1
|
Xu X, Jiang T, Li Y, Kong L. Endostatin attenuates heart failure via inhibiting reactive oxygen species in myocardial infarction rats. Biosci Rep 2021; 41:BSR20200787. [PMID: 32686821 PMCID: PMC8243342 DOI: 10.1042/bsr20200787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/21/2023] Open
Abstract
The purpose of the present study was to evaluate whether endostatin overexpression could improve cardiac function, hemodynamics, and fibrosis in heart failure (HF) via inhibiting reactive oxygen species (ROS). The HF models were established by inducing ischemia myocardial infarction (MI) through ligation of the left anterior descending (LAD) artery in Sprague-Dawley (SD) rats. Endostatin level in serum was increased in MI rats. The decrease in cardiac function and hemodynamics in MI rats were enhanced by endostatin overexpression. Endostatin overexpression inhibited the increase in collagen I, collagen III, α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), matrix metalloproteinase (MMP)-2 and MMP9 in the hearts of MI rats. MI-induced cardiac hypertrophy was reduced by endostatin overexpression. The increased levels of malondialdehyde (MDA), superoxide anions, the promoted NAD(P)H oxidase (Nox) activity, and the reduced superoxide dismutase (SOD) activity in MI rats were reversed by endostatin overexpression. Nox4 overexpression inhibited the cardiac protective effects of endostatin. These results demonstrated that endostatin improved cardiac dysfunction and hemodynamics, and attenuated cardiac fibrosis and hypertrophy via inhibiting oxidative stress in MI-induced HF rats.
Collapse
Affiliation(s)
- Xuguang Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liusha Kong
- Department of Nephrology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Lin F, Pan A, Ye Y, Liu J. Simultaneous determination of monocrotaline and its N-oxide metabolite in rat plasma using LC-MS/MS: Application to a pharmacokinetic study. Biomed Chromatogr 2021; 35:e5207. [PMID: 34184288 DOI: 10.1002/bmc.5207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/19/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Monocrotaline (MCT) is a pyrrolizidine alkaloid that can induce hepatic sinusoidal damage, pulmonary hypertension, renal toxicity, and heart disease. Monocrotaline N-oxide (MNO), the primary metabolite of MCT, is less toxic; however, it can convert back to MCT to exhibit its toxicity. This study developed and validated a rapid and sensitive LC-MS/MS method for the simultaneous determination of MCT and monocrotaline N-oxide in rat plasma. The method has a linearity over the concentration range of 1-2000 ng/mL with correlation coefficients (r) >0.997 for each analyte. The results of selectivity, matrix effect, accuracy and precision, and recovery were all within the acceptance criteria. The validated method has been successfully applied to study pharmacokinetic behaviors and bioavailability of MCT in rats. MCT was rapidly absorbed (Tmax : 0.400 ± 0.149 h) after oral administration, and the absolute bioavailability of MCT was 78.2%.
Collapse
Affiliation(s)
- Feifei Lin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Anni Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang Ye
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Decreased Expression of Canstatin in Rat Model of Monocrotaline-Induced Pulmonary Arterial Hypertension: Protective Effect of Canstatin on Right Ventricular Remodeling. Int J Mol Sci 2020; 21:ijms21186797. [PMID: 32947968 PMCID: PMC7554857 DOI: 10.3390/ijms21186797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease which causes right ventricular (RV) failure. Canstatin, a C-terminal fragment of type IV collagen α2 chain, is expressed in various rat organs. However, the expression level of canstatin in plasma and organs during PAH is still unclear. We aimed to clarify it and further investigated the protective effects of canstatin in a rat model of monocrotaline-induced PAH. Cardiac functions were assessed by echocardiography. Expression levels of canstatin in plasma and organs were evaluated by enzyme-linked immunosorbent assay and Western blotting, respectively. PAH was evaluated by catheterization. RV remodeling was evaluated by histological analyses. Real-time polymerase chain reaction was performed to evaluate RV remodeling-related genes. The plasma concentration of canstatin in PAH rats was decreased, which was correlated with a reduction in acceleration time/ejection time ratio and an increase in RV weight/body weight ratio. The protein expression of canstatin in RV, lung and kidney was decreased in PAH rats. While recombinant canstatin had no effect on PAH, it significantly improved RV remodeling, including hypertrophy and fibrosis, and prevented the increase in RV remodeling-related genes. We demonstrated that plasma canstatin is decreased in PAH rats and that administration of canstatin exerts cardioprotective effects.
