across a wide array of species and it is critically involved in maintenance of cardiac homeostasis. This process enables organism adaptation to changes of systemic demand and occurs due to a plethora of responses, depending on the type of signal or stimuli received. The growth of cardiac muscle cells in response to environmental conditions depends on the type, strength and duration of stimuli, and results in adaptive physiologic response or non-adaptive pathologic response. Thyroid hormones (TH) have a direct effect on the heart and induce a cardiac hypertrophy phenotype, which may evolve to heart failure. In this review, we summarize the literature on TH function in heart presenting results from experimental studies. We discuss the mechanistic aspects of TH associated with cardiac myocyte hypertrophy, increased cardiac myocyte contractility and electrical remodeling as well as the signaling pathways associated. In addition to classical crosstalk with the Sympathetic Nervous System (SNS), emerging work points to the new endocrine interaction between TH and Renin-Angiotensin System (RAS) is also explored. Given the inflammatory potential of the angiotensin II peptide, this new interaction may open the door for new therapeutic approaches that target key mechanisms responsible for TH-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- M L M Barreto-Chaves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - N Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M R Fevereiro
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - A C Parletta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - A P C Takano
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Cardioprotective effect of thyroid hormone is mediated by AT2 receptor and involves nitric oxide production via Akt activation in mice. Heart Vessels 2017; 33:671-681. [DOI: 10.1007/s00380-017-1101-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022]
|
5
|
AT1 receptor blockage impairs NF-κB activation mediated by thyroid hormone in cardiomyocytes. Pflugers Arch 2017; 470:549-558. [DOI: 10.1007/s00424-017-2088-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
|
6
|
Hassanpour H, Afzali A, Fatemi Tabatabaie R, Torabi M, Alavi Y. Cardiac renin-angiotensin system (gene expression) and plasma angiotensin II in chickens with T3-induced pulmonary hypertension. Br Poult Sci 2016; 57:444-50. [DOI: 10.1080/00071668.2016.1162284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- H. Hassanpour
- Department of Basic Sciences (Physiology Division), Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - A. Afzali
- Department of Basic Sciences (Physiology Division), Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | | | - M. Torabi
- Department of Physiology, Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, Iran
| | - Y. Alavi
- Department of Basic Sciences (Physiology Division), Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
7
|
Lino CA, da Silva IB, Shibata CER, Monteiro PDS, Barreto-Chaves MLM. Maternal hyperthyroidism increases the susceptibility of rat adult offspring to cardiovascular disorders. Mol Cell Endocrinol 2015; 416:1-8. [PMID: 26277399 DOI: 10.1016/j.mce.2015.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 12/16/2022]
Abstract
Suboptimal intrauterine conditions as changed hormone levels during critical periods of the development are considered an insult and implicate in physiological adaptations which may result in pathological outcomes in later life. This study evaluated the effect of maternal hyperthyroidism (hyper) on cardiac function in adult offspring and the possible involvement of cardiac Renin-Angiotensin System (RAS) in this process. Wistar dams received orally thyroxin (12 mg/L) from gestational day 9 (GD9) until GD18. Adult offspring at postnatal day 90 (PND90) from hyper dams presented increased SBP evaluated by plethysmography and worse recovery after ischemia-reperfusion (I/R), as evidenced by decreased LVDP, +dP/dT and -dP/dT at 25 min of reperfusion and by increased infarct size. Increased cardiac Angiotensin I/II levels and AT1R in hyper offspring were verified. Herein, we provide evidences that maternal hyperthyroidism leads to altered expression of RAS components in adult offspring, which may be correlated with worse recovery of the cardiac performance after ischemic insults and hypertension.
