"Electrifying dysmorphology": Potassium channelopathies causing dysmorphic syndromes.
ADVANCES IN GENETICS 2020;
105:137-174. [PMID:
32560786 DOI:
10.1016/bs.adgen.2020.03.002]
[Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Potassium channels are a heterogeneous group of membrane-bound proteins, whose functions support a diverse range of biological processes. Genetic disorders arising from mutations in potassium channels are classically recognized by symptoms arising from acute channel dysfunction, such as periodic paralysis, ataxia, seizures, or cardiac conduction abnormalities, often in a patient with otherwise normal examination findings. In this chapter, we review a distinct subgroup of rare potassium channelopathies whose presentations are instead suggestive of a developmental disorder, with features including intellectual disability, craniofacial dysmorphism or other physical anomalies. Known conditions within this subgroup are: Andersen-Tawil syndrome, Birk-Barel syndrome, Cantú syndrome, Keppen-Lubinsky syndrome, Temple-Baraitser syndrome, Zimmerman-Laband syndrome and a very similar disorder called Bauer-Tartaglia or FHEIG syndrome. Ion channelopathies are unlikely to be routinely considered in the differential diagnosis of children presenting with developmental concerns, and so detailed description and photographs of the clinical phenotype are provided to aid recognition. For several of these disorders, functional characterization of the genetic mutations responsible has led to identification of candidate therapies, including drugs already commonly used for other indications, which adds further impetus to their prompt recognition. Together, these cases illustrate the potential for mechanistic insights gained from genetic diagnosis to drive translational work toward targeted, disease-modifying therapies for rare disorders.
Collapse