Collapse
|
4
|
Imoto K, Aratani M, Koyama T, Okada M, Yamawaki H. Thrombospondin-4 induces prolongation of action potential duration in rat isolated ventricular myocytes. J Vet Med Sci 2020; 82:707-712. [PMID: 32249254 PMCID: PMC7324826 DOI: 10.1292/jvms.20-0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Expression of thrombospondin-4 (TSP-4), a matricellular protein, is increased in the
heart tissue of various cardiac disease models. In dorsal root ganglion neurons, TSP-4
inhibits L-type Ca2+ channel (LTCC) activity. Although TSP-4 might be related
to the electrophysiological properties in heart, it remains to be clarified. The present
study aimed to clarify the effects of TSP-4 on action potential (AP), LTCC current
(ICaL) and voltage-dependent K+ (Kv) channel
current (IKv) in rat isolated ventricular myocytes by a patch
clamp technique. Ventricular myocytes were isolated from the heart of adult male Wistar
rats. The ventricular myocytes were treated with TSP-4 (5 nM) or its vehicle for 4 hr.
Then, whole-cell patch clamp technique was performed to measure AP (current-clamp mode)
and ICaL and IKv (voltage-clamp
mode). The mRNA expression of Kv channels was examined by reverse transcription-polymerase
chain reaction. TSP-4 had no effect on the resting membrane potential and peak amplitude
of AP. On the other hand, TSP-4 significantly prolonged AP duration (APD) at 50% and 90%
repolarization. TSP-4 significantly inhibited the peak amplitudes of
ICaL and IKv. TSP-4 had no
effect on mRNA expression of Kv channels (Kcna4, Kcna5,
Kcnb1, Kcnd2 and Kcnd3). The present
study for the first time demonstrated that TSP-4 prolongs APD in rat ventricular myocytes,
which is possibly mediated through the suppression of Kv channel activity.
Collapse
Affiliation(s)
- Keisuke Imoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada-shi, Aomori 034-8628, Japan
| | - Momoko Aratani
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada-shi, Aomori 034-8628, Japan
| | - Takahiro Koyama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada-shi, Aomori 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada-shi, Aomori 034-8628, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada-shi, Aomori 034-8628, Japan
| |
Collapse
|
5
|
Chemerin-9-induced contraction was enhanced through the upregulation of smooth muscle chemokine-like receptor 1 in isolated pulmonary artery of pulmonary arterial hypertensive rats. Pflugers Arch 2020; 472:335-342. [PMID: 31965243 DOI: 10.1007/s00424-019-02345-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022]
Abstract
Chemerin is an adipocytokine having cardiovascular effects. Chemokine-like receptor 1 (CMKLR1) and chemokine (CC motif) receptor-like 2 (CCRL2) are chemerin receptors. Chemerin-9, an active fragment, causes contraction via smooth muscle CMKLR1 in isolated blood vessels. Pulmonary arterial hypertension (PAH) is a fatal disease resulting ultimately in right heart failure. To test the hypothesis that chemerin affects pulmonary artery (PA) resistance, we examined the effects of chemerin-9 on contractility of isolated PA from PAH rats. Wistar rats were injected with monocrotaline (MCT) for 2 weeks to make PAH rats (MCT rats). Control (Cont) rats received a saline injection. Chemerin-9-induced contraction of isolated intrapulmonary artery (IPA) from left lung was isometrically measured. Protein expression of CMKLR1 and CCRL2 in isolated left lung was determined by Western blotting. Localization of CMKLR1 in IPA of left lung was examined immunohistochemically. Chemerin-9-induced contraction was significantly enhanced in IPA from MCT compared with Cont rats. Protein expression of CMKLR1 was significantly elevated in isolated left lung from MCT compared with Cont rats, while protein expression of CCRL2, a decoy receptor, was significantly decreased. CMKLR1 was localized mainly in endothelium of IPA in Cont rats. The CMKLR1 expression was significantly decreased in endothelium of IPA in MCT rats, while it was significantly elevated in smooth muscle. The present study for the first time demonstrated that the enhanced chemerin-9-induced contraction of isolated IPA from MCT rats was at least partly caused by the increase of CMKLR1 in smooth muscle.
