1
|
Nakashima K, Nakao K, Matsui H. Discovery of Novel HCN4 Blockers with Unique Blocking Kinetics and Binding Properties. SLAS DISCOVERY 2021; 26:896-908. [PMID: 34041946 PMCID: PMC8293762 DOI: 10.1177/24725552211013824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hyperpolarization-activated cyclic nucleotide-gated 4 (HCN4) channel underlies the pacemaker currents, called “If,” in sinoatrial nodes (SANs), which regulate heart rhythm. Some HCN4 blockers such as ivabradine have been extensively studied for treating various heart diseases. Studies have shown that these blockers have diverse state dependencies and binding sites, suggesting the existence of potential chemical and functional diversity among HCN4 blockers. Here we report approaches for the identification of novel HCN4 blockers through a random screening campaign among 16,000 small-molecule compounds using an automated patch-clamp system. These molecules exhibited various blockade profiles, and their blocking kinetics and associating amino acids were determined by electrophysiological studies and site-directed mutagenesis analysis, respectively. The profiles of these blockers were distinct from those of the previously reported HCN channel blockers ivabradine and ZD7288. Notably, the mutagenesis analysis showed that blockers with potencies that were increased when the channel was open involved a C478 residue, located at the pore cavity region near the cellular surface of the plasma membrane, while those with potencies that were decreased when the channel was open involved residues Y506 and I510, located at the intracellular region of the pore gate. Thus, this study reported for the first time the discovery of novel HCN4 blockers by screening, and their profiling analysis using an automated patch-clamp system provided chemical tools that will be useful to obtain unique molecular insights into the drug-binding modes of HCN4 and may contribute to the expansion of therapeutic options in the future.
Collapse
Affiliation(s)
- Kosuke Nakashima
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Kenji Nakao
- Biomolecular Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan.,Seedsupply Inc., Fujisawa, Kanagawa, Japan
| | - Hideki Matsui
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
2
|
Tanguay J, Callahan KM, D'Avanzo N. Characterization of drug binding within the HCN1 channel pore. Sci Rep 2019; 9:465. [PMID: 30679654 PMCID: PMC6345760 DOI: 10.1038/s41598-018-37116-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/29/2018] [Indexed: 11/09/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels mediate rhythmic electrical activity of cardiac pacemaker cells, and in neurons play important roles in setting resting membrane potentials, dendritic integration, neuronal pacemaking, and establishing action potential threshold. Block of HCN channels slows the heart rate and is currently used to treat angina. However, HCN block also provides a promising approach to the treatment of neuronal disorders including epilepsy and neuropathic pain. While several molecules that block HCN channels have been identified, including clonidine and its derivative alinidine, lidocaine, mepivacaine, bupivacaine, ZD7288, ivabradine, zatebradine, and cilobradine, their low affinity and lack of specificity prevents wide-spread use. Different studies suggest that the binding sites of these inhibitors are located in the inner vestibule of HCN channels, but the molecular details of their binding remain unknown. We used computational docking experiments to assess the binding sites and mode of binding of these inhibitors against the recently solved atomic structure of human HCN1 channels, and a homology model of the open pore derived from a closely related CNG channel. We identify a possible hydrophobic groove in the pore cavity that plays an important role in conformationally restricting the location and orientation of drugs bound to the inner vestibule. Our results also help explain the molecular basis of the low-affinity binding of these inhibitors, paving the way for the development of higher affinity molecules.
Collapse
Affiliation(s)
- Jérémie Tanguay
- Department of Physics, Université de Montréal, Montréal, Canada
| | - Karen M Callahan
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
| | - Nazzareno D'Avanzo
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada.