Collapse
Affiliation(s)
- Caroline A Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ivson Bezerra da Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Caroline E R Shibata
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Priscilla de S Monteiro
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
8
|
Protective and Therapeutic Effects of Chinese Medicine Formula Jiajian Yunvjian on Experimental Cardiac Remodeling after Myocardial Infarction Induced by Coronary Artery Ligation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:949656. [PMID: 26185521 PMCID: PMC4491583 DOI: 10.1155/2015/949656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 01/06/2023]
Abstract
Introduction. This study was designed to explore the effect and mechanism of a classic Chinese medicine formula Jiajian Yunvjian (JJYNJ) on cardiac remodeling. Cardiac remodeling after myocardial infarction (MI) model was achieved by coronary artery ligation (CAL). Methodology. When dosed orally once daily, the effects of JJYNJ on hemodynamics, left ventricular weight index (LVWI), heart weight index (HWI), concentration, and gene expression of neuroendocrine factors as well as the histomorphological observation were determined. Results. After 4 weeks, mild cardiac remodeling in CAL group was characterized compared with sham group, but after 4 weeks of treatment of JJYNJ, hemodynamics improved, HWI reduced, and circulating angiotensin II (Ang II), endothelin-1 (ET-1), tumor necrosis factor-α (TNF-α), and hydroxyproline (Hyp) concentrations as well as Ang II receptor type 1 (AT1R) mRNA, transforming growth factor β1 (TGF-β1) mRNA, and TNF-α mRNA levels in myocardium were lower than in CAL group. Decreased plasma aldosterone (ALD) concentration, cross-sectional area of cardiomyocyte, collagen volume fraction (CVF), collagen types I and III, perivascular collagen area (PVCA), and upregulated nitric oxide (NO) levels were observed at the same time. Conclusions. These findings suggest that JJYNJ may have a protective and therapeutic function on cardiac remodeling related to MI.
Collapse
|
9
|
Hajje G, Saliba Y, Itani T, Moubarak M, Aftimos G, Farès N. Hypothyroidism and its rapid correction alter cardiac remodeling. PLoS One 2014; 9:e109753. [PMID: 25333636 PMCID: PMC4198123 DOI: 10.1371/journal.pone.0109753] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/06/2014] [Indexed: 01/12/2023] Open
Abstract
The cardiovascular effects of mild and overt thyroid disease include a vast array of pathological changes. As well, thyroid replacement therapy has been suggested for preserving cardiac function. However, the influence of thyroid hormones on cardiac remodeling has not been thoroughly investigated at the molecular and cellular levels. The purpose of this paper is to study the effect of hypothyroidism and thyroid replacement therapy on cardiac alterations. Thirty Wistar rats were divided into 2 groups: a control (n = 10) group and a group treated with 6-propyl-2-thiouracil (PTU) (n = 20) to induce hypothyroidism. Ten of the 20 rats in the PTU group were then treated with L-thyroxine to quickly re-establish euthyroidism. The serum levels of inflammatory markers, such as C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL6) and pro-fibrotic transforming growth factor beta 1 (TGF-β1), were significantly increased in hypothyroid rats; elevations in cardiac stress markers, brain natriuretic peptide (BNP) and cardiac troponin T (cTnT) were also noted. The expressions of cardiac remodeling genes were induced in hypothyroid rats in parallel with the development of fibrosis, and a decline in cardiac function with chamber dilation was measured by echocardiography. Rapidly reversing the hypothyroidism and restoring the euthyroid state improved cardiac function with a decrease in the levels of cardiac remodeling markers. However, this change further increased the levels of inflammatory and fibrotic markers in the plasma and heart and led to myocardial cellular infiltration. In conclusion, we showed that hypothyroidism is related to cardiac function decline, fibrosis and inflammation; most importantly, the rapid correction of hypothyroidism led to cardiac injuries. Our results might offer new insights for the management of hypothyroidism-induced heart disease.