Collapse
|
6
|
Antigny F, Mercier O, Humbert M, Sabourin J. Excitation-contraction coupling and relaxation alteration in right ventricular remodelling caused by pulmonary arterial hypertension. Arch Cardiovasc Dis 2020; 113:70-84. [DOI: 10.1016/j.acvd.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/09/2023]
|
7
|
Periostin Mediates Right Ventricular Failure through Induction of Inducible Nitric Oxide Synthase Expression in Right Ventricular Fibroblasts from Monocrotaline-Induced Pulmonary Arterial Hypertensive Rats. Int J Mol Sci 2018; 20:ijms20010062. [PMID: 30586863 PMCID: PMC6337160 DOI: 10.3390/ijms20010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 01/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) leads to lethal right ventricular failure (RVF). Periostin (POSTN) mRNA expression is increased in right ventricles (RVs) of monocrotaline (MCT)-induced PAH model rats. However, the pathophysiological role of POSTN in RVF has not been clarified. We investigated the effects of POSTN on inducible nitric oxide (NO) synthase (iNOS) expression and NO production, which causes cardiac dysfunction, in right ventricular fibroblasts (RVFbs). Male Wistar rats were intraperitoneally injected with MCT (60 mg/kg) or saline. Three weeks after injection, RVFbs were isolated from RVs of MCT- or saline-injected rats (MCT-RVFb or CONT-RVFb). In MCT-RVFb, iNOS expression and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) were higher than those in CONT-RVFb. Recombinant POSTN increased iNOS expression and NO production, which were prevented by a pharmacological inhibition of ERK1/2, JNK or NF-κB in RVFbs isolated from normal rats. Culture medium of POSTN-stimulated RVFbs suppressed Ca2+ inflow through l-type Ca2+ channel (LTCC) in H9c2 cardiomyoblasts. We demonstrated that POSTN enhances iNOS expression and subsequent NO production via ERK1/2, JNK, and NF-κB signaling pathways in RVFbs. POSTN might mediate RVF through the suppression of LTCC activity of cardiomyocytes by producing NO from RVFbs in PAH model rats.
Collapse
|
8
|
Okada M, Imoto K, Sugiyama A, Yasuda J, Yamawaki H. New Insights into the Role of Basement Membrane-Derived Matricryptins in the Heart. Biol Pharm Bull 2018; 40:2050-2060. [PMID: 29199230 DOI: 10.1248/bpb.b17-00308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM), which contributes to structural homeostasis as well as to the regulation of cellular function, is enzymatically cleaved by proteases, such as matrix metalloproteinases and cathepsins, in the normal and diseased heart. During the past two decades, matricryptins have been defined as fragments of ECM with a biologically active cryptic site, namely the 'matricryptic site,' and their biological activities have been initially identified and clarified, including anti-angiogenic and anti-tumor effects. Thus, matricryptins are expected to be novel anti-tumor drugs, and thus widely investigated. Although there are a smaller number of studies on the expression and function of matricryptins in fields other than cancer research, some matricryptins have been recently clarified to have biological functions beyond an anti-angiogenic effect in heart. This review particularly focuses on the expression and function of basement membrane-derived matricryptins, including arresten, canstatin, tumstatin, endostatin and endorepellin, during cardiac diseases leading to heart failure such as cardiac hypertrophy and myocardial infarction.
Collapse
Affiliation(s)
- Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Keisuke Imoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Akira Sugiyama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Jumpei Yasuda
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| |
Collapse
|
9
|
Imoto K, Okada M, Yamawaki H. Characterization of fibroblasts from hypertrophied right ventricle of pulmonary hypertensive rats. Pflugers Arch 2018; 470:1405-1417. [PMID: 29860638 DOI: 10.1007/s00424-018-2158-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/07/2018] [Accepted: 05/23/2018] [Indexed: 11/30/2022]
Abstract
Pulmonary arterial hypertension (PAH), which is characterized by an elevation of pulmonary arterial resistance, leads to a lethal right heart failure. It is an urgent issue to clarify the pathogenesis of PAH-induced right heart failure. The present study aimed to elucidate the characteristics of cardiac fibroblasts (CFs) isolated from hypertrophied right ventricles of monocrotaline (MCT)-induced PAH model rats. CFs were isolated from the right ventricles of MCT-injected rats (MCT-CFs) and saline-injected control rats (CONT-CFs). Expression of α-smooth muscle actin and collagen type I in MCT-CFs was lower than that in CONT-CFs. On the other hand, proliferation, migration, and matrix metalloproteinase (MMP)-9 production were significantly enhanced in MCT-CFs. In MCT-CFs, phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK), and Ca2+/calmodulin-dependent protein kinase (CaMK) II was significantly enhanced. In addition to mRNA expression of Orai1, a Ca2+ release-activated Ca2+ channel, and stromal interaction molecules (STIM) 1, an endoplasmic reticulum Ca2+ sensor, the associated store-operated Ca2+ entry (SOCE) was significantly higher in MCT-CFs than CONT-CFs. Pharmacological inhibition of ERK1/2 pathway prevented the enhanced proliferation of MCT-CFs. The enhanced migration of MCT-CFs was prevented by a pharmacological inhibition of ERK1/2, JNK, CaMKII, or SOCE pathway. The enhanced MMP-9 production in MCT-CFs was prevented by a pharmacological inhibition of ERK1/2, CaMKII, or SOCE pathway but not JNK. The present results suggested that MCT-CFs exhibit proliferative and migratory phenotypes perhaps through multiple signaling pathways. This study for the first time determined the characteristics of CFs isolated from hypertrophied right ventricles of MCT-induced PAH model rats.