| |
Collapse
|
3
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
4
|
Novella Romanelli M, Sartiani L, Masi A, Mannaioni G, Manetti D, Mugelli A, Cerbai E. HCN Channels Modulators: The Need for Selectivity. Curr Top Med Chem 2016; 16:1764-91. [PMID: 26975509 PMCID: PMC5374843 DOI: 10.2174/1568026616999160315130832] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022]
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, the molecular correlate of the hyperpolarization-activated current (If/Ih), are membrane proteins which play an important role in several physiological processes and various pathological conditions. In the Sino Atrial Node (SAN) HCN4 is the target of ivabradine, a bradycardic agent that is, at the moment, the only drug which specifically blocks If. Nevertheless, several other pharmacological agents have been shown to modulate HCN channels, a property that may contribute to their therapeutic activity and/or to their side effects. HCN channels are considered potential targets for developing drugs to treat several important pathologies, but a major issue in this field is the discovery of isoform-selective compounds, owing to the wide distribution of these proteins into the central and peripheral nervous systems, heart and other peripheral tissues. This survey is focused on the compounds that have been shown, or have been designed, to interact with HCN channels and on their binding sites, with the aim to summarize current knowledge and possibly to unveil useful information to design new potent and selective modulators.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | |
Collapse
|
5
|
Bucchi A, Baruscotti M, Nardini M, Barbuti A, Micheloni S, Bolognesi M, DiFrancesco D. Identification of the molecular site of ivabradine binding to HCN4 channels. PLoS One 2013; 8:e53132. [PMID: 23308150 PMCID: PMC3537762 DOI: 10.1371/journal.pone.0053132] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/23/2012] [Indexed: 12/26/2022] Open
Abstract
Ivabradine is a specific heart rate-reducing agent approved as a treatment of chronic stable angina. Its mode of action involves a selective and specific block of HCN channels, the molecular components of sinoatrial "funny" (f)-channels. Different studies suggest that the binding site of ivabradine is located in the inner vestibule of HCN channels, but the molecular details of ivabradine binding are unknown. We thus sought to investigate by mutagenesis and in silico analysis which residues of the HCN4 channel, the HCN isoform expressed in the sinoatrial node, are involved in the binding of ivabradine. Using homology modeling, we verified the presence of an inner cavity below the channel pore and identified residues lining the cavity; these residues were replaced with alanine (or valine) either alone or in combination, and WT and mutant channels were expressed in HEK293 cells. Comparison of the block efficiency of mutant vs WT channels, measured by patch-clamp, revealed that residues Y506, F509 and I510 are involved in ivabradine binding. For each mutant channel, docking simulations correctly explain the reduced block efficiency in terms of proportionally reduced affinity for ivabradine binding. In summary our study shows that ivabradine occupies a cavity below the channel pore, and identifies specific residues facing this cavity that interact and stabilize the ivabradine molecule. This study provides an interpretation of known properties of f/HCN4 channel block by ivabradine such as the “open channel block”, the current-dependence of block and the property of "trapping" of drug molecules in the closed configuration.
Collapse
Affiliation(s)
- Annalisa Bucchi
- The PaceLab, Department of Life Sciences, Università degli Studi di Milano, Milano, Italy
- Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata, Università degli Studi di Milano, Milano, Italy
| | - Mirko Baruscotti
- The PaceLab, Department of Life Sciences, Università degli Studi di Milano, Milano, Italy
- Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata, Università degli Studi di Milano, Milano, Italy
| | - Marco Nardini
- Laboratory of Protein Biochemistry, Department of Life Sciences, Università degli Studi di Milano, Milano, Italy
| | - Andrea Barbuti
- The PaceLab, Department of Life Sciences, Università degli Studi di Milano, Milano, Italy
- Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata, Università degli Studi di Milano, Milano, Italy
| | - Stefano Micheloni
- The PaceLab, Department of Life Sciences, Università degli Studi di Milano, Milano, Italy
| | - Martino Bolognesi
- Laboratory of Protein Biochemistry, Department of Life Sciences, Università degli Studi di Milano, Milano, Italy
| | - Dario DiFrancesco
- The PaceLab, Department of Life Sciences, Università degli Studi di Milano, Milano, Italy
- Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata, Università degli Studi di Milano, Milano, Italy
- * E-mail:
| |
Collapse
|
6
|
Li RA. Gene- and cell-based bio-artificial pacemaker: what basic and translational lessons have we learned? Gene Ther 2012; 19:588-95. [PMID: 22673497 DOI: 10.1038/gt.2012.33] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Normal rhythms originate in the sino-atrial node, a specialized cardiac tissue consisting of only a few thousands of nodal pacemaker cells. Malfunction of pacemaker cells due to diseases or aging leads to rhythm generation disorders (for example, bradycardias and sick-sinus syndrome (SSS)), which often necessitate the implantation of electronic pacemakers. Although effective, electronic devices are associated with such shortcomings as limited battery life, permanent implantation of leads, lead dislodging, the lack of autonomic responses and so on. Here, various gene- and cell-based approaches, with a particular emphasis placed on the use of pluripotent stem cells and the hyperpolarization-activated cyclic nucleotide-gated-encoded pacemaker gene family, that have been pursued in the past decade to reconstruct bio-artificial pacemakers as alternatives will be discussed in relation to the basic biological insights and translational regenerative potential.