Collapse
Affiliation(s)
- Georges Hajje
- Laboratoire de Recherche en Physiologie et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
| | - Youakim Saliba
- Laboratoire de Recherche en Physiologie et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
| | - Tarek Itani
- Institut National de Pathologie, Baabda, Lebanon
| | - Majed Moubarak
- Laboratoire de Recherche en Physiologie et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
| | | | - Nassim Farès
- Laboratoire de Recherche en Physiologie et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
| |
Collapse
|
10
|
Diniz GP, Takano AP, Barreto-Chaves MLM. MiRNA-208a and miRNA-208b are triggered in thyroid hormone-induced cardiac hypertrophy - role of type 1 Angiotensin II receptor (AT1R) on miRNA-208a/α-MHC modulation. Mol Cell Endocrinol 2013; 374:117-24. [PMID: 23623871 DOI: 10.1016/j.mce.2013.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/21/2013] [Accepted: 04/17/2013] [Indexed: 02/04/2023]
Abstract
Hyperthyroidism promotes cardiac hypertrophy and the Angiotensin type 1 receptor (AT1R) has been demonstrated to mediate part of this response. Recent studies have uncovered a potentially important role for the microRNAs (miRNAs) in the control of diverse aspects of cardiac function. Then, the objective of the present study was to investigate the action promoted by hyperthyroidism on β-MHC/miR-208b expression and on α-MHC/miR-208a expression, as well as the possible contribution of the AT1R in this event. The findings of this study confirmed that AT1R is a key mediator of the cardiac hypertrophy induced by hyperthyroidism. Additionally, we demonstrated that like β-MHC, miR-208b was down-regulated in the hyperthyroid group. Similarly, like the expression of its host gene, α-MHC, miR-208a expression was up-regulated in response to hyperthyroidism. Finally, our data suggest for the first time that AT1R mediates the hyperthyroidism-induced increase on cardiac miRNA-208a/α-MHC levels, while does not influence on the reduction of miRNA-208b/β-MHC levels.
Collapse
Affiliation(s)
- Gabriela Placoná Diniz
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | | | | |
Collapse
|
11
|
Tavares FM, da Silva IB, Gomes DA, Barreto-Chaves MLM. Angiotensin II Type 2 Receptor (AT2R) is Associated with Increased Tolerance of the Hyperthyroid Heart to Ischemia-Reperfusion. Cardiovasc Drugs Ther 2013; 27:393-402. [DOI: 10.1007/s10557-013-6473-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Baraldi D, Casali K, Fernandes RO, Campos C, Sartório C, Conzatti A, Couto GK, Schenkel PC, Belló-Klein A, Araujo ARS. The role of AT1-receptor blockade on reactive oxygen species and cardiac autonomic drive in experimental hyperthyroidism. Auton Neurosci 2013; 177:163-9. [PMID: 23623788 DOI: 10.1016/j.autneu.2013.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 11/19/2022]
Abstract
The objective of this study was to explore the influence of the renin-angiotensin system on cardiac prooxidants and antioxidants levels and its association to autonomic imbalance induced by hyperthyroidism. Male Wistar rats were divided into four groups: control, losartan (10mg/kg/day by gavage, 28 day), thyroxine (T4) (12 mg/L in drinking water for 28 days), and T4+losartan. Spectral analysis (autonomic balance), angiotensin II receptor (AT1R), NADPH oxidase, Nrf2 and heme-oxygenase-1 (HO-1) myocardial protein expression, and hydrogen peroxide (H2O2) concentration were quantified. Autonomic imbalance induced by hyperthyroidism (~770%) was attenuated in the T4+losartan group (~32%) (P<0.05). AT1R, NADPH oxidase, H2O2, as well as concentration, Nrf2 and HO-1 protein expression were elevated (~172%, 43%, 40%, 133%, and 154%, respectively) in T4 group (P<0.05). H2O2 and HO-1 levels were returned to control values in the T4+losartan group (P<0.05). The overall results demonstrate a positive impact of RAS blockade in the autonomic control of heart rate, which was associated with an attenuation of H2O2 levels, as well as with a reduced counter-regulatory response of HO-1 in experimental hyperthyroidism.