Collapse
Affiliation(s)
- Keisuke Imoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada City, Aomori, 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada City, Aomori, 034-8628, Japan.
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada City, Aomori, 034-8628, Japan
| |
Collapse
|
10
|
Kodama T, Okada M, Yamawaki H. Mechanisms underlying the relaxation by A484954, a eukaryotic elongation factor 2 kinase inhibitor, in rat isolated mesenteric artery. J Pharmacol Sci 2018; 137:86-92. [PMID: 29778449 DOI: 10.1016/j.jphs.2018.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is a calmodulin-related protein kinase which regulates protein translation. A484954 is an inhibitor of eEF2K. In the present study, we investigated the acute effects of A484954 on contractility of isolated blood vessels. Isometric contraction of rat isolated aorta and main branch of superior mesenteric artery (MA) was measured. Expression of an inward rectifier K+ (Kir) channel subtype mRNA and protein was examined. A484954 caused relaxation in endothelium-intact [E (+)] and -denuded [E (-)] aorta or MA precontracted with noradrenaline (NA). The relaxation was higher in MA than aorta. The relaxation was partially inhibited by a nitric oxide (NO) synthase inhibitor, NG-nitro-l-arginine methyl ester (300 μM) in E (+) MA. The relaxation was significantly smaller in MA precontracted with high K+ than NA. The A484954-induced relaxation was significantly inhibited by a Kir channel blocker, BaCl2 (1 mM) compared with vehicle control in E (-) MA. Expression of Kir2.2 mRNA and protein was significantly higher in MA than aorta. We for the first time revealed that A484954 induces relaxation through opening smooth muscle Kir (Kir2.2) channel and through endothelium-derived NO in MA.
Collapse
Affiliation(s)
- Tomoko Kodama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada City, Aomori, 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada City, Aomori, 034-8628, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada City, Aomori, 034-8628, Japan.
| |
Collapse
|
11
|
Imoto K, Hirakawa M, Okada M, Yamawaki H. Canstatin modulates L-type calcium channel activity in rat ventricular cardiomyocytes. Biochem Biophys Res Commun 2018; 499:954-959. [PMID: 29626474 DOI: 10.1016/j.bbrc.2018.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022]
Abstract
Excessive increase of cytosolic Ca2+ through the activation of L-type Ca2+ channels (LTCCs) via β adrenergic receptor induces apoptosis of cardiomyocytes. Canstatin, a cleaved fragment of collagen type IV α2 chain, is abundantly expressed in normal heart tissue. We previously reported that canstatin inhibits β adrenergic receptor-stimulated apoptosis in cardiomyoblasts. Here, we tested the hypothesis that canstatin regulates LTCCs activity in ventricular cardiomyocytes. Collagen type IV α2 chain (COL4A2) small interfering (si) RNA (for canstatin suppression) or control siRNA was injected via jugular vein in Wistar rats. Two days after the injection, electrocardiogram (ECG) was recorded and the left ventricular tissue was isolated using Langendorff apparatus. Immunofluorescence staining was performed to clarify the distribution of canstatin in cardiomyocytes. The knockdown efficiency was confirmed by Western blotting. The L-type Ca2+ channel current (ICaL) of ventricular cardiomyocyte was measured by a whole-cell patch clamp technique. In immunofluorescence staining, colocalization of canstatin and αv integrin was observed in the isolated ventricular cardiomyocytes. The ICaL of ventricular cardiomyocyte isolated from COL4A2 siRNA-injected rats was significantly enhanced compared with control siRNA-injected rats. Recombinant canstatin (250 ng/ml) significantly reversed it. ECG analysis showed that QT interval tended to be shortened and amplitude of T wave was significantly increased in the COL4A2 siRNA-injected rats. In summary, we for the first time clarified that suppressing canstatin expression increases the basal ICaL in ventricular cardiomyocytes. It is proposed that canstatin might play a role in the stabilization of cardiac function through the modulation of LTCC activity in cardiomyocytes.