Collapse
Affiliation(s)
- R A Li
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
7
|
Zhang J, Chan YC, Ho JCY, Siu CW, Lian Q, Tse HF. Regulation of cell proliferation of human induced pluripotent stem cell-derived mesenchymal stem cells via ether-à-go-go 1 (hEAG1) potassium channel. Am J Physiol Cell Physiol 2012; 303:C115-25. [DOI: 10.1152/ajpcell.00326.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The successful generation of a high yield of mesenchymal stem cells (MSCs) from human induced pluripotent stem cells (iPSCs) may represent an unlimited cell source with superior therapeutic benefits for tissue regeneration to bone marrow (BM)-derived MSCs. We investigated whether the differential expression of ion channels in iPSC-MSCs was responsible for their higher proliferation capacity than BM-MSCs. The expression of ion channels for K+, Na+, Ca2+, and Cl− was examined by RT-PCR. The electrophysiological properties of iPSC-MSCs and BM-MSCs were then compared by patch-clamp experiments to verify their functional roles. Significant mRNA expression of ion channel genes including KCa1.1, KCa3.1, KCNH1, Kir2.1, SCN9A, CACNA1C, and Clcn3 was observed in both human iPSC-MSCs and BM-MSCs, whereas Kir2.2 and Kir2.3 were only detected in human iPSC-MSCs. Five types of currents [big-conductance Ca2+-activated K+ current (BKCa), delayed rectifier K+ current ( IKDR), inwardly rectifying K+ current ( IKir), Ca2+-activated K+ current ( IKCa), and chloride current ( ICl)] were found in iPSC-MSCs (83%, 47%, 11%, 5%, and 4%, respectively) but only four of them (BKCa, IKDR, IKir, and IKCa) were identified in BM-MSCs (76%, 25%, 22%, and 11%, respectively). Cell proliferation was examined with MTT or bromodeoxyuridine assay, and doubling times were 2.66 and 3.72 days for iPSC-MSCs and BM-MSCs, respectively, showing a 1.4-fold discrepancy. Blockade of IKDR with short hairpin RNA or human ether-à-go-go 1 (hEAG1) channel blockers, 4-AP and astemizole, significantly reduced the rate of proliferation of human iPSC-MSCs. These treatments also decreased the rate of proliferation of human BM-MSCs albeit to a lesser extent. These findings demonstrate that the hEAG1 channel plays a crucial role in controlling the proliferation rate of human iPSC-MSCs and to a lesser extent in BM-MSCs.
