1
|
Tominaga Y, Taketoshi M, Tominaga T. Overall Assay of Neuronal Signal Propagation Pattern With Long-Term Potentiation (LTP) in Hippocampal Slices From the CA1 Area With Fast Voltage-Sensitive Dye Imaging. Front Cell Neurosci 2018; 12:389. [PMID: 30405360 PMCID: PMC6207578 DOI: 10.3389/fncel.2018.00389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Activity-dependent changes in the input-output (I-O) relationship of a neural circuit are central in the learning and memory function of the brain. To understand circuit-wide adjustments, optical imaging techniques to probe the membrane potential at every component of neurons, such as dendrites, axons and somas, in the circuit are essential. We have been developing fast voltage-sensitive dye (VSD) imaging methods for quantitative measurements, especially for single-photon wide-field optical imaging. The long-term continuous measurements needed to evaluate circuit-wide modifications require stable and quantitative long-term recordings. Here, we show that VSD imaging (VSDI) can be used to record changes in circuit activity in association with theta-burst stimulation (TBS)-induced long-term potentiation (LTP) of synaptic strength in the CA1 area. Our optics, together with the fast imaging system, enabled us to measure neuronal signals from the entire CA1 area at a maximum frame speed of 0.1 ms/frame every 60 s for over 12 h. We also introduced a method to evaluate circuit activity changes by mapping the variation in recordings from the CA1 area to coordinates defined by the morphology of CA1 pyramidal cells. The results clearly showed two types of spatial heterogeneity in LTP induction. The first heterogeneity is that LTP increased with distance from the stimulation site. The second heterogeneity is that LTP is higher in the stratum pyramidale (SP)-oriens region than in the stratum radiatum (SR). We also showed that the pattern of the heterogeneity changed according to the induction protocol, such as induction by TBS or high-frequency stimulation (HFS). We further demonstrated that part of the heterogeneity depends on the I-O response of the circuit elements. The results show the usefulness of VSDI in probing the function of hippocampal circuits.
Collapse
Affiliation(s)
| | | | - Takashi Tominaga
- Laboratory for Neural Circuit Systems, Institute of Neuroscience, Tokushima Bunri University, Sanuki, Japan
| |
Collapse
|
2
|
Tominaga T, Tominaga Y. Paired Burst Stimulation Causes GABAA Receptor-Dependent Spike Firing Facilitation in CA1 of Rat Hippocampal Slices. Front Cell Neurosci 2016; 10:9. [PMID: 26858604 PMCID: PMC4731501 DOI: 10.3389/fncel.2016.00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/11/2016] [Indexed: 11/24/2022] Open
Abstract
The theta oscillation (4–8 Hz) is a pivotal form of oscillatory activity in the hippocampus that is intermittently concurrent with gamma (25–100 Hz) burst events. In in vitro preparation, a stimulation protocol that mimics the theta oscillation, theta burst stimulation (TBS), is used to induce long-term potentiation. Thus, TBS is thought to have a distinct role in the neural network of the hippocampal slice preparation. However, the specific mechanisms that make TBS induce such neural circuit modifications are still unknown. Using electrophysiology and voltage-sensitive dye imaging (VSDI), we have found that TBS induces augmentation of spike firing. The augmentation was apparent in the first couple of brief burst stimulation (100 Hz four pulses) on a TBS-train in a presence of NMDA receptor blocker (APV 50 μM). In this study, we focused on the characterizes of the NMDA independent augmentation caused by a pair of the brief burst stimulation (the first pair of the TBS; paired burst stimulation-PBS). We found that PBS enhanced membrane potential responses on VSDI signal and intracellular recordings while it was absent in the current recording under whole-cell clamp condition. The enhancement of the response accompanied the augmentation of excitatory postsynaptic potential (EPSP) to spike firing (E-S) coupling. The paired burst facilitation (PBF) reached a plateau when the number of the first burst stimulation (priming burst) exceeds three. The interval between the bursts of 150 ms resulted in the maximum PBF. Gabazine (a GABAA receptor antagonist) abolished PBF. The threshold for spike generation of the postsynaptic cells measured with a current injection to cells was not lowered by the priming burst of PBS. These results indicate that PBS activates the GABAergic system to cause short-term E-S augmentation without raising postsynaptic excitability. We propose that a GABAergic system of area CA1 of the hippocampus produce the short-term E-S plasticity that could cause exaggerated spike-firing upon a theta-gamma activity distinctively, thus making the neural circuit of the CA1 act as a specific amplifier of the oscillation signal.