Collapse
Affiliation(s)
- Keisuke Imoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Japan
| | - Masaki Hirakawa
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Japan.
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Japan
| |
Collapse
|
12
|
Endostatin Stimulates Proliferation and Migration of Myofibroblasts Isolated from Myocardial Infarction Model Rats. Int J Mol Sci 2018; 19:ijms19030741. [PMID: 29509663 PMCID: PMC5877602 DOI: 10.3390/ijms19030741] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/24/2018] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
Myofibroblasts contribute to the healing of infarcted areas after myocardial infarction through proliferation, migration, and production of extracellular matrix (ECM). Expression of endostatin, a cleaved fragment of type XVIII collagen, increases in the heart tissue of an experimental myocardial infarction model. In the present study, we examined the effect of endostatin on the function of myofibroblasts derived from an infarcted area. The myocardial infarction model was created by ligating the left anterior descending artery in rats. Two weeks after the operation, α-smooth muscle actin (α-SMA)-positive myofibroblasts were isolated from the infarcted area. Endostatin significantly increased the proliferation and migration of myofibroblasts in vitro. On the other hand, endostatin had no effect on the production of type I collagen, a major ECM protein produced by myofibroblasts. Endostatin activated Akt and extracellular signal-regulated kinase (ERK), and the pharmacological inhibition of these signaling pathways suppressed the endostatin-induced proliferation and migration. A knockdown of the COL18A1 gene in the myocardial infarction model rats using small interference RNA (siRNA) worsened the cardiac function concomitant with wall thinning and decreased the α-SMA-positive myofibroblasts and scar formation compared with that of control siRNA-injected rats. In summary, we demonstrated for the first time that endostatin might be an important factor in the healing process after myocardial infarction through the activation of myofibroblasts.
Collapse
|
13
|
Sakamoto Y, Kameshima S, Kakuda C, Okamura Y, Kodama T, Okada M, Yamawaki H. Visceral adipose tissue-derived serine protease inhibitor prevents the development of monocrotaline-induced pulmonary arterial hypertension in rats. Pflugers Arch 2017; 469:1425-1432. [DOI: 10.1007/s00424-017-2043-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 01/28/2023]
|
14
|
Imoto K, Okada M, Yamawaki H. Expression profile of matricellular proteins in hypertrophied right ventricle of monocrotaline-induced pulmonary hypertensive rats. J Vet Med Sci 2017; 79:1096-1102. [PMID: 28496027 PMCID: PMC5487790 DOI: 10.1292/jvms.17-0053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Matricellular proteins, a non-structural extracellular matrix (ECM) component, bind to
and modulate various molecules including growth factor, cytokine, protease, other ECM
components and cell membrane receptors. While most matricellular proteins are hardly
expressed in normal adult tissue, they are re-expressed in heart tissue during cardiac
diseases. The present study aimed to clarify the mRNA expression profile of matricellular
proteins [secreted protein acidic and rich in cysteine: SPARC, hevin, thrombospondin
(TSP)-1, -2 and -4, CCN1 and 5, tenascin (Tn) C and N, periostin and osteopontin (OPN)] in
hypertrophied right ventricle (RV) of monocrotaline (MCT)-induced pulmonary hypertensive
rats. Male Wistar rats were intraperitoneally treated with MCT or saline. Two or three
weeks after MCT treatment, echocardiography was performed, and mRNA expression of
matricellular proteins was measured by real-time polymerase chain reaction. MCT (2 weeks)
induced pulmonary hypertension, RV dysfunction and hypertrophy, which were all worsened 3
weeks after MCT treatment. Expression of mRNA for SPARC, hevin, TnC, TSP-1, -2 and -4,
CCN1 and 5, periostin and OPN but not TnN was significantly upregulated in RV of MCT (2
weeks)-treated rats. Expression of mRNA for TSP-4, CCN1 and 5 and periostin was
continuously increased in RV of MCT (3 weeks)-treated rats. The present study for the
first time revealed the mRNA expression profile for matricellular proteins in RV of
MCT-treated rats for 2 or 3 weeks, which will be helpful to clarify the relationship for
matricellular proteins and pathogenesis of MCT-induced RV hypertrophy.
Collapse
Affiliation(s)
- Keisuke Imoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada-shi, Aomori 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada-shi, Aomori 034-8628, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada-shi, Aomori 034-8628, Japan
| |
Collapse
|