Collapse
Affiliation(s)
- D Baraldi
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Vargas F, Rodríguez-Gómez I, Vargas-Tendero P, Jimenez E, Montiel M. The renin-angiotensin system in thyroid disorders and its role in cardiovascular and renal manifestations. J Endocrinol 2012; 213:25-36. [PMID: 22043064 DOI: 10.1530/joe-11-0349] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thyroid disorders are among the most common endocrine diseases and affect virtually all physiological systems, with an especially marked impact on cardiovascular and renal systems. This review summarizes the effects of thyroid hormones on the renin-angiotensin system (RAS) and the participation of the RAS in the cardiovascular and renal manifestations of thyroid disorders. Thyroid hormones are important regulators of cardiac and renal mass, vascular function, renal sodium handling, and consequently blood pressure (BP). The RAS acts globally to control cardiovascular and renal functions, while RAS components act systemically and locally in individual organs. Various authors have implicated the systemic and local RAS in the mediation of functional and structural changes in cardiovascular and renal tissues due to abnormal thyroid hormone levels. This review analyzes the influence of thyroid hormones on RAS components and discusses the role of the RAS in BP, cardiac mass, vascular function, and renal abnormalities in thyroid disorders.
Collapse
Affiliation(s)
- Félix Vargas
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain.
| | | | | | | | | |
Collapse
|
14
|
Gantus MAV, Alves LM, Stipursky J, Souza ECL, Teodoro AJ, Alves TR, Carvalho DP, Martinez AMB, Gomes FCA, Nasciutti LE. Estradiol modulates TGF-β1 expression and its signaling pathway in thyroid stromal cells. Mol Cell Endocrinol 2011; 337:71-9. [PMID: 21315800 DOI: 10.1016/j.mce.2011.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 01/14/2023]
Abstract
The higher prevalence of thyroid disease in women suggests that estrogen (E2) might be involved in the pathophysiology of thyroid dysfunction. To approach the question of the effect of stromal cells in the modulation of thyroid epithelial cells activity, we established and characterized a homogeneous stromal cell population (TS7 cells) of rat thyroid gland. These fibroblastic cells synthesize the cytoskeleton proteins α-smooth muscle actin and vimentin, produce basement membrane components and express the cytokine transforming growth factor beta 1 (TGF-β1). Here, we hypothesized that the effects of E2 on follicular thyroid cells are mediated by TGF-β1 synthesis and secretion by stromal cells (paracrine action). Thus we investigated the effect of E2 on TGF-β1 synthesis and its signaling pathway in TS7 cells. In addition, we analyzed the role of TGF-β1 signaling pathway as mediator of TS7-PC CL3 thyroid epithelial cells interactions. We report that TS7 stromal cells expressed α and β estrogen receptors (ERα and ERβ). Further, both isoforms of TGF-β1 receptors, TGFRI and TGFRII, were also identified in TS7 cells, suggesting that these cells might be a target for this cytokine in vitro. Treatment of TS7 cells with E2 induced both synthesis and secretion of TGF-β1. This event was followed by phosphorylation of the transcription factor Smad2, a hallmark of TGF-β1 pathway activation. Co-culture of PC CL3 cells onto TS7 cells monolayers yielded round aggregates of PC CL3 cells surrounded by TS7 cells. TS7 cells induced a decrease in iodide uptake by PC CL3 cells, probably by a mechanism involving TGF-β1. Moreover, E2 affected synthesis and organization of the extracellular matrix (ECM) components, tenascin C and chondroitin sulfate, in these co-culture cells. Our results point to the TGF-β1/Smad-2 signaling pathway as a putative target of estrogen actions on thyroid stromal cells and contribute to understanding the interplay between stromal and follicular cells in thyroid physiology.