Collapse
Affiliation(s)
- Takashi Tominaga
- Laboratory for Neural Circuit Systems, Institute of Neuroscience, Tokushima Bunri University Sanuki, Japan
| | - Yoko Tominaga
- Laboratory for Neural Circuit Systems, Institute of Neuroscience, Tokushima Bunri University Sanuki, Japan
| |
Collapse
|
3
|
Sharp JW, Ross-Inta CM, Baccelli I, Payne JA, Rudell JB, Gietzen DW. Effects of essential amino acid deficiency: down-regulation of KCC2 and the GABAA receptor; disinhibition in the anterior piriform cortex. J Neurochem 2013; 127:520-30. [PMID: 24024616 PMCID: PMC3858386 DOI: 10.1111/jnc.12403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 01/27/2023]
Abstract
The anterior piriform cortex (APC) is activated by, and is the brain area most sensitive to, essential (indispensable) amino acid (IAA) deficiency. The APC is required for the rapid (20 min) behavioral rejection of IAA deficient diets and increased foraging, both crucial adaptive functions supporting IAA homeostasis in omnivores. The biochemical mechanisms signaling IAA deficiency in the APC block initiation of translation in protein synthesis via uncharged tRNA and the general amino acid control kinase, general control nonderepressing kinase 2. Yet, how inhibition of protein synthesis activates the APC is unknown. The neuronal K(+) Cl(-) cotransporter, neural potassium chloride co-transporter (KCC2), and GABAA receptors are essential inhibitory elements in the APC with short plasmalemmal half-lives that maintain control in this highly excitable circuitry. After a single IAA deficient meal both proteins were reduced (vs. basal diet controls) in western blots of APC (but not neocortex or cerebellum) and in immunohistochemistry of APC. Furthermore, electrophysiological analyses support loss of inhibitory elements such as the GABAA receptor in this model. As the crucial inhibitory function of the GABAA receptor depends on KCC2 and the Cl(-) transmembrane gradient it establishes, these results suggest that loss of such inhibitory elements contributes to disinhibition of the APC in IAA deficiency. The circuitry of the anterior piriform cortex (APC) is finely balanced between excitatory (glutamate, +) and inhibitory (GABA, -) transmission. GABAA receptors use Cl(-), requiring the neural potassium chloride co-transporter (KCC2). Both are rapidly turning-over proteins, dependent on protein synthesis for repletion. In IAA (indispensable amino acid) deficiency, within 20 min, blockade of protein synthesis prevents restoration of these inhibitors; they are diminished; disinhibition ensues. GCN2 = general control non-derepressing kinase 2, eIF2α = α-subunit of the eukaryotic initiation factor 2.
