1
|
Trubacova R, Drastichova Z, Novotny J. Biochemical and physiological insights into TRH receptor-mediated signaling. Front Cell Dev Biol 2022; 10:981452. [PMID: 36147745 PMCID: PMC9485831 DOI: 10.3389/fcell.2022.981452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Thyrotropin-releasing hormone (TRH) is an important endocrine agent that regulates the function of cells in the anterior pituitary and the central and peripheral nervous systems. By controlling the synthesis and release of thyroid hormones, TRH affects many physiological functions, including energy homeostasis. This hormone exerts its effects through G protein-coupled TRH receptors, which signal primarily through Gq/11 but may also utilize other G protein classes under certain conditions. Because of the potential therapeutic benefit, considerable attention has been devoted to the synthesis of new TRH analogs that may have some advantageous properties compared with TRH. In this context, it may be interesting to consider the phenomenon of biased agonism and signaling at the TRH receptor. This possibility is supported by some recent findings. Although knowledge about the mechanisms of TRH receptor-mediated signaling has increased steadily over the past decades, there are still many unanswered questions, particularly about the molecular details of post-receptor signaling. In this review, we summarize what has been learned to date about TRH receptor-mediated signaling, including some previously undiscussed information, and point to future directions in TRH research that may offer new insights into the molecular mechanisms of TRH receptor-triggered actions and possible ways to modulate TRH receptor-mediated signaling.
Collapse
|
2
|
Influence of Kv11.1 (hERG1) K + channel expression on DNA damage induced by the genotoxic agent methyl methanesulfonate. Pflugers Arch 2021; 473:197-217. [PMID: 33452554 DOI: 10.1007/s00424-021-02517-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Besides their crucial role in cell electrogenesis and maintenance of basal membrane potential, the voltage-dependent K+ channel Kv11.1/hERG1 shows an essential impact in cell proliferation and other processes linked to the maintenance of tumour phenotype. To check the possible influence of channel expression on DNA damage responses, HEK293 cells, treated with the genotoxic agent methyl methanesulfonate (MMS), were compared with those of a HEK-derived cell line (H36), permanently transfected with the Kv11.1-encoding gene, and with a third cell line (T2) obtained under identical conditions as H36, by permanent transfection of another unrelated plasma membrane protein encoding gene. In addition, to gain some insights about the canonical/conduction-dependent channel mechanisms that might be involved, the specific erg channel inhibitor E4031 was used as a tool. Our results indicate that the expression of Kv11.1 does not influence MMS-induced changes in cell cycle progression, because no differences were found between H36 and T2 cells. However, the canonical ion conduction function of the channel appeared to be associated with decreased cell viability at low/medium MMS concentrations. Moreover, direct DNA damage measurements, using the comet assay, demonstrated for the first time that Kv11.1 conduction activity was able to modify MMS-induced DNA damage, decreasing it particularly at high MMS concentration, in a way related to PARP1 gene expression. Finally, our data suggest that the canonical Kv11.1 effects may be relevant for tumour cell responses to anti-tumour therapies.
Collapse
|
3
|
Carretero L, Llavona P, López-Hernández A, Casado P, Cutillas PR, de la Peña P, Barros F, Domínguez P. ERK and RSK are necessary for TRH-induced inhibition of r-ERG potassium currents in rat pituitary GH3 cells. Cell Signal 2015; 27:1720-30. [PMID: 26022182 DOI: 10.1016/j.cellsig.2015.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/04/2015] [Accepted: 05/20/2015] [Indexed: 11/16/2022]
Abstract
The transduction pathway mediating the inhibitory effect that TRH exerts on r-ERG channels has been thoroughly studied in GH3 rat pituitary cells but some elements have yet to be discovered, including those involved in a phosphorylation event(s). Using a quantitative phosphoproteomic approach we studied the changes in phosphorylation caused by treatment with 1μM TRH for 5min in GH3 cells. The activating residues of Erk2 and Erk1 undergo phosphorylation increases of 5.26 and 4.87 fold, respectively, in agreement with previous reports of ERK activation by TRH in GH3 cells. Thus, we studied the possible involvement of ERK pathway in the signal transduction from TRH receptor to r-ERG channels. The MEK inhibitor U0126 at 0.5μM caused no major blockade of the basal r-ERG current, but impaired the TRH inhibitory effect on r-ERG. Indeed, the TRH effect on r-ERG was also reduced when GH3 cells were transfected with siRNAs against either Erk1 or Erk2. Using antibodies, we found that TRH treatment also causes activating phosphorylation of Rsk. The TRH effect on r-ERG current was also impaired when cells were transfected with any of two different siRNAs mixtures against Rsk1. However, treatment of GH3 cells with 20nM EGF for 5min, which causes ERK and RSK activation, had no effect on the r-ERG currents. Therefore, we conclude that in the native GH3 cell system, ERK and RSK are involved in the pathway linking TRH receptor to r-ERG channel inhibition, but additional components must participate to cause such inhibition.
Collapse
Affiliation(s)
- Luis Carretero
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus de El Cristo, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Pablo Llavona
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus de El Cristo, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Alejandro López-Hernández
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus de El Cristo, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Pedro Casado
- Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Barts School of Medicine and Dentistry, London EC1M 6BQ, United Kingdom
| | - Pedro R Cutillas
- Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Barts School of Medicine and Dentistry, London EC1M 6BQ, United Kingdom
| | - Pilar de la Peña
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus de El Cristo, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus de El Cristo, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Pedro Domínguez
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus de El Cristo, Universidad de Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|