Collapse
Affiliation(s)
- M A V Gantus
- Laboratory of Cellular Interactions, Program of Cellular Biology and Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Axelband F, Dias J, Ferrão FM, Einicker-Lamas M. Nongenomic signaling pathways triggered by thyroid hormones and their metabolite 3-iodothyronamine on the cardiovascular system. J Cell Physiol 2010; 226:21-8. [PMID: 20658515 DOI: 10.1002/jcp.22325] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- F Axelband
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
16
|
Blockage of Angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation. Basic Res Cardiol 2010; 105:325-35. [DOI: 10.1007/s00395-010-0089-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 01/19/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
|
17
|
Diniz GP, Carneiro-Ramos MS, Barreto-Chaves MLM. Thyroid Hormone Increases TGF-beta1 in Cardiomyocytes Cultures Independently of Angiotensin II Type 1 and Type 2 Receptors. Int J Endocrinol 2010; 2010:384890. [PMID: 20613948 PMCID: PMC2896841 DOI: 10.1155/2010/384890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 02/11/2010] [Accepted: 03/21/2010] [Indexed: 11/17/2022] Open
Abstract
TH-induced cardiac hypertrophy in vivo is accompanied by increased cardiac Transforming Growth Factor-beta1 (TGF-beta1) levels, which is mediated by Angiotensin II type 1 receptors (AT1R) and type 2 receptors (AT2R). However, the possible involvement of this factor in TH-induced cardiac hypertrophy is unknown. In this study we evaluated whether TH is able to modulate TGF-beta1 in isolated cardiac, as well as the possible contribution of AT1R and AT2R in this response. The cardiac fibroblasts treated with T(3) did not show alteration on TGF-beta1 expression. However, cardiomyocytes treated with T(3) presented an increase in TGF-beta1 expression, as well as an increase in protein synthesis. The AT1R blockade prevented the T(3)-induced cardiomyocyte hypertrophy, while the AT2R blockage attenuated this response. The T(3)-induced increase on TGF-beta1 expression in cardiomyocytes was not changed by the use of AT1R and AT2R blockers. These results indicate that Angiotensin II receptors are not implicated in T(3)-induced increase on TGF-beta expression and suggest that the trophic effects exerted by T(3) on cardiomyocytes are not dependent on the higher TGF-beta1 levels, since the AT1R and AT2R blockers were able to attenuate the T(3)-induced cardiomyocyte hypertrophy but were not able to attenuate the increase on TGF-beta1 levels promoted by T(3).
Collapse
Affiliation(s)
- Gabriela Placoná Diniz
- Laboratory of Cellular Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil
| | - Marcela Sorelli Carneiro-Ramos
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil
| | - Maria Luiza Morais Barreto-Chaves
- Laboratory of Cellular Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil
- *Maria Luiza Morais Barreto-Chaves:
| |
Collapse
|
18
|
Barreto-Chaves MLM, Carrillo-Sepúlveda MA, Carneiro-Ramos MS, Gomes DA, Diniz GP. The crosstalk between thyroid hormones and the Renin-Angiotensin System. Vascul Pharmacol 2009; 52:166-70. [PMID: 19857605 DOI: 10.1016/j.vph.2009.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 10/18/2009] [Indexed: 12/25/2022]
Abstract
Thyroid hormones (THs) exert multiple effects on the heart and vascular system. As a consequence, altered cardiovascular function observed in the thyroid diseases corresponds to one of the most important and clinically relevant aspects found in both hyperthyroidism and hypothyroidism. Besides THs' direct effects on the heart and vascular system, in the last three decades several studies have implicated the Renin-Angiotensin System (RAS) in some of the cardiovascular effects of THs, with this interaction suggesting that RAS may be an important mediator of THs actions. In the present review, we discuss the alterations in the circulating RAS, as well as modifications in cardiac and vascular RAS which are involved in the cardiovascular alterations found during the modulation of TH levels. In addition, considering the important role that both systems present during fetal and neonatal periods, we also review the interaction between THs and the RAS in the development of cardiovascular system. A greater understanding of the role of the RAS in hyperthyroidism and hypothyroidism, during early or adult life will presumably facilitate the evolution of newer, targeted therapies.