Collapse
Affiliation(s)
- James W. Sharp
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Ave, Davis CA 95616, USA, Voice +530-752-1174, Fax +530-752-7690
| | - Catherine M. Ross-Inta
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Ave, Davis CA 95616, USA, Voice +530-752-1174, Fax +530-752-7690
| | - Irène Baccelli
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Ave, Davis CA 95616, USA, Voice +530-752-1174, Fax +530-752-7690
| | - John A. Payne
- Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616, USA, Voice +1 530 752 3336, FAX +1 530 752 5423
| | - John B. Rudell
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Ave, Davis CA 95616, USA, Voice +530-752-1174, Fax +530-752-7690
| | - Dorothy W. Gietzen
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Ave, Davis CA 95616, USA, Voice +530-752-1174, Fax +530-752-7690
| |
Collapse
|
4
|
Kondo M, Kitajima T, Fujii S, Tsukada M, Aihara T. Modulation of synaptic plasticity by the coactivation of spatially distinct synaptic inputs in rat hippocampal CA1 apical dendrites. Brain Res 2013; 1526:1-14. [DOI: 10.1016/j.brainres.2013.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
|
5
|
Tominaga T, Tominaga Y. A new nonscanning confocal microscopy module for functional voltage-sensitive dye and Ca2+ imaging of neuronal circuit activity. J Neurophysiol 2013; 110:553-61. [PMID: 23615547 DOI: 10.1152/jn.00856.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent advances in fluorescent confocal microscopy and voltage-sensitive and Ca(2+) dyes have vastly improved our ability to image neuronal circuits. However, existing confocal systems are not fast enough or too noisy for many live-cell functional imaging studies. Here, we describe and demonstrate the function of a novel, nonscanning confocal microscopy module. The optics, which are designed to fit the standard camera port of the Olympus BX51WI epifluorescent microscope, achieve a high signal-to-noise ratio (SNR) at high temporal resolution, making this configuration ideal for functional imaging of neuronal activities such as the voltage-sensitive dye (VSD) imaging. The optics employ fixed 100- × 100-pinhole arrays at the back focal plane (optical conjugation plane), above the tube lens of a usual upright microscope. The excitation light travels through these pinholes, and the fluorescence signal, emitted from subject, passes through corresponding pinholes before exciting the photodiodes of the imager: a 100- × 100-pixel metal-oxide semiconductor (MOS)-type pixel imager with each pixel corresponding to a single 100- × 100-μm photodiode. This design eliminated the need for a scanning device; therefore, acquisition rate of the imager (maximum rate of 10 kHz) is the only factor limiting acquisition speed. We tested the application of the system for VSD and Ca(2+) imaging of evoked neuronal responses on electrical stimuli in rat hippocampal slices. The results indicate that, at least for these applications, the new microscope maintains a high SNR at image acquisition rates of ≤0.3 ms per frame.
Collapse
Affiliation(s)
- Takashi Tominaga
- Laboratory for Neural Circuit Systems, Institute of Neuroscience, Tokushima Bunri University, Shido, Sanuki, Kagawa, Japan.
| | | |
Collapse
|
6
|
Hazra A, Rosenbaum R, Bodmann B, Cao S, Josić K, Žiburkus J. β-Adrenergic modulation of spontaneous spatiotemporal activity patterns and synchrony in hyperexcitable hippocampal circuits. J Neurophysiol 2012; 108:658-71. [PMID: 22496530 DOI: 10.1152/jn.00708.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A description of healthy and pathological brain dynamics requires an understanding of spatiotemporal patterns of neural activity and characteristics of its propagation between interconnected circuits. However, the structure and modulation of the neural activation maps underlying these patterns and their propagation remain elusive. We investigated effects of β-adrenergic receptor (β-AR) stimulation on the spatiotemporal characteristics of emergent activity in rat hippocampal circuits. Synchronized epileptiform-like activity, such as interictal bursts (IBs) and ictal-like events (ILEs), were evoked by 4-aminopyridine (4-AP), and their dynamics were studied using a combination of electrophysiology and fast voltage-sensitive dye imaging. Dynamic characterization of the spontaneous IBs showed that they originated in dentate gyrus/CA3 border and propagated toward CA1. To determine how β-AR modulates spatiotemporal characteristics of the emergent IBs, we used the β-AR agonist isoproterenol (ISO). ISO significantly reduced the spatiotemporal extent and propagation velocity of the IBs and significantly altered network activity in the 1- to 20-Hz range. Dual whole cell recordings of the IBs in CA3/CA1 pyramidal cells and optical analysis of those regions showed that ISO application reduced interpyramidal and interregional synchrony during the IBs. In addition, ISO significantly reduced duration not only of the shorter duration IBs but also the prolonged ILEs in 4-AP. To test whether the decrease in ILE duration was model dependent, we used a different hyperexcitability model, zero magnesium (0 Mg(2+)). Prolonged ILEs were readily formed in 0 Mg(2+), and addition of ISO significantly reduced their durations. Taken together, these novel results provide evidence that β-AR activation dynamically reshapes the spatiotemporal activity patterns in hyperexcitable circuits by altering network rhythmogenesis, propagation velocity, and intercellular/regional synchronization.
Collapse
Affiliation(s)
- Anupam Hazra
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | | | | | |
Collapse
|