Collapse
Affiliation(s)
- Jiao Zhang
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
| | - Yau-Chi Chan
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
| | - Jenny Chung-Yee Ho
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
| | - Chung-Wah Siu
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
| | - Qizhou Lian
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
- Eye Institute, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
| |
Collapse
|
8
|
Wu S, Gao W, Xie C, Xu X, Vorvis C, Marni F, Hackett AR, Liu Q, Zhou L. Inner activation gate in S6 contributes to the state-dependent binding of cAMP in full-length HCN2 channel. ACTA ACUST UNITED AC 2012; 140:29-39. [PMID: 22689828 PMCID: PMC3382721 DOI: 10.1085/jgp.201110749] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, applications of the patch-clamp fluorometry (PCF) technique in studies of cyclic nucleotide-gated (CNG) and hyperpolarization-activated, cyclic nucleotide-regulated (HCN) channels have provided direct evidence for the long-held notion that ligands preferably bind to and stabilize these channels in an open state. This state-dependent ligand-channel interaction involves contributions from not only the ligand-binding domain but also other discrete structural elements within the channel protein. This insight led us to investigate whether the pore of the HCN channel plays a role in the ligand-whole channel interaction. We used three well-characterized HCN channel blockers to probe the ion-conducting passage. The PCF technique was used to simultaneously monitor channel activity and cAMP binding. Two ionic blockers, Cs(+) and Mg(2+), effectively block channel conductance but have no obvious effect on cAMP binding. Surprisingly, ZD7288, an open channel blocker specific for HCN channels, significantly reduces the activity-dependent increase in cAMP binding. Independent biochemical assays exclude any nonspecific interaction between ZD7288 and isolated cAMP-binding domain. Because ZD7228 interacts with the inner pore region, where the activation gate is presumably located, we did an alanine scanning of the intracellular end of S6, from T426 to A435. Mutations of three residues, T426, M430, and H434, which are located at regular intervals on the S6 α-helix, enhance cAMP binding. In contrast, mutations of two residues in close proximity, F431A and I432A, dampen the response. Our results demonstrate that movements of the structural elements near the activation gate directly affect ligand binding affinity, which is a simple mechanistic explanation that could be applied to the interpretation of ligand gating in general.
Collapse
Affiliation(s)
- Shengjun Wu
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Melchiorre M, Del Lungo M, Guandalini L, Martini E, Dei S, Manetti D, Scapecchi S, Teodori E, Sartiani L, Mugelli A, Cerbai E, Romanelli MN. Design, Synthesis, and Preliminary Biological Evaluation of New Isoform-Selective f-Current Blockers. J Med Chem 2010; 53:6773-7. [DOI: 10.1021/jm1006758] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Michele Melchiorre
- Laboratory of Design, Synthesis, and Study of Biologically Active Heterocycles (HeteroBioLab), Department of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy
| | - Martina Del Lungo
- Center of Molecular Medicine (C.I.M.M.B.A.), University of Florence, Viale G. Pieraccini 6, 50139 Firenze, Italy
| | - Luca Guandalini
- Laboratory of Design, Synthesis, and Study of Biologically Active Heterocycles (HeteroBioLab), Department of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy
| | - Elisabetta Martini
- Laboratory of Design, Synthesis, and Study of Biologically Active Heterocycles (HeteroBioLab), Department of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy
| | - Silvia Dei
- Laboratory of Design, Synthesis, and Study of Biologically Active Heterocycles (HeteroBioLab), Department of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy
| | - Dina Manetti
- Laboratory of Design, Synthesis, and Study of Biologically Active Heterocycles (HeteroBioLab), Department of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy
| | - Serena Scapecchi
- Laboratory of Design, Synthesis, and Study of Biologically Active Heterocycles (HeteroBioLab), Department of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy
| | - Elisabetta Teodori
- Laboratory of Design, Synthesis, and Study of Biologically Active Heterocycles (HeteroBioLab), Department of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy
| | - Laura Sartiani
- Center of Molecular Medicine (C.I.M.M.B.A.), University of Florence, Viale G. Pieraccini 6, 50139 Firenze, Italy
| | - Alessandro Mugelli
- Center of Molecular Medicine (C.I.M.M.B.A.), University of Florence, Viale G. Pieraccini 6, 50139 Firenze, Italy
| | - Elisabetta Cerbai
- Center of Molecular Medicine (C.I.M.M.B.A.), University of Florence, Viale G. Pieraccini 6, 50139 Firenze, Italy
| | - Maria Novella Romanelli
- Laboratory of Design, Synthesis, and Study of Biologically Active Heterocycles (HeteroBioLab), Department of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|