Collapse
Affiliation(s)
- Maria Luiza M Barreto-Chaves
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences of University of São Paulo, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
19
|
Carrillo-Sepúlveda MA, Ceravolo GS, Fortes ZB, Carvalho MH, Tostes RC, Laurindo FR, Webb RC, Barreto-Chaves MLM. Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res 2009; 85:560-70. [PMID: 19734167 DOI: 10.1093/cvr/cvp304] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIMS Thyroid hormone (TH) rapidly relaxes vascular smooth muscle cells (VSMCs). However, the mechanisms involved in this effect remain unclear. We hypothesize that TH-induced rapid vascular relaxation is mediated by VSMC-derived nitric oxide (NO) production and is associated with the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signalling pathway. METHODS AND RESULTS NO levels were determined using a NO-specific fluorescent dye (DAF-2) and nitrite (NO2-) levels. Expression of NO synthase (NOS) isoforms and proteins of the PI3K/Akt pathway was determined by both western blotting and immunocytochemistry. Myosin light chain (MLC) phosphorylation levels were also investigated by western blotting. Exposure of cultured VSMCs from rat thoracic aortas to triiodothyronine (T3) resulted in a significant decrease of MLC phosphorylation levels. T3 also induced a rapid increase in Akt phosphorylation and increased NO production in a dose-dependent manner (0.001-1 microM). VSMCs stimulated with T3 for 30 min showed an increase in the expression of all three NOS isoforms and augmented NO production, effects that were prevented by inhibitors of PI3K. Vascular reactivity studies showed that vessels treated with T3 displayed a decreased response to phenylephrine, which was reversed by NOS inhibition. These data suggest that T3 treatment induces greater generation of NO both in aorta and VSMCs and that this phenomenon is endothelium independent. In addition, these findings show for the first time that the PI3K/Akt signalling pathway is involved in T3-induced NO production by VSMCs, which occurs with expressive participation of inducible and neuronal NOS. CONCLUSION Our data strongly indicate that T3 causes NO-dependent rapid relaxation of VSMC and that this effect is mediated by the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Maria Alícia Carrillo-Sepúlveda
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes 2415, Sao Paulo 05508-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pisarev MA, Thomasz L, Juvenal GJ. Role of transforming growth factor beta in the regulation of thyroid function and growth. Thyroid 2009; 19:881-92. [PMID: 19645615 DOI: 10.1089/thy.2007.0303] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transforming growth factor beta (TGF-beta) exists in nature as three isoforms. They exert their effects by binding to a type II receptor located at the cell membrane. The TGF-beta-type II receptor complex then recruits type I receptor, and this new complex stimulates the phosphorylation of Smads 2 and 3, which are subsequently transferred to the nucleus, where they regulate gene transcription. The thyroid gland expresses the TGF-beta1 gene mRNA and synthesizes the protein, which under physiologic conditions regulates thyroid growth and function. Different studies have demonstrated that TGF-beta1 inhibits cell proliferation and a number of functional parameters. These include cyclic adenosine monophosphate (AMP) formation, iodine uptake and organification, hormone secretion, and the expression of thyroglobulin, thyroid peroxidase, and Na(+)/I(-) symporter. The expression of the TGF-beta1 gene and protein may be stimulated by iodine under normal conditions. Since TGF-beta1 mimics some of the inhibitory actions of iodine, its participation in thyroid autoregulation has been proposed; however, this concept is still debated. In thyroid tumors, the inhibitory action of TGF-beta1 on cell proliferation is progressively lost as the tumor becomes more undifferentiated. The alterations in the signaling pathway of TGF-beta1 are not the same in tumors from different species. Even within the same species, such as the pig thyroid, the results may be different depending on whether monolayers or follicular suspensions are employed. The data suggest that it is not entirely possible to apply the results obtained in animal studies to normal or pathological human thyroid tissue. More studies are required to provide the information needed to develop treatments, based on targeting the signaling pathway of TGF-beta1, for undifferentiated thyroid cancer and other thyroid diseases.
Collapse
Affiliation(s)
- Mario A Pisarev
- Department of Radiobiology, University of Buenos Aires School of Medicine, Argentina.
| | | | | |
Collapse
|
21
|
Diniz GP, Carneiro-Ramos MS, Barreto-Chaves MLM. Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol 2009; 104:653-67. [PMID: 19588183 DOI: 10.1007/s00395-009-0043-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 06/17/2009] [Accepted: 06/19/2009] [Indexed: 01/13/2023]
Abstract
Several studies have implicated the renin angiotensin system in the cardiac hypertrophy induced by thyroid hormone. However, whether Angiotensin type 1 receptor (AT1R) is critically required to the development of T3-induced cardiomyocyte hypertrophy as well as whether the intracellular mechanisms that are triggered by AT1R are able to contribute to this hypertrophy model is unknown. To address these questions, we employed a selective small interfering RNA (siRNA, 50 nM) or an AT1R blocker (Losartan, 1 microM) to evaluate the specific role of this receptor in primary cultures of neonatal cardiomyocytes submitted to T3 (10 nM) treatment. The cardiomyocytes transfected with the AT1R siRNA presented reduced mRNA (90%, P < 0.001) and protein (70%, P < 0.001) expression of AT1R. The AT1R silencing and the AT1R blockade totally prevented the T3-induced cardiomyocyte hypertrophy, as evidenced by lower mRNA expression of atrial natriuretic factor (66%, P < 0.01) and skeletal alpha-actin (170%, P < 0.01) as well as by reduction in protein synthesis (85%, P < 0.001). The cardiomyocytes treated with T3 demonstrated a rapid activation of Akt/GSK-3beta/mTOR signaling pathway, which was completely inhibited by the use of PI3K inhibitors (LY294002, 10 microM and Wortmannin, 200 nM). In addition, we demonstrated that the AT1R mediated the T3-induced activation of Akt/GSK-3beta/mTOR signaling pathway, since the AT1R silencing and the AT1R blockade attenuated or totally prevented the activation of this signaling pathway. We also reported that local Angiotensin I/II (Ang I/II) levels (120%, P < 0.05) and the AT1R expression (180%, P < 0.05) were rapidly increased by T3 treatment. These data demonstrate for the first time that the AT1R is a critical mediator to the T3-induced cardiomyocyte hypertrophy as well as to the activation of Akt/GSK-3beta/mTOR signaling pathway. These results represent a new insight into the mechanism of T3-induced cardiomyocyte hypertrophy, indicating that the Ang I/II-AT1R-Akt/GSK-3beta/mTOR pathway corresponds to a potential mediator of the trophic effect exerted by T3 in cardiomyocytes.
Collapse
Affiliation(s)
- Gabriela Placoná Diniz
- Laboratory of Cellular Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP 05508-900, Brazil
| | | | | |
Collapse
|
22
|
Schlüter KD, Wenzel S. Angiotensin II: a hormone involved in and contributing to pro-hypertrophic cardiac networks and target of anti-hypertrophic cross-talks. Pharmacol Ther 2008; 119:311-25. [PMID: 18619489 DOI: 10.1016/j.pharmthera.2008.05.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/30/2008] [Indexed: 12/23/2022]
Abstract
Angiotensin II (Ang II) plays a major role in the progression of myocardial hypertrophy to heart failure. Inhibiting the angiotensin converting enzyme (ACE) or blockade of the corresponding Ang II receptors is used extensively in clinical practice, but there is scope for refinement of this mode of therapy. This review summarizes the current understanding of the direct effects of Ang II on cardiomyocytes and then focus particularly on interaction of components of the renin-angiotensin system with other hormones and cytokines. New findings described in approximately 400 papers identified in the PubMed database and published during the 2.5 years are discussed in the context of previous relevant literature. The cardiac action of Ang II is influenced by the activity of different isoforms of ACE leading to different amounts of Ang II by comparison with other angiotensinogen-derived peptides. The effect of Ang II is mediated by at least two different AT receptors that are differentially expressed in cardiomyocytes from neonatal, adult and failing hearts. The intracellular effects of Ang II are influenced by nitric oxide (NO)/cGMP-dependent cross talk and are mediated by the release of autocrine factors, such as transforming growth factor (TGF)-beta1 and interleukin (IL)-6. Besides interactions with cytokines, Ang II is involved in systemic networks including aldosterone, parathyroid hormone and adrenomedullin, which have their own effects on cardiomyocytes that modify, amplify or antagonize the primary effect of Ang II. Finally, hyperinsulemia and hyperglycaemia influence Ang II-dependent processes in diabetes and its cardiac sequelae.
Collapse
Affiliation(s)
- K-D Schlüter
- Physiologisches Institut, Justus-Liebig-Universität Giessen, Germany.
| | | |
Collapse
|
23
|
Gul R, Kim SY, Park KH, Kim BJ, Kim SJ, Im MJ, Kim UH. A novel signaling pathway of ADP-ribosyl cyclase activation by angiotensin II in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2008; 295:H77-88. [PMID: 18456728 DOI: 10.1152/ajpheart.01355.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca(2+)-mobilizing second messenger, cADP-ribose (cADPR), from NAD(+). In this study, we investigated the molecular basis of ADPR-cyclase activation in the ANG II signaling pathway and cellular responses in adult rat cardiomyocytes. The results showed that ANG II generated biphasic intracellular Ca(2+) concentration increases that include a rapid transient Ca(2+) elevation via inositol trisphosphate (IP(3)) receptor and sustained Ca(2+) rise via the activation of L-type Ca(2+) channel and opening of ryanodine receptor. ANG II-induced sustained Ca(2+) rise was blocked by a cADPR antagonistic analog, 8-bromo-cADPR, indicating that sustained Ca(2+) rise is mediated by cADPR. Supporting the notion, ADPR-cyclase activity and cADPR production by ANG II were increased in a time-dependent manner. Application of pharmacological inhibitors and immunological analyses revealed that cADPR formation was activated by sequential activation of Src, phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt), phospholipase C (PLC)-gamma1, and IP(3)-mediated Ca(2+) signal. Inhibitors of these signaling molecules not only completely abolished the ANG II-induced Ca(2+) signals but also inhibited cADPR formation. Application of the cADPR antagonist and inhibitors of upstream signaling molecules of ADPR-cyclase inhibited ANG II-stimulated hypertrophic responses, which include nuclear translocation of Ca(2+)/calcineurin-dependent nuclear factor of activated T cells 3, protein expression of transforming growth factor-beta1, and incorporation of [(3)H]leucine in cardiomyocytes. Taken together, these findings suggest that activation of ADPR-cyclase by ANG II entails a novel signaling pathway involving sequential activation of Src, PI 3-kinase/Akt, and PLC-gamma1/IP(3) and that the activation of ADPR-cyclase can lead to cardiac hypertrophy.
Collapse
Affiliation(s)
- Rukhsana Gul
- Dept. of Biochemistry, Chonbuk National Univ. Medical School, Keum-am dong, Jeonju, 561-182, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Protective actions of human tissue kallikrein gene in transgenic rat hearts. Int Immunopharmacol 2008; 8:267-70. [PMID: 18182238 DOI: 10.1016/j.intimp.2007.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 08/31/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
Abstract
In this study, we used an experimental model of cardiac hypertrophy to explore the role of the kallikrein-kinin system (KKS) in cardiac protection in transgenic rats harboring the human tissue kallikrein gene, TGR(hKLK1). Tissue kallikrein cleaves low-molecular-weight kininogen to produce kinin peptides, which bind to kinin receptors and trigger a wide spectrum of biological effects. The transgene, under the control of the zinc-inducible metallothionein promoter, was expressed in most tissues including the heart, kidney, lung and brain. These animals were subjected to treatment with thyroid hormone in order to promote cardiac hypertrophy. Induction of cardiac hypertrophy revealed a marked protective effect caused by the expression of the kallikrein transgene, evidenced by the significantly reduced cardiac weight gain and the lower enhancement in the cardiac expression of atrial natriuretic peptide and collagen III, markers for hypertrophy and fibrosis, respectively. In conclusion, our data show that expression of tissue kallikrein exerts antihypertrophic and antifibrotic actions in the heart.
Collapse
|
25
|
Bibliography. Current world literature. Obesity and nutrition. Curr Opin Endocrinol Diabetes Obes 2007; 14:421-6. [PMID: 17940474 DOI: 10.1097/med.0b013e3282f0ca40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|